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Abstract

Inspired by recent work of P.-L. Lions on conditional optimal con-
trol, we introduce a problem of optimal stopping under bounded ra-
tionality: the objective is the expected payoff at the time of stopping,
conditioned on another event. For instance, an agent may care only
about states where she is still alive at the time of stopping, or a com-
pany may condition on not being bankrupt. We observe that condi-
tional optimization is time-inconsistent due to the dynamic change of
the conditioning probability and develop an equilibrium approach in
the spirit of R. H. Strotz’ work for sophisticated agents in discrete time.
Equilibria are found to be essentially unique in the case of a finite time
horizon whereas an infinite horizon gives rise to non-uniqueness and
other interesting phenomena. We also introduce a theory which gen-
eralizes the classical Snell envelope approach for optimal stopping by
considering a pair of processes with Snell-type properties.
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1 Introduction

The classical optimal stopping problem is to maximize the expected payoff
E[Gτ ] over all stopping times τ , where G = (Gt) is a given adapted process.
In this paper, we propose to study a criterion that conditions on a given
stopping time σ not being reached at the time τ :

sup
τ

E[Gτ1{τCσ}]

P (τ C σ)
where τ C σ ⇔ τ < σ or σ =∞. (1.1)
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When the model is based on a Markov chain X, a natural choice of σ is the
first exit time from a given set B. If, for instance, the stopping decision is
made by a company, one application is that X being in B indicates solvency
so that σ is the time of bankruptcy. Indeed, the company may only care
about states where the stopping payoff happens before σ as the company no
longer exists in the other states. Or, for an individual making a financial
decision, σ may be the time of death, then the model expresses that she only
cares about states where the payoff happens while she is alive.

It is typically not possible to model such a conditional problem as a
classical optimal stopping problem, except in the trivial case where the con-
ditioning event does not depend on the stopping time τ . The classical frame-
work would require us to model this as an exit time problem where a specific
payoff is assigned to the exit event (that is, a value Gt for t ≥ σ). E.g., for
the individual facing possible death, we are unable to simply say, “I don’t
care what happens after I die.” Instead, we have to assign a specific payoff
at death. Even if the modeler were willing to fix some value in order to be
“pragmatic,” it may be hard to make a justifiable choice and the solution of
the optimization will typically depend on it.

This paper is inspired by recent work of P.-L. Lions which introduces the
optimal control of conditioned processes [25]. There, the main example is
controlling the drift of a Brownian motion and the payoff is conditioned on
the process staying inside a given domain. The problem is cast as an optimal
control problem of Fokker–Planck equations, a particular type of mean field
game problem with coupling through the final condition. The limit towards
the classical case, where the domain tends to Rd, is given particular attention.
While it is observed that optimal controls depend on the starting point, the
question of time-consistency is not raised.

In the present paper, we introduce optimal stopping with conditioning, a
novel problem to the best of our knowledge. One of our first observations is
that the problem is time-inconsistent in the sense of Strotz [29]: if an agent
determines an optimal strategy at time t = 0 and reconsiders her decision at
a later time taking into account her present state, she may contradict her pre-
vious decision and find that her strategy is no longer optimal. In this setting
where the dynamic programming principle does not hold, there is more than
one notion of optimization. The precommitted problem is to optimize the
expected payoff at t = 0, assuming that the decision will not be challenged
later on; i.e., the agent “commits” to the initial choice. (The theory of [25]
corresponds to this notion.) In Strotz’ terminology, a sophisticated agent
without a commitment device is aware of the fact that her “future selves”
may overturn her current plan. Thus, she takes this as a constraint for a
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“strategy of consistent planning”: she chooses her behavior ignoring plans
that she knows her future selves will not carry out; that is, she selects an
action such that her future incarnations have no incentive to deviate. The
resulting time-consistent strategy is called subgame perfect Nash equilib-
rium, and this is the notion that we will focus on. A different interpretation
follows the literature on intergenerational models or overlapping-generations
models (see [28] and the work thereafter) where future decisions are taken by
subsequent generations rather than other selves. For instance, a government
agency may want to take into account future presidential terms and opt for
policies which will not be reversed after the next election.

Beyond being interesting in and of itself, conditional stopping may also
help to shed more light on the conditioned control of processes, since optimal
stopping is often more tractable than control.

1.1 Literature

Following the early work of [29], a rich literature involving time-inconsistency
has emerged in economics. For instance, [27] reconsiders Strotz’ concept in a
setting with non-exponential discounting when the number of decision points
changes, and [26] studies preferences that change over time. Non-standard
discounting (in particular hyperbolic) and time preferences (such as habit
formation) are the most frequent reasons for time-inconsistency in this lit-
erature; see [14] for an overview. The models are mostly formulated in dis-
crete time with finite or infinite time horizon. Time-inconsistency also arises
when the optimization objective involves a nonlinear function of an expec-
tation, such as the mean-variance criterion in [2], or a probability distortion
as in [1, 15, 23]. (A probability distortion corresponds to an optimization
objective that over- or underemphasizes events relative to their objective
probability.)

The pioneering work of [10, 11] has initiated the study on how to define
and obtain equilibrium strategies for the optimal control of continuous-time
processes, using the example of Ramsey’s problem when the planner uses
non-exponential discounting. In the continuous setting, varying a control at
a single instance in time is meaningless since it does not affect the diffusion.
The authors develop a first-order criterion which corresponds to variations
of the control over a short time interval, meaning that agents can commit
for a short period. This has led to a number of works, including portfo-
lio optimization with non-exponential discounting [12, 13], mean-variance
portfolio selection [5, 8] and general linear–quadratic control [16, 17]. Never-
theless, this concept of equilibrium is not the only one possible; in particular,
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first-order conditions are not sufficient for optimality in general. The recent
study [21] introduces a stronger concept of optimality and highlights the dif-
ferences. In [3, 4] the authors study time-inconsistent control in discrete and
continuous time, respectively, and the relation between them, for a general
class of objectives that are a sum of an expected utility and a nonlinear func-
tion of an expected utility with possible dependence on the initial condition.
See also [31] for a continuous-time framework with dependence on the initial
condition.

The closest reference for the present work is [22] where the authors study
optimal stopping in discrete time under non-exponential discounting in a
Markovian context. In the finite horizon case, a backward recursion yields
the unique equilibrium. In the infinite horizon case, the authors focus on a
time-homogeneous Markov chain. Under the assumption of decreasing impa-
tience (including hyperbolic discounting), a time-homogeneous equilibrium
is constructed by iterating the “strategic reasoning” or “fictitious play” map
(cf. Φ in Section 2.1); that is, every agent optimizes her decision between con-
tinuing and stopping while taking as given the decisions of all other agents.
Remarkably, an equilibrium which is optimal for all agents can be obtained.
We remark that [22] is predated by [18] where the iterative approach was
first implemented in continuous time. In [18], time-homogeneous equilibria
are obtained for time-homogeneous diffusions and inhomogeneous equilibria
for time-inhomogeneous diffusions. See also [20] for a discussion of optimal
equilibria in continuous time and [30] for a recent study of optimal stopping
with non-exponential discounting where equilibria may not exist and this
fact is related to a failure of smooth pasting. Optimal stopping under prob-
ability distortion is studied in [19] with a particular focus on equilibria that
are obtained by iterating from naïve strategies.

The mentioned works on optimal stopping in continuous time use a direct
analogy to the discrete-time case to define equilibria: each agent may stop
or continue, without any commitment device. Indeed, for optimal stopping,
the first-order approach of [10] is not a necessity: the decision to stop at a
single instance in time immediately affects the process. On the other hand,
as highlighted by [9] in the context of prospect theory, the definition in
continuous time may include unreasonable equilibria based on the fact that
continuation and stopping for a time-t agent produce the same payoff if the
subsequent agents stop and G is continuous. In particular, “always stopping”
is an equilibrium even if, say, G is increasing. In a homogeneous diffusion
model, [6, 7] use a first-order condition to define equilibria for two problems
with time-inconsistency, and then “always stopping” is not necessarily an
equilibrium. The relation between the two definitions has not been clarified
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so far.
To the best of our knowledge, the present paper is the first investiga-

tion of conditional optimal stopping. Regarding the control of conditioned
processes, we would like to mention ongoing work of R. Carmona and M. Lau-
rière where the problem of [25] is studied as a mean field control problem
for open and closed loop controls as well as ongoing work of Y. Achdou and
M. Laurière on the numerical resolution.

1.2 Synopsis

We study the conditional optimal stopping problem in (1.1) in a discrete-
time setting with finite or infinite time horizon. While a continuous-time
setting may certainly be of interest, our choice avoids some of the difficulties
mentioned in the preceding section and leads to an uncontroversial defini-
tion of an equilibrium: at every time and state (t, ω), an agent makes a
binary choice—stopping or continuing—without committing future agents.
We analyze such equilibria in a general stochastic framework while paying
particular attention to the Markovian setting.

In the case of a finite time horizon T , there is a natural terminal condition
(stopping is mandatory at T ) and we shall see that there is an equilibrium
which can be constructed by a backward recursion. This recursion computes
two processes, a value process like in the classical case and an additional
“survival process” that keeps track of the conditioning probability induced
by the future selves’ decisions. The equilibrium is essentially unique, and
if the stochastic framework is Markovian, then so is the equilibrium. These
findings are in line with the results for other time-inconsistent problem as
described in Section 1.1.

In the case of an infinite horizon, we provide a fairly general existence
result by passing to the limit of finite horizon problems. (Note that for
non-exponential discounting, existence may fail if the discounting does not
satisfy decreasing impatience; cf. [22, Example 3.1].) On the other hand, we
also provide examples showing that this case is more subtle than the previous
one. We shall see that there can exist non-Markovian equilibria in addition to
Markovian ones in a Markovian setting, which disproves a conjecture of [4] for
our problem. Moreover, equilibria need not be unique even within the class of
Markovian equilibria. Even more surprisingly, we detail a time-homogeneous
Markovian example which does not admit a time-homogeneous equilibrium
while time-inhomogeneous equilibria do exist. This is in sharp contrast to the
results of [18, 22] and illustrates that for our problem, in general, iterating
the “strategic reasoning” map of [22] does not converge. At a technical level,
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one reason is that non-exponential discounting with decreasing impatience
as in [22] preserves one inequality of the dynamic programming principle
whereas in our problem, the rescaling due to the conditioning probability
can cause deviations in both directions.

It seems natural to ask for analogues of the classical Snell envelope the-
ory in our setting. Indeed, the two processes described in the recursion for
the finite time horizon can be characterized in more abstract terms by su-
permartingale properties. This leads to a notion that we call Snell pair and
extends to the infinite-horizon setting. Snell pairs are (essentially) in one-to-
one relation with equilibria. Similarly as in the classical case, the equilibrium
policy is retrieved from the Snell pair by stopping where the value process
meets the obstacle G, but the survival process is needed to adjust the classi-
cal supermartingale properties in the context of conditioning. The survival
process, in turn, also enjoys a supermartingale property. We are not aware
of similar notions in the prior literature.

The remainder of this paper is organized as follows. In Section 2 we detail
the observation of time-inconsistency and the equilibrium concept. Section 3
presents the results on the finite-horizon case. Existence of equilibria in the
infinite-horizon case is covered in Section 4 and the corresponding examples
are described in Section 5. The concluding Section 6 discusses Snell pairs
and their relation to equilibria.

2 Setting

Let T ∈ N ∪ {∞} be the time horizon. If T <∞, set T = {0, 1, 2, . . . , T}; if
T =∞, set T = N. We will work on a probability space (Ω,F , P ) equipped
with a filtration (Ft)t≤T such that F0 is trivial. Let σ be a stopping time
with P (σ > 0) = 1; we think of events that happen after σ as irrelevant
and call Dt := {t < σ} the domain of relevance at time t ∈ T. In the case
T =∞, it is convenient to setD∞ := ∩t∈TDt = {σ =∞}. We may note that
σ(ω) = inf{t ∈ T : ω /∈ Dt}; indeed, specifying σ is equivalent to specifying
a decreasing adapted sequence (Dt)t∈T with P (D0) = 1. Here and in what
follows, the convention inf ∅ = ∞ is used. Finally, let G = (Gt)t≤T be an
adapted process describing the payoff for stopping at time t. The value of
Gt outside Dt will not matter; we set Gt = ∆ on Dc

t for notational purposes,
where ∆ is an auxiliary state with the convention that 0 ·∆ = 0. We assume
throughout that E[supt≤T |Gt|1Dt ] < ∞. Since we are interested in events
that happen strictly before σ, including the case where σ never happens, it
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will be useful to introduce the notation

sC t ⇐⇒ s < t or t =∞ for s, t ∈ [0,∞].

We can then consider the precommitted optimal stopping problem at the
initial time,

Vpre = sup
τ≤T, P (τCσ)>0

E[Gτ1{τCσ}]

P (τ C σ)
. (2.1)

Note that the supremum only runs over stopping times τ which avoid con-
ditioning on a nullset and that the set of such times always includes τ ≡ 0.

Example 2.1 (Markovian Setting). Let X be a Markov chain with values in
a separable metric space X starting at X0 = x0, let B ⊆ X be a measurable
subset containing x0 and let σ = inf{t ≥ 0 : Xt /∈ B} be the first exit time
from B. Then, our model entails that we only evaluate states of the world
where the trajectory of X lies in B up to the stopping time τ . A possible
specification of the payoff isGt = δtg(t,Xt) for a deterministic function g and
a discount factor δ ∈ (0, 1]. More generally, the set B can be time-dependent.

The conditional optimal stopping problem (2.1) reduces to a classical
optimal stopping problem when σ = ∞. But in general, the conditioning
in the definition of the expected payoff for τ depends on τ itself, so that it
cannot be reduced to a classical stopping problem.

2.1 Equilibria

The following example illustrates that the optimization problem (2.1) is time-
inconsistent in the sense that an optimal stopping strategy for an agent today
may not be optimal in the future; that is, if she reconsiders her strategy at
a future time using a conditional criterion, she may contradict her previous
decision.

Example 2.2. Consider a two-period binomial tree with Ω = {uu, ud, du, dd}
as illustrated in Figure 1, where u stands for up and d for down. The con-
ditional probabilities are 1/2 on every edge and the numbers at each node
represent the payoff G. The domain of relevance includes all states except dd;
i.e., the dashed line indicates the exit from the domain. Since there are only
five distinct stopping times in this model, once can easily compute all pos-
sible payoffs and observe that the unique optimizer of (2.1) is the stopping
time τpre with τpre(uu) = τpre(ud) = 1 and τpre(du) = τpre(dd) = 2. To wit,
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Figure 1: The binomial tree of Example 2.2.

it is optimal to stop at t = 1 if we have moved up in the first step and at
t = 2 otherwise. The obtained payoffs are illustrated by the solid dots and
the associated value is Vpre = 10 · 23 + 2 · 13 = 22

3 .
Next, consider an analogous optimization problem for an agent who solves

the problem conditionally on starting in the down state at t = 1. This agent
has only two options, either to stop immediately with payoff 3 or to wait
until the horizon and receive an expected reward of 2 (since the expectation
is conditioned on remaining inside the domain). Thus, this agent prefers
to stop, and that is not consistent with τpre. In summary, if the first agent
solves (2.1) and reconsiders her own strategy at t = 1 in the down state using
the natural conditional criterion, she will overturn her previous decision.

For the remainder of the paper we focus on an uncommitted sophisti-
cated agent in the sense of [29] (see [24] for a recent paper surveying other
approaches). She thinks of her “future selves” at various times and states as
other agents that will optimize their choices when subsequent decisions are
considered as given. Thus, we look for a policy which future selves will not
override. A policy is a collection of binary decisions (stop or continue), one
for each time and state, and an equilibrium is a policy such that no agent is
incentivized to deviate.

Before formalizing this, let us observe that each agent faces the constraint
of not conditioning on a null event. That is, any agent is forced to stop if
continuing would lead to exiting the domain with probability one in the next
step. Thus, the problem has the (random) effective time horizon

Te := T ∧ inf{0 ≤ t < T : P (Dt+1|Ft) = 0}.

The following adapts the basic notions of [18, 22] to our problem of condi-
tional stopping (instead of non-exponential discounting) and extends them
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to a non-Markovian setting.

Definition 2.3. A stopping policy is a {0, 1}-valued adapted process θ =
(θt)t∈T. We interpret θt(ω) = 1 as the agent at (t, ω) choosing to stop and
θt(ω) = 0 as continuing. We also introduce the continuation stopping time

Ltθ = inf{s > t : θs = 1};

this is the stopping time induced by θ for a time-t agent who decides to
continue. A stopping policy θ is called admissible if

P (Ltθ C σ|Ft) > 0 for t < Te and θt = 1 for t ≥ Te.

We denote by Θ the set of all admissible stopping policies.

Admissibility implies that every time-t agent with t < Te has a well-
defined continuation value

Jt(θ) =
E[GLtθ1{LtθCσ}|Ft]
P (Ltθ C σ|Ft)

, t < Te.

Naturally, she compares Jt(θ) with her stopping value Gt and prefers the
larger one, or she is invariant if they are equal. (Agents with t = Te are
forced to stop, so there is no decision to be taken. The value of θt for
t > Te is unimportant and set to 1 only for specificity.) If we start with
some θ ∈ Θ and all agents simultaneously update their choice according to
this preference while using the convention that invariant agents stick to their
preexisting decision, we are led to the updated stopping policy

Φ(θ)t =


1 if t < Te and Gt > Jt(θ),

θt if t < Te and Gt = Jt(θ),

0 if t < Te and Gt < Jt(θ),

1 if t ≥ Te.

Definition 2.4. An admissible stopping policy θ is an equilibrium (stopping
policy) if Φ(θ) = θ.

This notion corresponds to a subgame perfect Nash equilibrium: each
agent is behaving optimally if the future agents’ choices are seen as given.

Example 2.5. Consider the setting of Example 2.2. In any admissible
stopping policy, the time-2 agents have to stop because of the time horizon.
Both time-1 agents then prefer to stop as their stopping values (10 and 3)
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exceed the expected continuation values (3 and 2). Given those decisions, the
expected continuation value for the time-0 agent is (10 + 3)/2 which exceeds
the stopping value of 2. It easily follows that the unique equilibrium stopping
policy is given by θ0 = 0, θ1 ≡ 1 and θ2 ≡ 1. The induced stopping time
for the time-0 agent is τ ≡ 1. This differs from the precommitted-optimal
stopping time τpre of Example 2.2, and the associated expected reward of
(10 + 3)/2 is smaller than the precommitted value function Vpre.

In a Markov chain setting, a natural subset of stopping policies is also
of a Markovian form. Denoting by σ(Y ) the σ-field generated by a random
variable Y , this can be formalized as follows.

Definition 2.6. Consider the Markovian setting of Example 2.1. A stopping
policy θ ∈ Θ is called Markovian if θt is σ(Xt, 1Dt)-measurable for all t ∈ T.

If θ is admissible, this is equivalent to the existence of measurable subsets
Rt ⊆ X such that

θt = 1{Xt∈Rt}∪Dct .

Note that such equilibria are actually path-dependent through Dt, but this is
the least amount of path-dependence compatible with our general definition
of admissibility. In the Markovian setting, one could assume without loss of
generality that all exit states (states outside B) are absorbing. Then, we have
Dt = {Xt ∈ B} a.s. and one can require that θt is (a.s.) σ(Xt)-measurable.

3 Finite-Horizon Equilibria

In this section we discuss existence, uniqueness and construction of equilibria
for the case T <∞.

In the classical optimal stopping problem, the value function and the
optimal decision of a time-t agent are completely determined by the value
functions of the agents at time t+ 1. This fact lies at the heart of the back-
ward recursion of dynamic programming and the Snell envelope theory. In
the problem at hand, however, the conditioning event in the computation of
the continuation value Jt(θ) depends on the decisions of many future selves,
not only the ones at time t + 1. This suggests introducing an additional
process S to keep track of the probability of the conditioning event given the
stopping policy of all future selves; we call S the survival process since it is
related to survival probabilities. In Theorem 3.1 below we provide a back-
ward recursion to construct an equilibrium; its recursive formula for Jt(θ)
resembles the classical case where it would be the conditional expectation
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of the value process at time t + 1, but now this expectation is calculated
under a new measure obtained by using the normalized survival process as
a density.

Just like in classical optimal stopping, one type of non-uniqueness arises
when an agent is invariant; that is, when the stopping and continuation
values happen to be equal: Jt(θ) = Gt. Thus, an algorithm for the con-
struction of an equilibrium necessarily comes with a specific choice. The
theorem stated below uses early stopping preference, meaning that invariant
agents choose to stop, and it yields the unique equilibrium with that prefer-
ence. In the classical setting, this corresponds to the first time that the Snell
envelope hits the obstacle. In general, a stopping preference is an adapted
process with binary values, defining for each (t, ω) the choice in the case
of invariance. For each such preference, one can write an algorithm similar
to Theorem 3.1 and it delivers the unique equilibrium with that preference.
Conversely, every finite-horizon equilibrium arises in that way.

Theorem 3.1. Let T <∞ and recall that Gt = ∆ on Dc
t . Define the value

process (Vt)t≤T and the survival process (St)t≤T as follows. Set VT = GT
and ST = 1DT . For t = T − 1, . . . , 0, set

Jt =
E[St+1Vt+1|Ft]
E[St+1|Ft]

if t < Te,


Vt = Gt and St = 1 if t < Te and Gt ≥ Jt,
Vt = Jt and St = E[St+1|Ft] if t < Te and Gt < Jt,

Vt = Gt and St = 1Dt if t ≥ Te.

Then θ := 1{Gt≥Vt} is the unique equilibrium with preference for early stop-
ping.

In Section 6 we will call (V, S) a Snell pair and discuss its connection
to Snell envelopes. A generalization including the infinite-horizon case will
also be provided. We nevertheless opt to provide an elementary and self-
contained treatment of the finite-horizon in the present section.

Proof of Theorem 3.1. We show in Lemma 3.2 below that θ is admissible
and that Jt coincides with the continuation value Jt(θ) of θ. Once that is
established, the very definition of θ shows that

θ = 1{Gt≥Vt} =

{
0 if t < Te and Gt < Jt(θ),

1 otherwise
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and hence θ is an equilibrium stopping policy with early stopping preference.
On the other hand, the boundary condition at Te and a backward induction
allow us to see that there is at most one such equilibrium.

Lemma 3.2. In the setting of Theorem 3.1, θ is admissible and

Jt = Jt(θ), t < Te,

E[St+1|Ft] = P (Ltθ C σ|Ft), t < Te, (3.1)

and for t ≤ T we have

St =


P (Ltθ C σ|Ft) on Dt ∩ {θt = 0},
1 on Dt ∩ {θt = 1},
0 on Dc

t .

Proof. We first check that θ is admissible. Indeed, we have θt = 1 for t ≥ Te,
and if t < Te, backward induction shows that P (Ltθ C σ|Ft) > 0.

Next, we prove the formula for St. The last two cases are clear from the
definition. Thus, we focus on showing St = P (LtθC σ|Ft) on Dt ∩ {θt = 0}.
For t ≥ Te we have θt = 1 so nothing needs to be proved. For t < Te we
argue by induction. Indeed, using the induction hypothesis to obtain (a)
below,

St = E[St+1|Ft]
(a)
= E

[
1Dt+11{θt+1=0}P (Lt+1θ C σ|Ft+1) + 1Dt+11{θt+1=1} · 1 + 1Dct+1

· 0
∣∣Ft]

(b)
= E[P (Ltθ C σ|Ft+1)|Ft] = P (Ltθ C σ|Ft),

where (b) holds due to

P (Ltθ C σ|Ft+1) =


P (Lt+1θ C σ|Ft+1) on Dt+1 ∩ {θt+1 = 0},
1 on Dt+1 ∩ {θt+1 = 1},
0 on Dc

t+1.

(3.2)

In the last identity, the first case holds since θt+1 = 0 implies that Ltθ and
Lt+1θ agree. The second case holds because θt+1 = 1 entails that Ltθ = t+1
and t + 1 < σ on Dt+1. Finally, on Dc

t+1 we have σ ≤ t + 1 ≤ Ltθ. This
completes the proof for St and we note that (3.1) was obtained as part of
the first display above. It remains to show that

Jt(θ) ≡
E[GLtθ1{LtθCσ}|Ft]
P (Ltθ C σ|Ft)

=
E[St+1Vt+1|Ft]
E[St+1|Ft]

≡ Jt, t < Te.
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Since the denominators are non-zero and agree by (3.1), it suffices to show

E[GLtθ1{LtθCσ}|Ft] = E[St+1Vt+1|Ft], t < T. (3.3)

Indeed, (3.3) is clear for t ≥ Te since that implies P (Ltθ C σ) = 0. It is also
clear for t = T − 1. For t < Te ∧ (T − 1) we argue by backward induction.
We first observe that, by similar arguments as below (3.2),

GLtθ1{LtθCσ} =


GLt+1θ1{Lt+1θCσ} on Dt+1 ∩ {θt+1 = 0},
Vt+1 = St+1Vt+1 on Dt+1 ∩ {θt+1 = 1},
0 = St+1Vt+1 on Dc

t+1.

(3.4)

On the set Dt+1 ∩ {θt+1 = 0} occurring in the first case of (3.4) we have

E[GLt+1θ1{Lt+1θCσ}|Ft+1] = E[St+2Vt+2|Ft+1] = St+1Jt+1 = St+1Vt+1,

where the three equalities follow from the induction hypothesis, the defini-
tions of Jt+1 and St+1, and Jt+1 = Vt+1 on {θt+1 = 0}, respectively. As a
result, we can take conditional expectations in (3.4) and obtain that the iden-
tity E[GLtθ1{LtθCσ}|Ft+1] = St+1Vt+1 holds everywhere. The tower property
then yields the claim (3.3) and the proof is complete.

Corollary 3.3. In the Markovian setting of Example 2.1 with T <∞, there
exists a unique equilibrium with preference for early stopping and that equi-
librium is Markovian.

Proof. We observe that Gt and Vt in Theorem 3.1 are σ(Xt, 1Dt)-measurable
for all t, and then so is θt.

One can note that the stopping preference is important in the above
result: it is easy to construct examples of non-Markovian equilibria by speci-
fying a path-dependent stopping preference and taking the reward function g
to be constant.

4 Infinite-Horizon Equilibria: Existence

The following result establishes the existence of infinite-horizon equilibria in
a setting that includes Markov chains with a countable state space.
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Theorem 4.1. Suppose that Ft is a.s. discrete1 for all t ∈ T and that
limt→∞Gt = G∞ a.s. Moreover, assume that

P (∃ t ∈ T : Gt ≥ 0) > 0 and there exists c > 1 such that
(ctGt)t≥0 is uniformly bounded from above.

(4.1)

Then an equilibrium exists.

Let us comment on the assumptions before stating the proof.

Remark 4.2. (a) Condition (4.1) covers in particular problems with dis-
counting for a payoff function with sub-exponential growth. Consider for
instance the Markov chain setting of Example 2.1 with a bounded and non-
negative payoff function g(t, x) and a discount factor δ ∈ (0, 1). Then setting
Gt = δtg(t,Xt) for t ∈ T (and G∞ = 0), we see that (4.1) is satisfied for any
c ∈ (1, δ−1).

(b) The proof of Theorem 4.1 below has three steps. The construction of
a limiting stopping policy θ and the verification of its optimality condition
do not require (4.1) at all. The latter is used to ensure that θ is admissible.
There are many other situations where admissibility holds, including without
discounting, that can be established on a case-by-case basis, for instance the
case of a Markov chain with a finite state space and a homogeneous reward
Gt = g(Xt). Condition (4.1) is merely one way to write a simple and fairly
general result. Of course, σ = ∞ a.s. is always a sufficient condition for
P (τ C σ) 6= 0, for any stopping time τ .

(c) Similarly, there are many cases where one can see directly from ad-
ditional structure of G that Ltθ < ∞ a.s. for all t ∈ T. In that case, G∞ is
irrelevant.

(d) On the other hand, existence is not guaranteed without some as-
sumption. For instance, if Te = ∞ inside the domain but P (σ < ∞) = 1
(cf. Example 5.1 below with p21 > 0), a strictly increasing reward G leads
to non-existence since stopping is undesirable for any agent but θ ≡ 0 is not
admissible.

Proof of Theorem 4.1. For t < ∞, let At be the (countable) collection of
atoms generating Ft. Given n ≥ 1, consider a modified problem with time
horizon n and let (θnt )0≤t≤n be the equilibrium stopping policy obtained
by applying Theorem 3.1 with the payoff (Gt)t≤n. We also set θnt ≡ 1 for

1We call a σ-field discrete if it is generated by a countable partition of Ω. In the case
of a Markov chain with countable state space one can define Ft as the σ-field generated
by the sample paths up to time t.
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t ≥ n. Note that each θnt is a binary sequence (θnt (A))A∈At . By a diagonal
procedure we can thus find a subsequence (again denoted θn) which converges
to a stopping policy θ in the following sense: given t < ∞ and A ∈ At, we
have θnt (A) = θt(A) for all sufficiently large n. If Te and Tne denote the
effective horizons, then Te ∧ n = Tne and thus the admissibility of θn for
n ≥ 1 implies that θt = 1 for t ≥ Te.

To complete the proof that θ is admissible and an equilibrium, we fix
arbitrary t0 ∈ T and A0 ∈ Ft0 and check the admissibility and optimality
conditions at that state. For simplicity of notation, we assume that t0 = 0
and A0 = Ω (the general case differs only by writing conditional expectations
and probabilities). To further simplify the notation, we set τ = L0θ and τn =
L0θn. The convergence of θn to θ implies that τn → τ a.s. More precisely,
this convergence is stationary on {τ < ∞}, yielding that 1{τn<σ<∞} →
1{τ<σ<∞} a.s. Moreover, {τ C σ} = {τ < σ < ∞} ∪ {σ = ∞}, where the
union is disjoint, and similarly for τn. It follows that

1{τnCσ} → 1{τCσ} a.s. (4.2)

Admissibility. We must ensure that P (τ C σ) 6= 0. In view of (4.2) it
suffices to exhibit a reachable state where stopping happens for all large n,
as that will imply that P (τ C σ) = limn P (τn C σ) > 0. Indeed, by (4.1) we
can find t ≥ 0 and A ∈ At with A ⊆ Dt such that Gt(A) ≥ 0 and

ctGt(A) ≥ 1

c
sup

s≥0,A′∈As,A′⊆Ds
csGs(A

′) ≥ sup
s≥t+1,A′∈As,A′⊆Ds

cs−1Gs(A
′)

and hence

Gt(A) ≥ Gs(A′) for all s > t, A′ ∈ As with A′ ⊆ Ds.

This shows that for the agent at (t, A), stopping is optimal no matter what
future selves do. In particular, θnt (A) = 1 for all n ≥ t and thus τ ≤ t < σ
on A. As a result, P (τ C σ) ≥ P (A) > 0.

Optimality. It suffices to show that the continuation values converge
at the fixed initial state; i.e., Jn0 := J0(θ

n) → J0 := J0(θ). Once that is
established, if θ0 = 0, then θn0 = 0 for n large and hence G0 ≤ Jn0 → J0
shows that θ0 = 0 is optimal, and similarly for θ0 = 1. To see that

Jn0 =
E[Gτn1{τnCσ}]

P (τn C σ)
→

E[Gτ1{τCσ}]

P (τ C σ)
= J0,

note that the denominators are non-zero by admissibility and P (τn C σ)→
P (τCσ) by (4.2). In view of τn → τ a.s. we have Gτn → Gτ a.s. on {τ <∞}.
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As we have assumed that Gn → G∞ a.s., this convergence holds everywhere.
Using also the standing assumption that E[supt≤T |Gt|1Dt ] < ∞ and (4.2),
the convergence of the numerators follows by dominated convergence.

Corollary 4.3. Consider the Markovian setting (Example 2.1) under the
conditions of Theorem 4.1. Then there exists a Markovian equilibrium.

Proof. We revisit the proof of Theorem 4.1. Each of the finite-horizon prob-
lems is Markovian, so Corollary 3.3 shows that θn is Markovian. Since θt was
constructed as a pointwise limit of θnt , it is again σ(Xt, 1Dt)-measurable.

We shall see in Example 5.3 that this corollary cannot be improved
in a time-homogeneous setting: the equilibria may nevertheless be time-
dependent.

5 Infinite-Horizon Equilibria: Examples

5.1 Non-Uniqueness and Non-Markovian Equilibria

The following example shows that in the infinite-horizon case, multiple equi-
libria may exist. In these equilibria, all agents’ choices are uniquely de-
termined; i.e., the non-uniqueness is not merely due to different choices of
agents that are invariant between stopping and continuing. Moreover, the
multiplicity arises even within the class of time-homogeneous Markov equi-
libria. The example also shows that non-Markovian equilibria may exist in
a Markovian setting.

Example 5.1. Consider a homogeneous Markov chain X on the states
{0, 1, 2} with initial value X0 = 1 and transition probabilities (pij) in its
natural filtration. Only the states in B = {1, 2} are relevant for the agents,
meaning that σ = inf{t ≥ 0 : Xt = 0} and Dt = {X1, . . . , Xt ∈ B}. The
payoff Gt = δtg(Xt) is given by a function g of the current state and a
discount factor δ ∈ (0, 1). Specifically,

p10 = p11 = p12 = 1/3 and g(0) = ∆, g(1) = 1, g(2) = a,

where a is a constant satisfying

1 <
3− δ

2δ
< a <

2− δ
δ

.

We also assume that p20 6= 1; the other transition probabilities are arbitrary.
Then, there are exactly two Markovian equilibria:
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(i) stop everywhere; i.e., θ ≡ 1;

(ii) stop if the chain is at State 2 or has exited; i.e., θt = 1{Xt=2}∪Dct .

If p21 > 0, there are further, non-Markovian equilibria. In these equilibria,
the induced stopping time for a given agent at some state (t, ω) coincides
with the stopping time induced by (i) or (ii), conditionally on Ft.

Proof. We first note that as a > g(1) and δ < 1, the only optimal choice for
a time-t agent on {Xt = 2} is to stop, no matter what future agents choose.

(a) To see that θ ≡ 1 is an equilibrium, consider an agent at State 1,
without loss of generality at t = 0. Then

J0(θ) =
δ(p11 + ap12)

1− p10
=
δ(1/3 + a/3)

2/3
= δ

1 + a

2
< 1 = G0, (5.1)

showing that stopping is indeed optimal and θ is an equilibrium.
(b) The policy θ defined by θt = 1{Xt=2}∪Dct is admissible. To see that

it defines an equilibrium, consider again the time-0 agent at State 1. Let τj
be the first hitting time of state j, so that σ = τ0 and τ := L0θ = τ0 ∧ τ2.
We have {τ C σ} = {τ2 < τ0} a.s. since P (τ0 ∧ τ2 = ∞) = 0. As p10 = p12,
the symmetry between {τ2 < τ0} and {τ0 < τ2} yields that P (τ2 < τ0) =
P (τ0 < τ2) = 1/2 and thus P (τ C σ) = 1/2. Moreover,

E[δτg(Xτ )1τCσ] = a
∑
k≥1

δkP (τ2 = k, k < τ0) = a
∑
k≥1

δk(1/3)k =
aδ

3− δ

since P (τ2 = k, k < τ0) = P (X1 = · · · = Xk−1 = 1, Xk = 2) = pk−111 p12. It
follows that

J0(θ) =
E[δτGτ1τCσ]

P (τ C σ)
=

2aδ

3− δ
> 1 = G0, (5.2)

showing that continuation is optimal. Thus θ is an equilibrium.
(c) Let θ be a Markovian equilibrium; we show that θ must be one of

the two above policies. We have already observed that any agent at State 2
must stop. The same holds for any agent at State 0, by admissibility. That
is, 1{Xt=2}∪Dct ≤ θt ≤ 1 for all t ∈ T. If no other agent stops, θ is the policy
of (ii). Otherwise there exists a time-t agent stopping at State 1: θt = 1 on
{Xt = 1}. But then the same calculation as in (5.1) shows that any agent
at time (t− 1) and State 1 must also stop, etc., so that θs ≡ 1 for all s ≤ t.
As a result, the set of all agents at State 1 that stop can be thought of as
a half-line starting at t = 0. If this half-line is infinite, θ is the equilibrium
from (i). If not, there is some maximal t <∞ where the time-t agent stops,
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meaning that θs ≡ 1 for s ≤ t and θs = 1{Xs=2}∪Dcs} for s > t. But now the
calculation in (5.2) shows that stopping is not optimal for any time-t agent
on {Xt = 1}, a contradiction.

(d) Next, we give an example of a non-Markovian equilibrium. Indeed,
set θ0 = θ1 ≡ 1. For t ≥ 2, we define

θt(ω) =

{
0 if ω ∈ {X1 = 2, Xt = 1} ∩Dt,

1 else.

Simple calculations analogous to (5.1) and (5.2) show that θ is an equilib-
rium. If p21 > 0, both cases in the definition of θ happen with positive
probability so that θ is indeed non-Markovian.

(e) Let θ be any equilibrium, possibly non-Markovian. The first argument
from (c) still shows that for (t, ω) such that Xt(ω) = 1 and θt(ω) = 1, it
follows that θt−1(ω) = 1. However the second argument from (c) merely
shows that for (t, ω) such that Xt−1(ω) = Xt(ω) = 1 and θt−1(ω) = 0, it
follows that θt = 0. (But this need not hold if Xt−1(ω) = 2, in contrast to
the Markovian case where the policy cannot depend directly on Xt−1). This
implies that given the past up to time t, the stopping time induced by θ is
either immediate stopping as in (i) or the first exit time of {1} as in (ii).
Note that, as in (d), the choice between these two may depend on ω.

Remark 5.2. (a) The finite-horizon version of Example 5.1 has a unique
equilibrium, given by stopping everywhere. This follows by a backward re-
cursion and the same calculation as in (5.1), since the time-T agents have to
stop. The limit of this equilibrium as T →∞ is the infinite-horizon equilib-
rium (i). On the other hand, the equilibrium (ii) does not arise as a limit of
finite-horizon equilibria.

(b) In this particular example the two Markovian equilibria are ordered:
equilibrium (ii) has a larger value function for all agents. It is worth noting
that the limit equilibrium is the inferior one.

(c) Example 5.3 shows that in general, no dominating equilibrium exists.
One can also construct simple examples where the equilibrium value pro-
cesses and stopping policies corresponding to different preferences are not
ordered.

5.2 Non-Existence of Time-Homogeneous Equilibria

In this section we construct an example of a time-homogeneous Markov chain
which admits Markovian equilibria but no time-homogeneous equilibria. In
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that sense, Theorem 4.1 and Corollary 4.3 cannot be improved, and a re-
striction to time-homogeneous notions is not possible (or will lead to non-
existence). Importantly, the example also shows that the remarkable itera-
tive approach of [22] does not apply in our setting. Indeed, in the problem of
non-exponential discounting with decreasing impatience, an iterated appli-
cation of Φ (from a suitable starting point) produces a monotone sequence
which converges to a time-homogeneous equilibrium. In our case however,
the iteration can fail to be monotone. This can be related to a failure of
both inequalities of the dynamic programming principle, whereas decreasing
impatience preserves one.

Example 5.3. Consider the homogeneous Markov chain X on {0, 1, 2, 3, 4}
with transition probabilities as labeled next to the edges in Figure 2. In
particular, States 0, 3 and 4 are absorbing. We set B = {1, 2, 3, 4} so that
0 is the only exit state. The payoff process is given by Gt = δtg(Xt) where
δ ∈ (0, 1) is the discount factor and g(1) = a, g(2) = 2, g(3) = 0, g(4) = b
as labeled in the boxes in Figure 2. To avoid trivialities, we assume that
the initial position is one of the non-absorbing states, i.e., either X0 = 1 or
X0 = 2, and we also restrict our attention to equilibria that stop at State 3.2

A Markovian equilibrium θt = f(t,Xt) is called time-homogeneous if f does
not depend on t.

1 2

3 4

0
0.5

0.1

0.5 0.4
0.4

0.1
a 2

0 b

Figure 2: The Markov chain of Example 5.3, with states x labeled in circles
and payoffs g(x) in boxes.

We fix 0 < a < δ < 1 < 2 < b such that the following inequalities are
2Since State 3 is absorbing and g(3) = 0, all policies have zero reward for an agent at

State 3 who is therefore invariant. This leads to an infinity of (uninteresting) equilibria.
If early stopping preference is assumed, stopping at State 3 is a consequence rather than
a condition.
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satisfied:
a < δ, δ(a+ 4b) < 18, (5.3)

δ(δ + 4b) > 18, 0.01δ3 min(5a, bδ2) + 0.2bδ3 + 4bδ > 17.9, (5.4)

δ2(max(δ, 0.25bδ2) + 4b) < 18.9a. (5.5)

One possible choice is δ = 0.999, a = 0.96, b = 4.257. Then, up to a.s.
equivalence:

(i) All equilibria are Markovian.

(ii) There exists no time-homogeneous equilibrium.

(iii) There are exactly two equilibria and they are given by shifts of one
another. Indeed, let

θ1t = f(t,Xt), θ
2
t = f(t+ 1, Xt), θ

3
t = f(t+ 2, Xt), θ

4
t = f(t+ 3, Xt)

where

f(t, x) =


1R4(x), t ≡ 0 mod 4

1R3(x), t ≡ 1 mod 4

1R2(x), t ≡ 2 mod 4

1R1(x), t ≡ 3 mod 4

for

R1 = {0, 1, 2, 3, 4}, R2 = {0, 2, 3, 4}, R3 = {0, 3, 4}, R4 = {0, 1, 3, 4}.

Then θi, i = 1, . . . , 4 are Markovian equilibria, and exactly two of them
are distinct up to a.s. equivalence: if X0 = 1, then θ1 = θ4 and θ2 = θ3,
whereas if X0 = 2, then θ1 = θ2 and θ3 = θ4, a.s. 3

That all equilibria are Markovian is related to the filtration being rela-
tively small (a.s.) due to various states being absorbing—this fact should not
be given too much weight. The proofs for the other items are rather lengthy,
so let us try to summarize the key mechanics heuristically. First, the dynam-
ics are engineered such that in any equilibrium, the decision of a time-t agent

3Recall that the initial condition is deterministic in our basic setup. If X0 = 1, then
State 1 can only be visited at odd t and State 2 only at even t; the reverse is true if
X0 = 2. This leads to the a.s. equivalence of two pairs of θi. Whereas if we treated the
initial state as not being fixed (as may be considered natural in a Markovian framework)
or if we assumed that X0 has a distribution with support including both states, then all
four equilibria would be distinct.

20



depends only on the agents at t+ 1. Moreover, as highlighted in Lemma 5.4
below, it embeds two types of agents that cannot agree (and cannot even
agree to disagree): Call Minniet the agent at State 2 and time t and Donaldt
the agent at State 1 and time t. Minnie prefers to live in harmony and al-
ways wants to agree, whereas Donald is only happy if he contradicts Minnie.
Suppose that at some time t, Donaldt says “1” (stop). Then Minniet−1 also
opts for 1, but the combative Donaldt−2 immediately replies with 0, thus
implying time-inhomogeneity as he is contradicting Donaldt. The situation
is similar if Donaldt starts with 0.

Conversely, there are exactly two equilibria because the above backward
recursion also implies a unique forward recursion once the initial Donald0
(or Minnie0, depending on what the initial state X0 is) fixes one of the two
possible choices 0 or 1.

Proof of (i)–(iii). Let us first observe that any equilibrium stopping policy θ
(possibly non-Markovian) must stop on {Xt = 0}, by admissibility. Further-
more, it must stop on {Xt = 4}: State 4 is absorbing and g(4) > 0, so that
continuing is never optimal due to the discount factor δ < 1. Since we have
also convened that θ stops on {Xt = 3}, we may henceforth restrict our
attention to equilibria satisfying θt = 1 on {Xt ∈ {0, 3, 4}} for all t ∈ T.

(i) Let θ be any equilibrium; we show that θ is Markovian (or rather,
a.s. equivalent to a Markovian equilibrium). Indeed, suppose first that
the initial condition is X0 = 1, and fix t ∈ T. We have that θt = 1 on
{Xt ∈ {0, 3, 4}}. But since 0, 3, 4 are absorbing states, {Xt ∈ {0, 3, 4}} =
∪s≤t{Xs ∈ {0, 3, 4}}. Suppose that t ∈ T is odd. Then {Xt = 1} is a nullset,
so that up to a.s. equivalence, only the value of θt on {Xt = 2} has not been
determined yet. But due to the absorption on {0, 3, 4} and the fact that
exactly one of the sets {Xs = 1} and {Xs = 2} has positive probability for
every s ≤ t, we have {Xt = 2} = {X1 = 2, X2 = 1, X3 = 2, . . . , Xt = 2}
which implies that {Xt = 2} is an atom in Ft. In particular, θt is a.s. con-
stant on {Xt = 2}, and since θt = 1 a.s. on {Xt = 2}c, it follows that θt is
of Markovian form. The situation is analogous if t is even, and hence θ is
Markovian. The initial condition is X0 = 2 is dealt with similarly.

The proof of (ii) and (iii) necessitates the following lemma which de-
scribes the Minnie–Donald relationship sketched above.

Lemma 5.4. Let 0 < a < δ < 1 < 2 < b satisfy (5.3)–(5.5) and let θ be
an admissible stopping policy such that θt = 1 on {Xt ∈ {0, 3, 4}} for t ∈ T.
Then for all t ≥ 1,

(P1) if θt = 1 on {Xt = 1}, then Φ(θ)t−1 = 1 on {Xt−1 = 2};
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(P2) if θt = 0 on {Xt = 1}, then Φ(θ)t−1 = 0 on {Xt−1 = 2};

(P3) if θt = 1 on {Xt = 2}, then Φ(θ)t−1 = 0 on {Xt−1 = 1};

(P4) if θt = 0 on {Xt = 2}, then Φ(θ)t−1 = 1 on {Xt−1 = 1}.

The proof of the lemma is reported after the proof of (ii) and (iii).
(ii) Define the 4-periodic sequence (Rn) by Rn = Rn+4Z where R1, . . . , R4

are as in (iii) above. Note that R1, . . . , R4 exhaust all combinations of
{0, 3, 4} and the remaining states. Thus, a time-homogeneous equilibrium θ
must (a.s.) be of the form θt = 1Rn(Xt), t ∈ T, for some n. On the other
hand, for any t ∈ T, (P1)–(P4) imply that Φ(Φ(1Rn(Xt))) = 1Rn+2(Xt) 6=
1Rn(Xt), thus ruling out the existence of a time-homogeneous equilibrium.
(We iterate Φ twice to ensure that the policies differ also modulo a.s. equiv-
alence).

(iii) Admissibility of θi (i = 1, 2, 3, 4) holds since Dt = {Xt = 0}c a.s.
(due to {0} being absorbing) and since from any non-absorbing state there
is a positive probability of reaching {3, 4} before reaching {0}. Moreover,
Φ(θi) = θi follows by direct verification using (P1)–(P4). Hence, θi are
equilibria.

To see that there are exactly two equilibria, suppose first that the initial
condition is X0 = 1 and let θ be a (necessarily Markovian) equilibrium.
Modulo a.s. equivalence, θ is completely determined by its values on {X0 =
1}, {X1 = 2}, {X3 = 1}, etc., since State 1 can only be visited at even
times and State 2 only at odd times. Next, we use (P1)–(P4): Suppose that
θ0 = 1 on {X0 = 1}. This implies θ1 = 0 on {X1 = 2}, which implies θ2 = 0
on {X2 = 1}, which implies θ3 = 1 on {X3 = 2}, etc. Therefore, we have
θ = θ1 = θ4 a.s.

Alternately, θ0 = 0 on {X0 = 1}. This implies θ1 = 1 on {X1 = 2}, thus
θ2 = 1 on {X2 = 1}, thus θ3 = 0 on {X3 = 2}, etc. In particular, we have
θ = θ2 = θ3 a.s.

The case of the initial condition X0 = 2 is similar.4

Proof of Lemma 5.4. Let t ≥ 1 and set

J̃t(θ) =
E[δLtθ−tg(XLtθ)1{Ltθ<σ}|Ft]

P (Ltθ < σ|Ft)
4If the initial state is not considered fixed or if it is random with P (X0 = 1) > 0 and

P (X0 = 2) > 0, then (P1)–(P4) imply that θ is a.s. equal to exactly one of the four θi,
uniquely determined by the values of θ0 on {X0 = 1} and {X0 = 2}.
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so that Jt(θ) = δtJ̃t(θ) is the continuation value at time t. Note that com-
paring Jt(θ) with Gt is equivalent to comparing J̃t(θ) with g(Xt). We first
show (P1) and (P3).

(P1): Suppose that Xt−1 = 2. This implies Xt ∈ {0, 1, 3, 4} and thus
the assumption of (P1) yields that θt = 1, Lt−1θ = t and J̃t−1(θ) =
δ(0.1a+ 0.4b)/0.9. By the second part of (5.3), we have J̃t−1(θ) < 2 = g(2)
and thus Φ(θ)t−1 = 1 as claimed.

(P3): If Xt−1 = 1, then Xt ∈ {2, 3} and the assumption of (P3) imply
θt = 1, Lt−1θ = t and J̃t−1(θ) = δ. By the first part of (5.3), we have
J̃t−1(θ) > a = g(1) and thus Φ(θ)t−1 = 0.

Next, we analyze (P2) and (P4). Denote by ht(θ) and pt(θ) the numerator
and denominator of J̃t(θ). It is clear that ht(θ) ≤ J̃t(θ) ≤ b for all t, since b
is the maximum possible payoff. By iterated conditioning, we have that on
the set {Xt = 1} ⊆ {Xt+1 ∈ {2, 3}},

ht(θ) = E[δLtθ−tg(XLtθ)1{Ltθ<σ}|Ft]
= E[1{Xt+1=2}δ

Ltθ−tg(XLtθ)1{Ltθ<σ} + 1{Xt+1=3}δg(3)|Ft]
= E[1{Xt+1=2,θt+1=1}δg(2)|Ft]

+ E[1{Xt+1=2,θt+1=0}δ
Lt+1θ−(t+1)δg(XLt+1θ)1{Lt+1θ<σ}|Ft]

= δE[1{Xt+1=2,θt+1=1}2 + 1{Xt+1=2,θt+1=0}ht+1(θ)|Ft], (5.6)

where we have used that Ltθ = t+1 if θt+1 = 1 and Ltθ = Lt+1θ if θt+1 = 0.
Similarly, we deduce that on {Xt = 1},

pt(θ) = E[1{Xt+1=2,θt+1=1} + 1{Xt+1=2,θt+1=0}pt+1(θ)|Ft] + 0.5, (5.7)

and on {Xt = 2},

ht(θ) = δE[1{Xt+1=1,θt+1=1}a+ 1{Xt+1=1,θt+1=0}ht+1(θ)|Ft] + 0.4bδ, (5.8)

pt(θ) = E[1{Xt+1=1,θt+1=1} + 1{Xt+1=1,θt+1=0}pt+1(θ)|Ft] + 0.8. (5.9)

Equations (5.6)-(5.9) yield the following bounds: on {Xt = 1},

ht(θ) ≤ δE[1{Xt+1=2}max(2, ht+1(θ))|Ft], (5.10)

ht(θ) ≥ δE[1{Xt+1=2}min(2, ht+1(θ))|Ft], (5.11)

pt(θ) ≥ 0.5 + E[1{Xt+1=2}pt+1(θ)|Ft], (5.12)
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and on {Xt = 2},

ht(θ) ≤ δE[1{Xt+1=1}max(a, ht+1(θ))|Ft] + 0.4bδ, (5.13)

ht(θ) ≥ δE[1{Xt+1=1}min(a, ht+1(θ))|Ft] + 0.4bδ, (5.14)

0.8 + E[1{Xt+1=1}pt+1(θ)|Ft] ≤ pt(θ) ≤ 0.9. (5.15)

(P2): Suppose that θt = 0 on {Xt = 1}. Throughout the proof of (P2),
we assume that we are on the set {Xt−1 = 2}; i.e., all statements are con-
ditional on Xt−1 = 2. Then, 1{Xt=1,θt=0} = 1{Xt=1} and 1{Xt=1,θt=1} = 0.
To establish that Φ(θ)t−1 = 0, it suffices to show that J̃t−1(θ) > g(2) = 2.
To that end, we derive a lower bound for ht−1(θ) and an upper bound for
pt−1(θ) (conditionally on Xt−1 = 2). Let

γt−1 := P (Xt = 1, Xt+1 = 2, θt+1 = 1|Ft−1)

and note that 0 ≤ γt−1 ≤ 0.05. Starting from the fact that ht+3(θ) ≥ 0.4bδ
on {Xt+3 = 2} by (5.14), we use (5.11) to see that on {Xt+2 = 1},

ht+2(θ) ≥ δE[1{Xt+3=2}min(2, ht+3(θ))|Ft+2]

≥ δE[1{Xt+3=2}min(2, 0.4bδ)|Ft+2]

= 0.5δmin(2, 0.4bδ) = min(δ, 0.2bδ2),

and then (5.14) and a < δ to deduce that on {Xt+1 = 2},

ht+1(θ) ≥ δE[1{Xt+2=1}min(a, ht+2(θ))|Ft+1] + 0.4bδ

≥ δE[1{Xt+2=1}min(a,min(δ, 0.2bδ2))|Ft+1] + 0.4bδ

= 0.1δmin(a, 0.2bδ2) + 0.4bδ = 0.1A, (5.16)

where
A := δmin(a, 0.2bδ2) + 4bδ.

By (5.8), the assumption of (P2), (5.6), and iterated conditioning, we have

ht−1(θ)

= δE[1{Xt=1}ht(θ)|Ft−1] + 0.4bδ

= δ2E[1{Xt=1,Xt+1=2,θt+1=1}2 + 1{Xt=1,Xt+1=2,θt+1=0}ht+1(θ)|Ft−1] + 0.4bδ.

Substituting the lower bound (5.16) for ht+1(θ) into the above equation,

ht−1(θ) ≥ δ2(2γt−1 + 0.1A(0.05− γt−1)) + 0.4bδ.
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Similarly, using (5.9), the assumption of (P2), (5.7), iterated conditioning
and (5.15), we obtain that

pt−1(θ) = E[1{Xt=1}pt(θ)|Ft−1] + 0.8

= E[1{Xt=1,Xt+1=2,θt+1=1} + 1{Xt=1,Xt+1=2,θt+1=0}pt+1(θ)|Ft−1]
+ 0.5P (Xt = 1|Ft−1) + 0.8

≤ E[1{Xt=1,Xt+1=2,θt+1=1} + 1{Xt=1,Xt+1=2,θt+1=0}0.9|Ft−1] + 0.85

= γt−1 + 0.9(0.05− γt−1) + 0.85 = 0.1γt−1 + 0.895.

These two bounds yield that

J̃t−1(θ) =
ht−1(θ)

pt−1(θ)
≥ δ2(2γt−1 + 0.1A(0.05− γt−1)) + 0.4bδ

0.1γt−1 + 0.895
.

As a consequence, a sufficient condition for J̃t−1(θ) > 2 is that

f(y) := δ2(2y+0.1A(0.05−y))+0.4bδ−(0.2y+1.79) > 0 for all y ∈ [0, 0.05].

Since f is linear in y, this is equivalent to f(0) > 0 and f(0.05) > 0, which
is precisely (5.4).

(P4): Suppose that θt = 0 on {Xt = 2}, so that 1{Xt=2,θt=0} = 1{Xt=2}
and 1{Xt=2,θt=1} = 0. We assume throughout the proof of (P4) that we are
on the set {Xt−1 = 1}, and we shall establish that Φ(θ)t−1 = 1 by showing
the inequality J̃t−1(θ) < g(1).

Proceeding similarly as in the proof of (P2), we start from the fact that
ht+3(θ) ≤ b and pt+3(θ) ≥ 0 and apply (5.10), (5.13), (5.12) and (5.15)
repeatedly to derive the following bounds on {Xt = 2}:

ht(θ) ≤ 0.1δmax(δ, 0.25bδ2) + 0.4bδ, pt(θ) ≥ 0.89.

Then, we use (5.6), (5.7), the assumption of (P4) and (5.5) to deduce that

J̃t−1(θ) =
ht−1(θ)

pt−1(θ)
=

δE[1{Xt=2}ht(θ)|Ft−1]
E[1{Xt=2}pt(θ)|Ft−1] + 0.5

≤ 0.5δ{0.1δmax(δ, 0.25bδ2) + 0.4bδ}
0.5 · 0.89 + 0.5

=
δ2{max(δ, 0.25bδ2) + 4b}

18.9
< a = g(1).

The proof is complete.
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Remark 5.5. The results in Example 5.3 extend to the undiscounted case
δ = 1 if we focus on equilibria that stop in the absorbing State 4 (or focus
on equilibria with early stopping preference). The situation is the same as
for State 3: without discounting, any agent at State 4 is invariant between
stopping and continuing which leads to an infinity of equilibria.

6 Snell Pairs and Equilibria

In this section we provide a theory which extends both the Snell envelope
of classical optimal stopping and the recursion from the finite-horizon case
in Theorem 3.1. As mentioned in Section 3, the value process V (which
is the Snell envelope of G in the classical case) needs to be complemented
with the survival process S to provide a sufficient statistic for an agent’s
optimality criterion. We introduce the Snell pair (V, S) pragmatically in
Definition 6.1 by stating the properties that will be used most often in the
proofs. Alternately, both processes can be described through a more ele-
gant Snell envelope property (Lemma 6.3), whence the terminology. The
main result of this section will be a correspondence between Snell pairs and
equilibria; see Theorem 6.5 and its corollary.

We focus on equilibria with early stopping preference throughout this
section. Other preferences could be accommodated but lead to (even) heavier
notation. For the infinite-horizon case T =∞, we assume throughout that

G∞ = lim sup
t→∞

Gt. (6.1)

We also recall that T = {0, 1, . . . } if T = ∞, so that T ∪ {T} will be used
when the horizon is included in the index set.

Definition 6.1. A pair (V, S) consisting of adapted processes V = (Vt)t∈T
and S = (St)t∈T∪{T} is said to be a Snell pair (with early stopping preference)
if the following hold:

(i) 0 < St ≤ 1 on Dt and St = 0 on Dc
t for all t ∈ T, and Vt = Gt for all

t ≥ Te.5

(ii) Given S, V is the smallest adapted process which dominates G and
renders (SV )·∧Te a supermartingale.6

5The property that Vt = Gt for t ≥ Te is in fact redundant with (iii).
6We follow the usual convention that supermartingale properties, Snell envelopes, etc.,

are understood on T unless explicitly mentioned; that is, t =∞ is not included.
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(iii) Given V , S is the smallest nonnegative supermartingale on T ∪ {T}
satisfying St = 1 onDt∩{Vt = Gt} for all t ∈ T as well as S∞ = 1{σ=∞}
if T =∞.

(iv) For all t0 < T , the process (St0V )·∧Te is a supermartingale, where

St0t := 1{t6=t0}St + 1{t=t0}E[St+1|Ft].

Some comments on the definition are in order before we connect Snell
pairs with equilibrium stopping policies.

Lemma 6.2. Properties (i)–(iii) imply the following “martingale properties
away from the obstacle,”

(v) if t < Te and Vt > Gt, then St = E[St+1|Ft] and StVt = E[St+1Vt+1|Ft].

Proof. If the first identity fails for some t, replacing St by E[St+1|Ft] yields a
smaller supermartingale with the required properties, contradicting (iii). If
the second identity fails, replacing Vt by E[St+1Vt+1|Ft]/St yields a smaller
process with the required properties, contradicting (ii).

Lemma 6.3. Properties (i)–(iii) are jointly equivalent to the following:

(i’) St > 0 on Dt for all t ∈ T and Vt = Gt for all t ≥ Te.

(ii’) (SV )·∧Te is the Snell envelope of (SG)·∧Te.

(iii’) S is the Snell envelope of 1{t<∞}∩{Vt=Gt}∩Dt + 1{t=σ=∞} on T ∪ {T}.

Proof. Clearly (i) implies (i’). To see the reverse, suppose that St > 0 on
Dt. Then S′t := 1Dt , t ≤ T is a nonnegative supermartingale. Thus, (iii’)
yields that 0 ≤ St ≤ 1Dt and (i) follows. Given (i’), the equivalence of (ii)
and (ii’) is immediate. For the equivalence of (iii) and (iii’), note that U ∧ 1
is a supermartingale whenever U is a supermartingale.

Lemma 6.4. (a) The processes (SV )·∧Te and (St0V )·∧Te occurring in (ii’)
and (iv) are uniformly integrable.

(b) Let T =∞ and let (V, S) be a Snell pair. Then

lim
t→∞

St = S∞ = 1{σ=∞}, (6.2)

lim
t→∞

(SV )t∧Te = 1{TeCσ}GTe . (6.3)
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Proof. (a) Recall that supt |Gt|1Dt ∈ L1 and that the Snell envelope of any
process with an L1-majorant is uniformly integrable. In view of of (ii’), it
follows that (SV )·∧Te is uniformly integrable, and then so is (St0V )·∧Te .

(b) We have from (i) and (iii) that S is a bounded supermartingale with
S∞ = 1D∞ . In particular, St ≥ E[S∞|Ft]. Passing to the limit, martingale
convergence yields that lim inft St ≥ S∞. Conversely, (i) clearly implies that
lim supt St ≤ 1 and that limSt = 0 on ∪tDc

t = Dc
∞. Hence, (6.2) is proved.

Part (a), (ii’) and the classical limit property of the Snell envelope yield
that limt→∞(SV )t∧Te = lim supt→∞(SG)t∧Te . Moreover, using (6.2) and (6.1),

lim sup
t→∞

(SG)t∧Te = 1{Te<∞}1DTeGTe + 1{Te=∞} lim sup
t→∞

Gt

= 1{Te<σ}GTe + 1{Te=σ=∞}G∞ = 1{TeCσ}GTe

and thus (6.3) follows.

We can now state the main result which relates Snell pairs to equilibria,
thus extending the classical Snell envelope theory to conditional optimal
stopping.

Theorem 6.5. (a) Let (V, S) be a Snell pair. Then, θ = 1{G≥V } defines an
equilibrium stopping policy with early stopping preference. Moreover,

Vt = 1{t<Te}max(Gt, Jt(θ)) + 1{t≥Te}Gt, t ∈ T, (6.4)

St = 1Dt
(
1{Vt=Gt} + 1{Vt>Gt}P (Ltθ C σ|Ft)

)
, t ∈ T (6.5)

and S∞ = limt→∞ St = 1{σ=∞} if T =∞.

(b) If θ is an equilibrium stopping policy with early stopping preference,
then there exists a unique Snell pair (V, S) such that θ = 1{G≥V }. This Snell
pair is given by (6.4)–(6.5).

As mentioned above, Snell pairs reduce to the usual Snell envelope in the
classical case.

Corollary 6.6. Suppose that Dt = Ω for all t ∈ T.
(i) Any equilibrium θ corresponds to optimal stopping in the classical

sense: E[Gτt |Ft] = ess supτ≥tE[Gτ |Ft] for τt = inf{s ≥ t : θs = 1}.
(ii) Any Snell pair consists of S ≡ 1 and the classical Snell envelope

Vt = ess supτ≥tE[Gτ |Ft].
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Proof. Note that σ =∞. Let θ be an equilibrium and (V, S) the associated
Snell pair. Then

Vt = 1{θt=1}Gt + 1{θt=0}Jt(θ) = 1{θt=1}Gt + 1{θt=0}E[GLtθ|Ft]
= E[1{θt=1}Gt + 1{θt=0}GLtθ|Ft] = E[Gτt |Ft].

We have ST = 1 by (6.4)–(6.5). Since S is a supermartingale dominated
by 1, we must have St = 1 for all t ∈ T. It follows that SV = V is the Snell
envelope of SG = G; that is, Vt = ess supτ≥tE[Gτ |Ft].

In the finite horizon-case, Snell pairs correspond to the processes con-
structed in Section 3.

Corollary 6.7. Let T < ∞. Then there exists a unique Snell pair (V, S)
and it is determined by the backward recursion of Theorem 3.1.

Proof. Let (V ′, S′) and θ be as in Theorem 3.1. By Theorem 6.5, there exists
a unique Snell pair (V, S) with θ = 1{G≥V }, and it is completely determined
by (6.4)–(6.5). In view of Lemma 3.2 and the definition in Theorem 3.1,
(V ′, S′) also satisfies (6.4)–(6.5), thus (V ′, S′) = (V, S).

We note that in the infinite-horizon case, the examples in Section 5 show
that Snell pairs are not unique in general.

Proof of Theorem 6.5. We focus on the case T =∞; the finite-horizon case
is similar but simpler.

(a) Let (V, S) be a Snell pair and θ = 1{G≥V }; we show that θ ∈ Θ and
Φ(θ) = θ. If t ≥ Te, then (i) implies Vt = Gt and hence θt = 1 and St = 1Dt ;
see (iii). Let t < Te. Note that we are in Dt and t < Ltθ ≤ Te ≤ σ. If
Ltθ = ∞, we have SLtθ = S∞ = 1{σ=∞} = 1, whereas if Ltθ < ∞, we have
SLtθ = 1DLtθ . In summary,

SLtθ = 1{Ltθ<∞}1DLtθ + 1{Ltθ=∞} = 1{LtθCσ}. (6.6)

As a consequence, recalling Lemma 6.4 for the case Ltθ =∞,

SLtθVLtθ = 1{LtθCσ}GLtθ. (6.7)

Next, we consider separately two cases.
Case θt = 0: Using (v), the Optional Sampling Theorem (with the

boundedness of S and the uniform integrability from Lemma 6.4) as well
as (6.6) and (6.7), we see that

St = E[SLtθ|Ft] = P (Ltθ C σ|Ft) (6.8)
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and
StVt = E[SLtθVLtθ|Ft] = E[1{LtθCσ}GLtθ|Ft]. (6.9)

In view of (i), Equation (6.8) yields in particular that P (LtθCσ|Ft) = St > 0
since we are in Dt, as required for the admissibility of θ. Moreover, as θt = 0,
(6.8) and (6.9) together imply that

Gt < Vt =
StVt
St

=
E[1{LtθCσ}GLtθ|Ft]
P (Ltθ C σ|Ft)

= Jt(θ).

Case θt = 1: In this case, S is a martingale from time t+ 1 to time Ltθ
and hence, similarly to the previous case,

St+1 = E[SLtθ|Ft+1] = E[1{LtθCσ}|Ft+1].

Taking conditional expectations on both sides, we deduce that

Stt = E[St+1|Ft] = P (Ltθ C σ|Ft).

In view of t < Te and (i), we have P (St+1 > 0|Ft) = P (Dt+1|Ft) > 0
which then implies P (Ltθ C σ|Ft) = E[St+1|Ft] > 0 and finishes the proof
of admissibility. Moreover, by the supermartingale property of StV , the
Optional Sampling Theorem with the uniform integrability from Lemma 6.4,
and (6.7), we have

SttVt ≥ E[StLtθVLtθ|Ft] = E[SLtθVLtθ|Ft]
= E[1{LtθCσ}GLtθ|Ft] = P (Ltθ C σ|Ft)Jt(θ)
= E[St+1|Ft]Jt(θ) = SttJt(θ).

As Stt > 0 and θt = 0, we conclude that Gt = Vt ≥ Jt(θ).
Putting the two cases together and noting {θt = 0} ⊆ {t < Te} ⊆ Dt, we

conclude that (6.4) and (6.5) hold. We also recall that the condition on S∞
was already established in (6.2). Finally, (6.4) shows that

Φ(θ)t = 1{t<Te}∩{Gt≥Jt(θ)} + 1{t≥Te} = θt

and the proof of (a) is complete.

(b) Let θ be an equilibrium stopping policy with early stopping pref-
erence; we show that the pair (V, S) defined by (6.4) and (6.5) is a Snell
pair.

First, we check that (6.5) implies S∞ := limt St = 1D∞ . Indeed, we have
P (Ltθ C σ|Ft) ≥ P (σ = ∞|Ft) = P (D∞|Ft) → 1D∞ . Thus, (6.5) implies
limt St = 1D∞ as desired.
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We readily see that (i’) holds, so it suffices to show (ii’), (iii’) and (iv).
Note that

{θt = 0} = {Φ(θ)t = 0} = {t < Te} ∩ {Jt(θ) > Gt} = {Vt > Gt}. (6.10)

Let t < Te (which implies that we are in Dt), then

Stt = E[St+1|Ft]
= E[1Dt+1

(
1{Vt+1=Gt+1} + 1{Vt+1>Gt+1}P (Lt+1θ C σ|Ft+1)

)
|Ft]

= E[1{Vt+1=Gt+1}∩Dt+1
+ 1{Vt+1>Gt+1}∩{Lt+1θCσ}|Ft]

= E[1{θt+1=1}∩{t+1Cσ} + 1{θt+1=0}∩{Lt+1θCσ}|Ft]
= E[1{θt+1=1}∩{LtθCσ} + 1{θt+1=0}∩{LtθCσ}|Ft]
= P (Ltθ C σ|Ft) ≤ St

and

E[St+1Vt+1|Ft]
= E[1Dt+1(1{Vt+1=Gt+1}Gt+1 + 1{Vt+1>Gt+1}P (Lt+1θ C σ|Ft+1)Vt+1|Ft]
= E[1{θt+1=1}∩Dt+1

Gt+1 + 1{θt+1=0}P (Lt+1θ C σ|Ft+1)Jt+1(θ)|Ft]
= E[1{θt+1=1}∩{t+1Cσ}Gt+1 + 1{θt+1=0}E[GLt+1θ1{Lt+1θCσ}|Ft+1]|Ft]
= E[GLtθ1{LtθCσ}|Ft] = P (Ltθ C σ|Ft)Jt(θ) ≤ SttVt ≤ StVt.

This shows that (S)·∧Te , (SV )·∧Te and (StV )·∧Te are supermartingales on T.
In particular, (iv) holds. In fact, S is a supermartingale up to T : for any
finite t ≥ Te, we have Vt = Gt and Vt+1 = Gt+1 and consequently

E[St+1|Ft] = E[1Dt+1 |Ft] ≤ 1Dt = St.

As S is bounded and S∞ = limSt, the supermartingale property up to T
follows.

Next, let Y be the Snell envelope of 1{t<∞}∩{Vt=Gt}∩Dt + 1{t=σ=∞}. On
the one hand, S ≥ Y since Y is the smallest supermartingale dominating
1{t<∞}∩{Vt=Gt}∩Dt + 1{t=σ=∞}. On the other hand, let t ∈ T and define
τ̂ := t1{Vt=Gt} + Ltθ1{Vt>Gt} as the stopping time induced by θ at t, then
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the stopping representation of the Snell envelope yields

Yt = ess sup
τ≥t

E[1{τ<∞}∩{Vτ=Gτ}∩Dτ + 1{τ=σ=∞}|Ft]

≥ E[1{τ̂<∞}∩{Vτ̂=Gτ̂}∩Dτ̂ + 1{τ̂=σ=∞}|Ft]
= 1{Vt=Gt}∩Dt + 1{Vt>Gt}E[1{Ltθ<∞}∩DLtθ + 1{Ltθ=σ=∞}|Ft]

= 1{Vt=Gt}∩Dt + 1{Vt>Gt}E[1{Ltθ<σ} + 1{Ltθ=σ=∞}|Ft]
= 1{Vt=Gt}∩Dt + 1{Vt>Gt}E[1{LtθCσ}|Ft] = St.

Thus, we have shown S = Y and (iii’) is proved.
Similarly, let Z be the Snell envelope of (SG)·∧Te . We have (SV )·∧Te ≥ Z

since Z is the smallest supermartingale dominating (SG)·∧Te . Let t ∈ T. On
the set {Vt = Gt}, we trivially have Zt ≥ (SG)t∧Te = (SV )t∧Te by the
definition of V . Whereas on the set {Vt > Gt} ⊆ {t < Te},

Zt = ess sup
τ≥t

E[(SG)τ∧Te |Ft] ≥ lim sup
N→∞

E[(SG)Ltθ∧N |Ft]

= E[(SG)Ltθ|Ft] = E[GLtθ1{LtθCσ}|Ft]
= StVt = (SV )t∧Te ,

where we have used the Dominated Convergence Theorem, (6.5), (6.10) and
the definitions of Vt, St and Jt(θ). We conclude that (SV )·∧Te = Z; that is,
(ii’) holds.

It remains to observe the uniqueness. Indeed, if (V ′, S′) is another Snell
pair such that θ = 1{G≥V ′}, then (V ′, S′) satisfies (6.4) and (6.5) by (a).
But (6.4) and (6.5) uniquely define the two processes, so we must have
(V ′, S′) = (V, S).
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