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Abstract

We study martingale inequalities from an analytic point of view
and show that a general martingale inequality can be reduced to a
pair of deterministic inequalities in a small number of variables. More
precisely, the optimal bound in the martingale inequality is determined
by a fixed point of a simple nonlinear operator involving a concave
envelope. Our results yield an explanation for certain inequalities that
arise in mathematical finance in the context of robust hedging.
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1 Introduction

Martingale inequalities are abundant in many areas of probability theory and
analysis; see e.g. Burkholder’s survey [11] for an extensive list of literature.
We study general inequalities for discrete-time martingales from a bird’s eye
view and relate them to certain deterministic inequalities. Indeed, we shall
see that every martingale inequality can be obtained as a consequence of
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two deterministic ones, and in fact that martingale inequalities are not very
probabilistic in nature.

A simple example of a martingale inequality is Doob’s maximal quadratic
inequality, stating that the running maximum M∗T := sup0≤t≤T |Mt| of any
martingale M satisfies

‖M∗T ‖2 ≤ 2‖MT ‖2,

where ‖ · ‖2 is the L2-norm. We may cast this in the form E[f(MT ,M
∗
T )] ≤ 0

for a suitable function f ; namely, f(x, y) = y2 − 4|x|2. The general form of
the martingale inequality that we shall consider is

E[f(ZT )] ≤ a, (1.1)

where a is a constant and Z = (Zt)t∈N is a suitable state process defined as a
function ofM ; in the preceding example, Z = (M,M∗). More precisely, letX
be a vector space (in which our martingales are taking values) and let Z be a
set, to be used as the state space. Then the Z-valued process Z is determined
by a function φ : Z×X→ Z via Zt+1 = φ(Zt,Mt+1 −Mt) and some initial
value z0. Again in the example, φ(x, y, d) = (x+d, y∨|x+d|) updatesM by
adding the next increment and increases the running maximum if necessary.

Given f : Z → R and φ, we may ask if there exists a finite constant a
such that (1.1) holds for all T ∈ N and all martingales with prescribed initial
value, and what the optimal (minimal) value for a is. A possible answer runs
as follows. Consider the operator A which acts on functions g : Z → R by
pre-composing with φ and taking the concave envelope at the origin in the
variable corresponding to the martingale increment:

Ag(z) = g(φ(z, ·))](0), z ∈ Z.

If u is a fixed point of A dominating f ; that is, Au = u and u ≥ f , then
a = u(z0) is an admissible constant in (1.1). Under the natural condition
φ(z, 0) = z, a simple monotonicity argument shows that A has a minimal
fixed point u dominating f . This fixed point can be obtained from f by
iterating A and passing to the limit,

u = A∞f := lim
n→∞

Anf,

and we shall see that a = u(z0) is the optimal constant in (1.1). In this
sense, we may say that a martingale inequality can be reduced to the two
deterministic inequalities

u ≥ Au and u ≥ f.
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(Here u ≥ Au is actually equivalent to Au = u.) In fact, we may note that
u defines a stronger martingale inequality altogether. Namely, as u ≥ f ,

E[u(ZT )] ≤ u(z0)

is stronger than the original inequality E[f(ZT )] ≤ u(z0) with optimal con-
stant, and we remark that the inequality u ≥ f is strict in most cases of
interest. Returning to our example, we can check that the minimal fixed
point is given by

u(x, y) =

{
y2 − 4|x|2 if |x| < y/2,

2y2 − 4|x|y if |x| ≥ y/2,

and so the optimal constant corresponding to the initial value z0 = (x0, |x0|)
is a = −2|x0|2, while the knowledge of u actually yields a further strengthen-
ing of Doob’s maximal inequality (Corollary 4.3). There are of course very
relevant martingale inequalities which hold only for some specific class of
martingales; for instance, nonnegative martingales, martingales with incre-
ments bounded by one, etc. Many such inequalities can be fitted within our
framework by choosing Z appropriately and assigning the value −∞ to the
function f on a suitable subset (see also Section 4.2).

All this has little to do with probability or measure theory; in fact, it
seems that the latter is only needed to define the expectations. In order to
clearly separate this aspect (and also to spare the reader some measurable
selection arguments), we shall develop the theory for simple martingales
(i.e., martingales taking finitely many values), so that all expectations are
actually finite sums. In most cases of interest, f and φ (and then also the
fixed point u) have some continuity properties and the passage to general
martingales can be done a posteriori by approximation. However, we also
provide an alternative argument which is more in the spirit of this paper and
applies even to functions that are merely measurable, under the restriction
that X be finite-dimensional. Namely, we devise a martingale version of
Tchakaloff’s theorem, stating that given a measurable (integrable) function
g : (Rn)T → R and an n-dimensional martingale M , we can find a simple
martingale N such that

E[g(N1, . . . , NT )] = E[g(M1, . . . ,MT )],

and moreover the (finite) support of the law of N lies in the support of the
law of M . Note that we have here an actual equality; no approximation is
necessary.

3



The theory outlined in this paper can be seen as a general formulation
of a strategy of proof that was used in several works of D. L. Burkholder
for martingale inequalities where Z consists of X, its running maximum and
its square function. Namely, he used a class of functions u, corresponding
roughly to what we call fixed points, to find admissible or sharp constants
in various martingale inequalities, and in fact it seems that he was aware of
at least part of the structure presented here; see in particular Theorem 2.1
in [13] but also [10, 11, 12], among others, as well as the recent monograph
and review article of Osȩkowski [22, 23].

A different stream of literature about martingale inequalities has emerged
in mathematical finance, starting with Hobson [17]. In this context, the pro-
cess X takes values in Rn and represents the discounted prices of n tradable
securities, while f(ZT ) is seen as an option maturing at the fixed time hori-
zon T . The problem is to find a minimal constant a and a predictable
process H (i.e., Ht is a function of X0, . . . , Xt−1) such that

a+
T∑
t=1

〈Ht, Xt −Xt−1〉 ≥ f(ZT ), (1.2)

where the inner product 〈Ht, Xt−Xt−1〉 is interpreted as the gain or loss that
occurs as the priceXt−1 changes toXt whileHt units of the security are held.
Thus, if a is charged as the price of the option, the trading strategy H allows
to hedge the risk of f(ZT ) in a robust (model-free) way. We observe that
by taking expectations on both sides, (1.2) implies the martingale inequality
E[f(ZT )] ≤ a. Along these lines, “pathwise” proofs for several martingale
inequalities have been obtained. For these and related results in robust
finance, see [1, 2, 4, 5, 7, 14, 16, 21] among others; more references can be
found in the surveys by Hobson [18] and Obłój [20]. In particular, a result
of Bouchard and Nutz [6] implies that any martingale inequality in finite
discrete time can be related to an inequality of the type (1.2). However,
the machinery used there (to deal with a more general case) only yields a
non-constructive existence result for H and little insight into the nature of
the inequality. We shall see that, in essence, H is determined quite explicitly
as the derivative of u(φ(z, ·))].

The remainder of this article is organized as follows. In Section 2 we
consider martingale inequalities with a fixed time horizon T and relate the
optimal constant to certain concave envelopes by dynamic programming.
Section 3 focuses on martingale inequalities that do not depend explicitly
on the time horizon T ; this further condition of time-homogeneity leads to
the fixed point considerations mentioned above. The connection to mathe-
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matical finance is also discussed here. In Section 4, we illustrate the theory
by two simple examples, Doob’s maximal Lp-inequality and Burkholder’s in-
equality for differentially subordinate martingales. Section 5 concludes with
the martingale version of Tchakaloff’s theorem.

2 Martingale Inequalities and Concave Envelopes

It will be convenient to work with functions taking values in the extended
real line R = [−∞,∞]. The convention

∞−∞ = −∞ (2.1)

is used throughout; in particular, in the definitions of concavity and integrals.
Let X be a real1 vector space. Given a function g : X → R, we define its
concave envelope g] : X→ R as the smallest concave function dominating g,
or

g](x) = inf{ψ(x)|ψ : X→ R is concave and ψ ≥ g}, x ∈ X.

We shall need to take consecutive envelopes over several variables. Given an
integer t ≥ 0 and g : Xt+2 → R, we first introduce the function

g]t : Xt+1 → R, g]t(x0, . . . , xt) := g(x0, . . . , xt, ·)](xt);

in other words, we pass to the concave envelope in the ultimate variable and
evaluate the resulting function at the penultimate variable. For an integer
T ≥ 0, we can then define the composition

](T ) = ]0 ◦ · · · ◦ ]T−1

which maps functions of T + 1 variables into functions of one variable.
Our first aim is to identify, for a fixed time horizon T , the optimal con-

stant for a martingale inequality defined by f : XT+1 → R in terms of
the consecutive envelope f ](T ). Given x0 ∈ X, we shall denote by MT (x0)
the set of all laws of X-valued simple martingales M0, . . . ,MT satisfying
M0 = x0. Note that any expectation E[f(M0, . . . ,MT )] on the original
probability space of the martingale M can be expressed as the expectation
µ[f ] := Eµ[f ] :=

∫
f dµ of f under the law µ of M ; the latter point of view

will be more convenient in the sequel. We emphasize that the integral under
µ ∈MT (x0) is a finite sum and therefore does not require any measurability
conditions, and moreover that, according to (2.1), we have µ[f ] = −∞ if
µ[f+] = µ[f−] =∞.

1The general case is no more difficult than X = R. Moreover, most of what follows
applies to the complex case without change.
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Proposition 2.1. Let f : XT+1 → R. Then

f ](T )(x0) = sup
µ∈MT (x0)

µ[f ], x0 ∈ X. (2.2)

Or, to state the same in different words: proving that an inequality
E[f(M0, . . . ,MT )] ≤ a holds for all martingales M starting at x0 boils down
to checking that f ](T )(x0) ≤ a, and in fact f ](T )(x0) is the optimal constant.

As a first step towards the proof, we consider the case T = 1. Noting that
M(x) is simply the set of all probability measures µ on X having finite sup-
port and barycenter µ[IdX] = x, the following identity is essentially classical
(see Kemperman [19]); we state the details for the sake of completeness.

Lemma 2.2. Let g : X→ R. Then

sup
µ∈M(x)

µ[g] = g](x), x ∈ X.

Proof. Let x ∈ X and µ ∈ M(x); then µ is a convex combination of Dirac
measures, µ =

∑n
i=1 λiδxi , with

∑
λixi = x. In particular,

µ[g] ≤ µ[g]] =
∑

λig
](xi) ≤ g](x)

as g] is concave, showing that supµ∈M(x) µ[g] ≤ g](x). To see the converse
inequality, let x1, x2 ∈ X and λ ∈ (0, 1). Given ε > 0, there are µεi ∈M(xi)
such that (with a ∧ b := min{a, b})

µεi [g] ≥ ε−1 ∧ sup
µ∈M(xi)

µ[g]− ε.

Using the fact that λµε1 + (1− λ)µε2 ∈M(λx1 + (1− λ)x2), we then have

λ sup
µ∈M(x1)

µ[g] + (1− λ) sup
µ∈M(x2)

µ[g] ≤ lim sup
ε→0

λµε1[g] + (1− λ)µε2[g]

≤ sup
µ∈M(λx1+(1−λ)x2)

µ[g],

showing that x 7→ supµ∈M(x) µ[g] is concave. In view of supµ∈M(x) µ[g] ≥
δx[g] = g(x), the definition of g](x) now yields supµ∈M(x) µ[g] ≥ g](x).

The extension to the case of a general horizon T can be understood as
a dynamic programming argument where the martingale laws play the role
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of the controls in a stochastic control problem. Given g : Xt+2 → R, we
therefore introduce the (value) function

Et(g) : Xt+1 → R, Et(g)(x0, . . . , xt) := sup
µ∈M(xt)

µ[g(x0, . . . , xt, ·)],

as well as the composition

E t := Et ◦ · · · ◦ ET−1

which maps functions of T + 1 variables into functions of t+ 1 variables.

Lemma 2.3. Let f : XT+1 → R. Then

(E0 ◦ · · · ◦ ET−1)(f)(x0) = sup
µ∈MT (x0)

µ[f ], x0 ∈ X. (2.3)

Proof. We first suppose that f is bounded from above. To see the inequality
“≤”, let ε > 0. For all 0 ≤ t < T and (x0, . . . , xt) ∈ Xt+1, let µt(x0, . . . , xt) ∈
M(xt) be such that

µt(x0, . . . , xt)[E t+1(f)(x0, . . . , xt, ·)] ≥ sup
µ∈M(xt)

µ[E t+1(f)(x0, . . . , xt, ·)]− ε.

We may see µt as a stochastic kernel on Xt+1 equipped with the discrete σ-
field. Recalling that we are only using measures with finite support, we may
form the product measure µε := (µ0 ⊗ · · · ⊗ µT−1)(x0) which is an element
ofMT (x0) by Fubini’s theorem. We then have

(E0 ◦ · · · ◦ ET−1)(f)(x0) ≤ εT + µε[f ] ≤ εT + sup
µ∈MT (x0)

µ[f ].

As ε > 0 was arbitrary, this yields the claimed inequality. To see the converse
inequality “≥”, fix x0 ∈ X and note that any µ ∈MT (x0) can be decomposed
into the product µ = µ0 ⊗ µ1 ⊗ · · · ⊗ µT−1 of a measure µ0 ∈ M(x0) and
kernels µt on Xt such that µt(x1, . . . , xt) ∈M(xt) for all x1, . . . , xt ∈ X. By
the definition of the operators Et, we then have

(E0 ◦ · · · ◦ ET−1)(f)(x0) ≥ (µ0 ⊗ µ1 ⊗ · · · ⊗ µT−1)[f ] = µ[f ]

and the claim follows as µ ∈MT (x0) was arbitrary.
Finally, for the case of a general function f , we observe that both sides

of (2.3) are continuous along increasing sequences (fn) of R-valued functions
having the property that {fn = −∞} = {fn+1 = −∞}, n ≥ 1. Thus, we
may apply the above to f ∧ n and pass to the limit as n→∞.

Proof of Proposition 2.1. Since Lemma 2.2 shows that ]t = Et, Proposi-
tion 2.1 is a direct consequence of Lemma 2.3.
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3 Time-Homogeneous Martingale Inequalities

Let x0 ∈ X, set X0 = x0 and let (Xt)t=1,2,... be the coordinate-mapping
process on X × X × · · · . Moreover, let Z be a nonempty set and fix a
function φ : Z × X → Z. Given z0 ∈ Z, we define the Z-valued process
Z = (Zt)t=0,1,... by

Z0 = z0, Zt+1 = φ(Zt, Xt+1 −Xt).

We write RZ for the set of all functions Z→ R, equipped with the pointwise
partial order and convergence, and define the operator A : RZ → RZ via

Ag(z) := [g ◦ φ(z, ·)]](0), z ∈ Z.

Moreover, we write AT for the T -fold composition A ◦ · · · ◦ A. Using this
notation, Proposition 2.1 can be rephrased as follows.

Lemma 3.1. Let f : Z→ R and let (x0, z0) ∈ X× Z. Then

AT f(z0) = sup
µ∈MT (x0)

µ[f(ZT )].

This lemma may look less general than Proposition 2.1, which allows for a
general dependence on the path of X, but let us mention that with the choice
Z = N×XN we can arrange things so that Zt = (t,X0, X1, . . . , Xt, 0, 0, . . . ).

From now on, we focus on martingale inequalities which hold for any
time horizon T . The structural condition

φ(z, 0) = z, z ∈ Z (3.1)

seems to be natural in that setting and we make this a standing assumption.
The operator A then has the following monotonicity properties.

Lemma 3.2. Let g, g′ : Z→ R. Then

(i) Ag ≥ g;

(ii) g ≥ g′ implies Ag ≥ Ag′.

Proof. In view of (3.1), we have

Ag(z) = g(φ(z, ·))](0) ≥ g(φ(z, 0)) = g(z), z ∈ Z.

The second property follows from the monotonicity of ].
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Theorem 3.3. Let f : Z→ R. Then the limit

A∞f(z) := lim
n→∞

Anf(z), z ∈ Z

exists in R and the function A∞f ∈ RZ is characterized as the smallest fixed
point of A which dominates f .

Remark 3.4. By Lemma 3.1, A∞f(z0) is the optimal horizon-independent
constant for the martingale inequality determined by f , φ and z0. In fact,
Lemma 3.1 naturally extends to

A∞f(z0) = sup
µ∈M∞(x0)

µ[f(Z∞)]

if we denote byM∞(x0) the set of all laws of X-valued simple2 martingales
(Mt)t∈N satisfying M0 = x0. Note that any such martingale is eventually
constant, so that Z∞ := limn Zn is well-defined µ-a.s. for all µ ∈M∞(x0).

Proof of Theorem 3.3. It follows from Lemma 3.2 that

f ≤ Af ≤ · · · ≤ Anf, n ≥ 1.

In particular, the limit A∞f(z) := limn→∞A
nf(z) ∈ R exists for all z ∈ Z.

Next, let us observe that if (gn)n≥1 ⊆ RZ is a nondecreasing sequence, then

lim
n
g]n = (lim

n
gn)].

Indeed, both limits are increasing and thus well-defined, and the monotonic-
ity of ] immediately implies that limn g

]
n ≤ (lim gn)]. Conversely, limn g

]
n is

concave as the pointwise limit of concave functions and dominates lim gn, so
that limn g

]
n ≥ (lim gn)]. Using this continuity property of ], we see that

A∞f(z) = lim
n
An+1f(z) = lim

n
[Anf ◦ φ(z, ·)]](0) = [lim

n
Anf ◦ φ(z, ·)]](0)

= [A∞f ◦ φ(z, ·)]](0) = AA∞f(z)

for all z ∈ Z; that is, A∞f is a fixed point. If g ∈ RZ is another fixed point
of A such that g ≥ f , then the monotonicity of A from Lemma 3.2 yields
that

g = Ang ≥ Anf, n ≥ 0

and hence g ≥ A∞f by passing to the limit.
2“Simple” means that the support is a finite subset of XN.
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Remark 3.5. Let u : Z→ R be any function such that f ≤ u and Au ≤ u
(hence Au = u; cf. Lemma 3.2). Then

sup
µ∈M∞(x0)

µ[f(Z∞)] = A∞f(z0) ≤ A∞u(z0) = u(z0);

that is, to prove that the martingale inequality holds with right-hand side a,
it suffices to exhibit a fixed point u of A which dominates f and satisfies
u(z0) ≤ a. As mentioned in the Introduction, this corresponds to a gen-
eral formulation of the strategy of proof that has been used by Burkholder
for several specific martingale inequalities. For the above conclusion, it is
not necessary to establish that u is the minimal fixed point; however, this
property guarantees that u(z0) is the optimal right-hand side.

To find an explicit formula for A∞f (or any other fixed point), it is often
useful to study properties of f that are preserved by A. We give a simple
example to illustrate this point (see also Section 4.1).

Remark 3.6. Suppose that Z is a cone and that φ is positively homogeneous
of degree one. If f ∈ RZ is positively homogeneous of degree p > 0, then so
are Af and A∞f . Indeed, let λ ≥ 0; then

Af(λz) = f(φ(λz, ·))](0) = inf{ψ(0)|ψ(λ·) ≥ f(φ(λz, λ·))}
= inf{ψ(0)|ψ ≥ λpf(φ(z, ·))} = inf{λpψ(0)|ψ ≥ f(φ(z, ·))} = λpAf(z),

where the infima are taken over all concave functions ψ : X → R. The
homogeneity of A∞f follows.

Next, we would like to explain a connection to certain inequalities which
have arisen in mathematical finance—from our abstract point of view, we
shall see that the latter are simply manifestations of the concavity that is
imposed by A. For the purpose of the subsequent discussion, we assume
that we are given a dual pair X,X′ with a separating pairing 〈·, ·〉. Given a
concave function h : X → R, the supergradient ∂h(d0) at d0 ∈ X is defined
as the set of all ξ ∈ X′ such that h(d0) + 〈ξ, d − d0〉 ≥ h(d) for all d ∈ X,
and h is called superdifferentiable at d0 if this set is nonempty.

Lemma 3.7. Let g : Z → R. Each of the following conditions implies the
subsequent one:

(i) For all z ∈ Z there exists ξ(z) ∈ X′ such that

g(φ(z, d)) ≤ g(z) + 〈ξ(z), d〉, d ∈ X. (3.2)
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(ii) Ag = g.

(iii) For all z ∈ Z and all ξ(z) ∈ ∂g(φ(z, ·))](0),

g(φ(z, d)) ≤ g(z) + 〈ξ(z), d〉, d ∈ X.

If the concave function g(φ(z, ·))] is superdifferentiable at d = 0, these con-
ditions are equivalent. In particular, the conditions are equivalent if X is
finite-dimensional and g(φ(z, ·))] is finite-valued.

Proof. Let (i) hold. Taking concave envelopes on both sides of (3.2), we see
that

Ag(z) = g(φ(z, ·))](0) ≤ g(z) + 〈ξ(z), 0〉 = g(z),

which implies (ii) by Lemma 3.2. Let ξ(z) ∈ ∂g(φ(z, ·))](0); that is,

g(φ(z, ·))](d) ≤ g(φ(z, ·))](0) + 〈ξ(z), d〉 ≡ Ag(z) + 〈ξ(z), d〉, d ∈ X.

Then (ii) and the fact that g(φ(z, d)) ≤ g(φ(z, ·))](d) yield (iii). Finally, if
∂g(φ(z, ·))](0) 6= ∅ for all z ∈ Z, it is evident that (iii) implies (i).

We mention that Lemma 3.7 can serve as a tool to verify that g is a fixed
point: in examples, it is sometimes easier to verify a relation like (3.2) which
does not involve the concave envelope (e.g. [5]).

Remark 3.8. In the context of mathematical finance, the Rn-valued process
X represents the discounted prices of n tradable securities, while f(ZT ) is
seen as an option maturing at time T . Inequality (3.2) with g = u = A∞f
expresses that the trading strategy Ht := ξ(Zt−1) yields a superhedge for
the seller of the option if u(z0) is charged as its price:

u(z0) +
T∑
t=1

〈Ht, Xt −Xt−1〉 ≥ u(ZT ) ≥ f(ZT ), (3.3)

where the left-hand side is the balance obtained from the amount u(z0) and
the gains/losses from trading according to H. A similar observation applies
if the time horizon T is seen as fixed (which is more natural in finance);
namely, Ht ∈ ∂[AT−t(φ(Zt−1, ·))]](0) yields a process such that

AT f(z0) +
T∑
t=1

〈Ht, Xt −Xt−1〉 ≥ f(ZT ). (3.4)
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In particular, this gives a simple and constructive proof for the result of [6]
mentioned in the Introduction (note that an element of the supergradient
can be chosen simply by taking a directional derivative).

By its definition, AT (z0) is the minimal constant allowing for an inequal-
ity of the form (3.4) to hold almost-surely under all martingale laws and
hence in all viable models, so that AT (z0) is called the robust (or model-
independent) superhedging price. To enlarge a bit further on the financial as-
pect, suppose that Z ⊆ X×Y for some setY and that φ(x, y, d) = ϕ(x+d, y)
for some function ϕ : X ×Y → Z, where we now write (x, y) instead of z
(see also Section 4.1 below). If u = A∞f , then u(·, y) is concave because
u(x, y) is the concave envelope of u(ϕ(·, y)) evaluated at x, and moreover

∂xu(x, y) = ∂u(φ(x, y, ·))](0).

In other words, the hedging strategy is given by ξ(x, y) = ∂xu(x, y), which
corresponds to the option’s Delta in the language of finance.

Certain classical martingale inequalities hold also for submartingales.
This can be related to the above as follows (the submartingale property
is understood componentwise in the multivariate case).

Remark 3.9. Let X = Rn and g : X → R; then by Lemma 2.2, we have
supµ∈M(x) µ[g] = g](x). Now letM∗(x) be the set of all probability measures
on X having finite support and barycenter x∗ ≥ x. If the function g is
(componentwise) nonincreasing, we also have

sup
µ∈M∗(x)

µ[g] = g](x), x ∈ X.

Indeed, for each µ∗ ∈ M∗(x) there is µ ∈ M(x) such that µ∗[g] ≤ µ[g]. As
a consequence, the martingale inequality corresponding to f and φ extends
to submartingales under the condition that

A∞f(φ(z, ·)) is nonincreasing.

Some martingale inequalities extend only to, e.g., nonnegative submartin-
gales. Such a case can be covered by choosing a suitable state space Z, as in
Section 4.2 below.

We conclude this section with a brief remark about measurability ques-
tions (which we have avoided wherever possible).
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Remark 3.10. Suppose that X = Rn and Z is, say, a Polish space, and
that φ is Borel-measurable. If f is Borel-measurable, one can check that Af
and A∞f are upper-semianalytic and in particular universally measurable;
however, it can happen that Af is not Borel-measurable. As a consequence,
the hedging strategy in Remark 3.8 can also be chosen to be universally
measurable.

4 Examples

4.1 Doob’s Maximal Inequality

The aim of this subsection is to illustrate the above abstract theory by a
ramification of Doob’s maximal Lp-inequality; in this case, all quantities of
interest can be computed explicitly. In what follows, X is a vector space
with norm | · |.

Proposition 4.1. Let 1 < p <∞, Z = {(x, y) ∈ X× R+ : |x| ≤ y} and

φ(x, y, d) = (x+d, y∨|x+d|), f(x, y) = yp−( p
p−1)p|x|p, (x, y, d) ∈ Z×X.

Then the minimal fixed point of A dominating f is given by

A∞f(x, y) =

{
f(x, y) if |x| < p−1

p y,

ũ(x, y) if |x| ≥ p−1
p y,

(4.1)

where
ũ(x, y) := pyp − p2

p−1 |x|y
p−1, (x, y) ∈ Z.

Remark 4.2. The proof below also shows that the constant ( p
p−1)p in the

definition of f is optimal. Namely, if

fc(x, y) = yp − c|x|p (4.2)

for c ≥ 0, we shall see that A∞fc ≡ ∞ for c < ( p
p−1)p, whereas A∞fc is

finite-valued for c ≥ ( p
p−1)p.

Setting |M |∗T = max0≤t≤T |Mt| and applying the results of the previ-
ous subsection, we immediately deduce the following ramification of Doob’s
maximal Lp-inequality.
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Corollary 4.3. For all (x, y) ∈ Z, T ≥ 0 and every (simple) X-valued
martingale M starting at M0 = x, we have

E
[
(|M |∗T )p ∨ yp − ( p

p−1)p|MT |p
]
≤

{
yp − ( p

p−1)p|x|p if |x| < p−1
p y,

pyp − p2

p−1 |x|y
p−1 if |x| ≥ p−1

p y

and the right-hand side is optimal. In particular, for the case y = |x|, we
have

E
[
(|M |∗T )p − ( p

p−1)p|MT |p
]
≤ − p

p−1 |x|
p ≤ 0 (4.3)

and thus ‖|M |∗T ‖p ≤
p
p−1‖MT ‖p.

We mention that the function ũ also appears in a proof of (4.3) in [11].
The optimality of the constant was not studied there; incidentally, we see
that ũ(x, y) actually yields the optimal constant for initial conditions with
y = |x|. The function ũ can also be extracted (with some additional work)
from Cox [15], who considers the finite-horizon version of Doob’s inequality
in the case X = R.

Proof of Proposition 4.1 and Remark 4.2. Fix c ≥ 0 and let f := fc be de-
fined as in (4.2). By Remark 3.4, the function u := A∞f has the represen-
tation

u(x, y) = sup
µ∈M∞(x)

µ[f(Z∞)], (4.4)

and in view of the form of f , this implies that u(x, y) depends on x only
through |x|. Moreover, we have the scaling property u(λx, λy) = λpu(x, y)
for λ ≥ 0; cf. Remark 3.6. Thus, u is completely described by the function

% : [0, 1]→ R, %(|x|) := u(x, 1);

namely, we have u(0, 0) = 0 and u(x, y) = yp%(|x|/y) for all (x, y) ∈ Z with
y > 0. On the other hand, we know that u is a fixed point of A,

u(x, y) = Au(x, y) = u(x+ ·, y ∨ |x+ ·|)#(0) = u(·, y ∨ | · |)#(x), (4.5)

so that x 7→ u(x, y) is concave. In particular, using u ≥ f and the scaling
property, we see that u(x, y) = ∞ at one point (x, y) if and only if u ≡ ∞
on Z. For the time being, let us suppose that we are in the case where u is
finite.

Under this condition, it follows from (4.5) and the scaling property, or
also directly from (4.4), that x 7→ u(x, y) is continuous. Thus, % is a con-
tinuous concave function on [0, 1], and it follows from (4.5) that its (left)

14



tangent t at the boundary point r = 1 satisfies

t(r) ≥ rp%(1), r ∈ [1,∞); (4.6)

note that rp%(1) = u(xr, |xr|) if xr ∈ X is any point with |xr| = r (we may
assume that X 6= {0}). For later use, we remark that the converse is also
true: a continuous concave function %̄ on [0, 1] satisfying the analogue of
(4.6) determines a fixed point ū of A.

Let us establish that

%(0) ≥ 1 and %(1) < 0. (4.7)

Indeed, %(0) = u(0, 1) ≥ f(0, 1) = 1. Moreover, if %(1) were nonnegative,
then p > 1 and (4.6) would imply that the tangent t has nonnegative slope,
thus %(1) = t(1) ≥ t(0) ≥ %(0) ≥ 1. But then (4.6) states that the affine
function t(r) dominates rp on [1,∞), which is impossible.

As a result, r 7→ rp%(1) is concave and we see that the tangent condi-
tion (4.6) can be stated equivalently in differential terms. Namely, if %′(1)
denotes the slope of t, (4.6) is equivalent to

0 > %′(1) ≥ p%(1). (4.8)

In view of (4.7), the tangent t has a unique zero r1 in [0, 1]. Using the
Intercept Theorem, (4.8) implies that

1− r1
%(1)

=
1

%(1)− t(0)
=

1

%′(1)
≤ 1

p%(1)

and hence

r1 ≤ 1− 1/p. (4.9)

Next, we construct another fixed point of A for comparison. Let t̄ be the
(uniquely determined) affine function which is parallel to t and touches

r 7→ f(xr, 1), r ∈ [0, 1].

We denote by (r2, f(xr2 , 1)) the coordinates of this touching point. Set

%̄(r) :=

{
f(xr, 1) for r ∈ [0, r2],

t̄(r) for r ∈ (r2, 1].
(4.10)

15



By definition, %̄ is a continuous concave function satisfying (4.8). As re-
marked above, this implies that %̄ defines a fixed point ū of A via ū(0, 0) := 0
and ū(x, y) := yp%̄(|x|/y) for (x, y) ∈ Z with y > 0.

The fact that f ≤ u and the construction of ū imply that ū ≤ u. On the
other hand, we have ū ≥ f and u is the minimal fixed point of A above f ,
so u ≤ ū. As a result, ū = u, %̄ = % and t̄ = t. In particular, this establishes
that % is of the specific form (4.10); it remains to determine the tangent t
explicitly.

Consider r0 := (1/c)1/p, the zero of r 7→ 1−crp = f(xr, 1). By concavity,
we must have r0 ≤ r1; recall that r1 is the zero of the tangent. In view
of (4.9), we conclude that

r0 ≤ r1 ≤ 1− 1/p; (4.11)

hence, our assumption that u is finite is contradicted whenever c < ( p
p−1)p.

Suppose that c = ( p
p−1)p. Then r0 = 1 − 1/p and so (4.11) implies that

r1 = r0 = 1−1/p. The slope of r 7→ f(xr, 1) in this point is − p2

p−1 ; therefore,

t(r) = −r p2

p− 1
+ p.

In view of (4.10), this corresponds to the claimed formula (4.1). Since we
have seen that this form of u defines a fixed point dominating f , we are
necessarily in the case where A∞f is finite; moreover, as f is decreasing
with respect to c, A∞f is then also finite for all c ≥ ( p

p−1)p.

4.2 Differentially Subordinate Martingales

The main purpose of this subsection is to illustrate how one can accommo-
date a martingale inequality which holds only for a specific class of martin-
gales. To this end, we shall treat an inequality for differentially subordinate
martingales, first derived by Burkholder for real-valued processes in [9] and
extended to the Hilbert-valued case in [10]. A martingale N is differen-
tially subordinate to another martingale M if |Nt+1 − Nt| ≤ |Mt+1 −Mt|
for all t ≥ 0. In other words, this says that the increments of the bivariate
martingale (M,N) take values in the cone {(d1, d2) : |d2| ≤ |d1|}, and this
is the condition defining the class of (bivariate) martingales for which the
inequality will hold.

Let H be a Hilbert space. In what follows, our basic vector space is
X := H ×H and our state space is Z = X ∪ {∆}; the additional point ∆
will be used as a cemetery state for paths that violate the subordination
condition.
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Proposition 4.4. Let 1 < p < ∞ and p∗ = max{p, p/(p − 1)}. For z ∈ Z
and d = (d1, d2) ∈ X, define

φ(z, d) =

{
∆ if z = ∆ or |d2| > |d1|,
z + d otherwise,

f(z) =

{
−∞ if z = ∆,

|x2|p − (p∗ − 1)p|x1|p if z = (x1, x2) ∈ X,

ũ(z) =

{
−∞ if z = ∆,

p(1− 1/p∗)p−1(|x2| − (p∗ − 1)|x1|)(|x1|+ |x2|)p−1 if z ∈ X.

Then the minimal fixed point of A dominating f is given by A∞f = u, where
u is defined for 1 < p ≤ 2 by

u(z) =


−∞ if z = ∆,

ũ(z) if z = (x1, x2) ∈ X and |x2| ≤ (p∗ − 1)|x1|,
f(z) if z = (x1, x2) ∈ X and |x2| > (p∗ − 1)|x1|

and by the same identity with ũ and f interchanged if 2 ≤ p <∞.

Corollary 4.5. Let 1 < p <∞ and p∗ = max{p, p/(p− 1)}. Let M1,M2 be
H-valued (simple) martingales starting at (M1

0 ,M
2
0 ) = (x1, x2) and satisfying

|M2
t+1 −M2

t | ≤ |M1
t+1 −M1

t | for all t ≥ 0. Then

E[|M2
T |p − (p∗ − 1)p|M1

T |p] ≤ u(x1, x2)

and in particular ‖M2
T ‖p ≤ (p∗ − 1)‖M1

T ‖p if x1 = x2.

Proof of Proposition 4.4. All relevant properties are contained in [10]; we
merely translate them into our setup. Indeed, we have f(∆) = u(∆) by
definition, and it is checked below Equation (1.10) in [10] that f(z) ≤ ũ(z)
for z ∈ X. Hence, f ≤ u. Moreover, according to Remark 1.2 in [10], u is
the smallest function which dominates f on X and has the property that
r 7→ u(z + rd) is concave for all z ∈ X and all d = (d1, d2) ∈ X such that
|d2| ≤ |d1|. Using our notation and recalling that u(φ(z, ·)) = −∞ outside
the set {|d2| ≤ |d1|}, it follows that u is the smallest function dominating f
on Z such that u(φ(z, ·)) is concave on X. The latter property implies that

Au(z) = u(φ(z, ·))](0) = u(φ(z, 0)) = u(z),

so u is a fixed point of A. Conversely, if g : Z → R is any fixed point of A,
then g(φ(z, d)) = g(z+ d+ ·)](0) and hence g(φ(z, ·) is concave. As a result,
u is the smallest fixed point of A dominating u.
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5 Tchakaloff’s Theorem for Martingales

In the preceding sections, we have restricted our attention to simple martin-
gales and we still have to argue that this entails no essential loss of generality.
On the one hand, let us mention again that for nice functions f and φ, the
extension from simple to general martingales can be done by direct approxi-
mation arguments; see, e.g., the proofs of Lemma 2.2 in [13] or Theorem 2.2
in [8]. On the other hand, we have developed the theory without regularity
conditions and so we would like to see that the extension can be achieved
under the natural requirement necessary to define the expectations; namely,
the measurability alone. This will be achieved by a martingale version of
Tchakaloff’s theorem.

Following Bayer and Teichmann [3], a general version of Tchakaloff’s
classical theorem [24] about the existence of cubature formulas can be stated
as follows: given an integrable function f on a probability space (Ω,F , µ),
there exists a probability measure ν with finite support such that ν[f ] = µ[f ],
and moreover that support can be chosen to lie in the support of µ. The
function f may be multivariate, which allows one to incorporate a finite
number of linear constraints on ν; for instance, that ν should have the same
first moment as µ. Our aim is to provide a version of the theorem where
µ and ν are martingale laws. This extension is not immediate because the
martingale property corresponds to an infinite number of constraints3.

Theorem 5.1. Let k, n, T ∈ N and X = Rn. Let x0 ∈ X and let µ be the law
of an X-valued martingale M0, . . . ,MT with M0 = x0, and let A ⊆ XT+1 be
a (µ-measurable) set such that µ(A) = 1. Moreover, let f : XT+1 → Rk be a
µ-measurable function such that µ[|f |] < ∞. There exists a martingale law
ν, still starting at x0, such that # supp ν ≤ (n+ k + 1)T , supp ν ⊆ A and

ν[f ] = µ[f ].

Proof. By changing f on a µ-nullset and replacing A with a smaller set of
full µ-measure, we may assume that f and A are Borel. The case T = 1 is
now a consequence of Tchakaloff’s theorem in the form of [3, Corollary 2]
applied to the function φ : X→ Rn+k+1 given by φ(x) = (f(x), x, 1). Hence,
we assume that the theorem holds for some T ∈ N and show how to pass
to T + 1. So let µ be a martingale law on XT+1 and let A ⊆ XT+1 satisfy
µ(A) = 1. Let µ0 be the marginal of µ on XT , given by µ0(B) := µ(B ×X)
for B ∈ B(XT ), and let µ1 be a Borel-measurable stochastic kernel from XT

3We thank Josef Teichmann for the insightful discussions which led to this theorem.
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to (X,B(X)) such that
µ = µ0 ⊗ µ1. (5.1)

It is easy to see that µ0 is a martingale law on XT and that µ0(A0) = 1
if A0 is the (universally measurable) canonical projection of A onto XT .
On the other hand, it follows from (5.1) that there exists N ∈ B(XT ) with
µ0(N) = 0 such that for all x ∈ XT \N , we have

∫
|f(x, x′)|µ1(x; dx′) <∞

and
µ1(x) is a martingale law on X satisfying µ1(x;Ax) = 1,

where Ax ∈ B(X) is the section Ax = {x′ ∈ X : (x, x′) ∈ A}.
By the induction hypothesis, there exists a martingale law ν0 on XT such

that
# supp ν0 ≤ (n+ k + 1)T , supp ν0 ⊆ A0 \N (5.2)

and
ν0[g] = µ0[g] for g(x) :=

∫
f(x, x′)µ1(x; dx′).

Fix x ∈ XT \ N . By applying the case T = 1 to the function f(x, ·)
and the measure µ1(x), we obtain a martingale law ν1(x) on X such that
# supp ν1 ≤ n+ k + 1, supp ν1 ⊆ Ax and∫

f(x, x′) ν1(x; dx′) =

∫
f(x, x′)µ1(x; dx′) ≡ g(x).

We may see x 7→ ν1(x) as a kernel and define

ν = ν0 ⊗ ν1;

this product is well defined as a consequence4 of (5.2). By construction, we
have # supp ν ≤ (n+ k+ 1)T+1. Moreover, it follows from Fubini’s theorem
that

µ[f ] =

∫ [ ∫
f(x, x′)µ1(x; dx′)

]
µ0(dx) = µ0[g] = ν0[g]

=

∫ [ ∫
f(x, x′) ν1(x; dx′)

]
ν0(dx) = ν[f ],

and similarly that ν is a martingale law satisfying ν(A) = 1.
4In particular, the finiteness of supp ν0 implies that there are no measurability issues;

ν is simply a finite weighted sum.
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The preceding theorem entails that even for merely measurable func-
tions f , simple martingales are sufficient to establish martingale inequalities;
in particular, this yields an extension of the results from Section 3 to general
martingales.

Corollary 5.2. Let X = Rn and let f : XT+1 → R be universally measur-
able. Then

sup
µ∈MT (x0)

µ[f ] = sup
M

E[f(M0, . . . ,MT )],

where the supremum on the right-hand side is taken over all n-dimensional
martingales M0, . . . ,MT with M0 = x0, each on its filtered probability space.

Proof. It suffices to show that supµ∈MT (x0) µ[f(ZT )] ≥ E[f(M0, . . .MT )] for
any martingale M with M0 = x0. For this, we may assume without loss
of generality that E[f(M0, . . .MT )] > −∞ and, by monotone convergence,
that f is bounded from above. Hence, we may assume that f is real-valued.

Under these conditions, we have µM [|f |] <∞ for the law µM ofM . Thus,
Theorem 5.1 yields µ ∈MT (x0) such that µ[f ] = µM [f ] = E[f(M0, . . .MT )]
and the claim follows.

References

[1] B. Acciaio, M. Beiglböck, F. Penkner, and W. Schachermayer. A model-free
version of the fundamental theorem of asset pricing and the super-replication
theorem. To appear in Math. Finance, 2013.

[2] B. Acciaio, M. Beiglböck, F. Penkner, W. Schachermayer, and J. Temme.
A trajectorial interpretation of Doob’s martingale inequalities. Ann. Appl.
Probab., 23(4):1494–1505, 2013.

[3] C. Bayer and J. Teichmann. The proof of Tchakaloff’s theorem. Proc. Amer.
Math. Soc., 134(10):3035–3040 (electronic), 2006.

[4] M. Beiglböck, P. Henry-Labordère, and F. Penkner. Model-independent
bounds for option prices: a mass transport approach. Finance Stoch.,
17(3):477–501, 2013.

[5] M. Beiglböck and P. Siorpaes. Pathwise versions of the Burkholder–Davis–
Gundy inequality. Preprint arXiv:1305.6188v1, 2013.

[6] B. Bouchard and M. Nutz. Arbitrage and duality in nondominated discrete-
time models. To appear in Ann. Appl. Probab., 2013.

[7] H. Brown, D. Hobson, and L. C. G. Rogers. Robust hedging of barrier options.
Math. Finance, 11(3):285–314, 2001.

20



[8] D. L. Burkholder. A geometrical characterization of Banach spaces in which
martingale difference sequences are unconditional. Ann. Probab., 9(6):997–
1011, 1981.

[9] D. L. Burkholder. Boundary value problems and sharp inequalities for mar-
tingale transforms. Ann. Probab., 12(3):647–702, 1984.

[10] D. L. Burkholder. Sharp inequalities for martingales and stochastic inte-
grals. Astérisque, (157-158):75–94, 1988. Colloque Paul Lévy sur les Processus
Stochastiques (Palaiseau, 1987).

[11] D. L. Burkholder. Explorations in martingale theory and its applications. In
École d’Été de Probabilités de Saint-Flour XIX—1989, volume 1464 of Lecture
Notes in Math., pages 1–66. Springer, Berlin, 1991.

[12] D. L. Burkholder. Sharp norm comparison of martingale maximal functions
and stochastic integrals. In Proceedings of the Norbert Wiener Centenary
Congress, 1994 (East Lansing, MI, 1994), volume 52 of Proc. Sympos. Appl.
Math., pages 343–358, Providence, RI, 1997. Amer. Math. Soc.

[13] D. L. Burkholder. The best constant in the Davis inequality for the expectation
of the martingale square function. Trans. Amer. Math. Soc., 354(1):91–105
(electronic), 2002.

[14] A. M. G. Cox and J. Obłój. Robust pricing and hedging of double no-touch
options. Finance Stoch., 15(3):573–605, 2011.

[15] D. C. Cox. Some sharp martingale inequalities related to Doob’s inequality.
In Inequalities in statistics and probability (Lincoln, Neb., 1982), volume 5 of
IMS Lecture Notes Monogr. Ser., pages 78–83. Inst. Math. Statist., Hayward,
CA, 1984.

[16] Y. Dolinsky and H. M. Soner. Martingale optimal transport and robust hedg-
ing in continuous time. To appear in Probab. Theory Related Fields, 2012.

[17] D. Hobson. Robust hedging of the lookback option. Finance Stoch., 2(4):329–
347, 1998.

[18] D. Hobson. The Skorokhod embedding problem and model-independent
bounds for option prices. In Paris-Princeton Lectures on Mathematical Fi-
nance 2010, volume 2003 of Lecture Notes in Math., pages 267–318. Springer,
Berlin, 2011.

[19] J. H. B. Kemperman. The general moment problem, a geometric approach.
Ann. Math. Statist, 39:93–122, 1968.

[20] J. Obłój. The Skorokhod embedding problem and its offspring. Probab. Surv.,
1:321–390, 2004.

[21] J. Obłój and M. Yor. On local martingale and its supremum: harmonic func-

21



tions and beyond. In From stochastic calculus to mathematical finance, pages
517–533. Springer, Berlin, 2006.
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