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Abstract

Consider a multiperiod optimal transport problem where distri-
butions µ0, . . . , µn are prescribed and a transport corresponds to a
scalar martingale X with marginals Xt ∼ µt. We introduce particu-
lar couplings called left-monotone transports; they are characterized
equivalently by a no-crossing property of their support, as simultane-
ous optimizers for a class of bivariate transport cost functions with a
Spence–Mirrlees property, and by an order-theoretic minimality prop-
erty. Left-monotone transports are unique if µ0 is atomless, but not
in general. In the one-period case n = 1, these transports reduce to
the Left-Curtain coupling of Beiglböck and Juillet. In the multiperiod
case, the bivariate marginals for dates (0, t) are of Left-Curtain type,
if and only if µ0, . . . , µn have a specific order property. The general
analysis of the transport problem also gives rise to a strong duality
result and a description of its polar sets. Finally, we study a variant
where the intermediate marginals µ1, . . . , µn−1 are not prescribed.
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1 Introduction

Let µ = (µ0, . . . , µn) be a vector of probability measures µt on the real line.
A measure P on Rn+1 whose marginals are given by µ is called a coupling
(or transport) of µ, and the set of all such measures is denoted by Π(µ). We
shall be interested in couplings P that are martingales; that is, the identity
X = (X0, . . . , Xn) on Rn+1 is a martingale under P . Hence, we will assume
that all marginals have a finite first moment and denote by M(µ) the set
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of martingale couplings. A classical result of Strassen [41] shows thatM(µ)
is nonempty if and only if the marginals are in convex order, denoted by
µt−1 ≤c µt and defined by the requirement that µt−1(φ) ≤ µt(φ) for any
convex function φ, where µ(φ) :=

∫
φdµ.

The first goal of this paper is to introduce and study a family of “canon-
ical” couplings P ∈ M(µ) that we call left-monotone. These couplings spe-
cialize to the Left-Curtain coupling of [8] in the one-step case n = 1 and
share, broadly speaking, several properties reminiscent of the Hoeffding–
Fréchet coupling of classical optimal transport. Indeed, left-monotone cou-
plings will be characterized by order-theoretic minimality properties, as si-
multaneous optimal transports for certain classes of reward (or cost) func-
tions, and through no-crossing conditions on their supports.

The second goal is to develop a strong duality theory for multiperiod
martingale optimal transport, along the lines of [10] for the one-period mar-
tingale case and [34] for the classical optimal transport problem. That is, we
introduce a suitable dual optimization problem and show the absence of a
duality gap as well as the existence of dual optimizers for general transport
reward (or cost) functions. The duality result is a crucial tool for the study
of the left-monotone couplings.

We also develop similar results for a variant of our problem where the
intermediate marginals µ1, . . . , µn−1 are not prescribed (Section 9), but we
shall focus on the full marginal case for the purpose of the Introduction.

1.1 Left-Monotone Transports

For the sake of orientation, let us first state the main result and then explain
the terminology contained therein. The following is a streamlined version—
the results in the body of the paper are stronger in some technical aspects.

Theorem 1.1. Let µ = (µ0, . . . , µn) be in convex order and P ∈ M(µ) a
martingale transport between these marginals. The following are equivalent:

(i) P is a simultaneous optimal transport for f(X0, Xt), 1 ≤ t ≤ n when-
ever f : R2 → R is a smooth second-order Spence–Mirrlees function.

(ii) P is concentrated on a left-monotone set Γ ⊆ Rn+1.

(iii) P transports µ0|(−∞,a] to the obstructed shadow Sµ1,...,µt(µ0|(−∞,a]) in
step t, for all 1 ≤ t ≤ n and a ∈ R.

There exists P ∈ M(µ) satisfying (i)–(iii), and any such P is called a left-
monotone transport. If µ0 is atomless, then P is unique.

Let us now discuss the items in the theorem.
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(i) Optimal Transport. This property characterizes P as a simultaneous
optimal transport. Given a function f : Rn+1 → R, we may consider the
martingale optimal transport problem with reward f (or cost −f),

Sµ(f) = sup
P∈M(µ)

P (f); (1.1)

recall that P (f) = EP [f(X0, . . . , Xn)]. A Lipschitz function f ∈ C1,2(R2;R)
is called a smooth second-order Spence–Mirrlees function if it satisfies the
cross-derivative condition fxyy > 0; this has also been called the martin-
gale Spence–Mirrlees condition in analogy to the classical Spence–Mirrlees
condition fxy > 0. Given such a function of two variables and 1 ≤ t ≤ n,
we may consider the n-step martingale optimal transport problem with re-
ward f(X0, Xt). Characterization (i) states that a left-monotone transport
P ∈ M(µ) is an optimizer simultaneously for the n transport problems
f(X0, Xt), 1 ≤ t ≤ n, for some (and then all) smooth second-order Spence–
Mirrlees functions f .

In the one-step case, a corresponding result holds for the Left-Curtain
coupling [8]; here the simultaneous optimization becomes a single one. In
view of the characterization in (i), an immediate consequence is that if there
exists P ∈ M(µ) such that all bivariate projections P0t = P ◦ (X0, Xt)

−1 ∈
M(µ0, µt) are of Left-Curtain type, then P is left-monotone. However, such
a transport does not exist unless the marginals satisfy a very specific con-
dition (see Proposition 6.9), and in general the bivariate projections of a
left-monotone transport are not of Left-Curtain type.

(ii) Geometry. The second item characterizes P through a geometric
property of its support. A set Γ ⊆ Rn+1 will be called left-monotone if it has
the following no-crossing property for all 1 ≤ t ≤ n: Let x = (x0, . . . , xt−1),
x′ = (x′0, . . . , x

′
t−1) ∈ Rt and

y−, y+, y′ ∈ R with y− < y+

be such that (x, y+), (x, y−), (x′, y′) are in the projection of Γ to the first
t+ 1 coordinates. Then,

y′ /∈ (y−, y+) whenever x0 < x′0.

That is, if we consider two paths in Γ starting at x0 and coinciding up to
t − 1, and a third path starting at x′0 to the right of x0, then at time t
the third path cannot step in-between the first two—this is illustrated in
Figure 1. Item (ii) states that a left-monotone transport P ∈ M(µ) can be
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Figure 1: Two examples of forbidden configurations in left-monotone sets.

characterized by the fact that it is concentrated on a left-monotone set Γ. (In
Theorem 7.16 we shall state a stronger result: we can find a left-monotone
set that carries all left-monotone transports at once.)

In the one-step case n = 1, left-monotonicity coincides with the Left-
Curtain property of [8]. However, we emphasize that for t > 1, our no-
crossing condition differs from the Left-Curtain property of the bivariate
projection (X0, Xt)(Γ) as the latter would not contain the restriction that
the first two paths have to coincide up to t−1 (see also Example 6.10). This
corresponds to the mentioned fact that the bivariate marginal P0t need not
be of Left-Curtain type. On the other hand, the geometry of the projection
(Xt−1, Xt)(Γ) is also quite different from the Left-Curtain one, as our con-
dition may rule out third paths crossing from the right and left at t − 1,
depending on the starting point x′0 rather than the location of x′t−1.

(iii) Convex Ordering. This property characterizes left-monotone trans-
ports in an order-theoretic way and will be used in the existence proof.
To explain the idea, suppose that µ0 consists of finitely many atoms at
x1, . . . , xN ∈ R. Then, for any fixed t, a coupling of µ0 and µt can be
defined by specifying a “destination” measure for each atom. We consider
all chains1 µ0|xi ≤c θ1 ≤c · · · ≤c θt of measures θs in convex order that
satisfy the marginals constraints θs ≤ µs for s ≤ t. Of these chains, keep
only the terminal measures θt and compare them according to the convex
order. The obstructed shadow of µ0|x1 in µt through µ1, . . . , µt−1, denoted
Sµ1,...,µt(µ0|xi), is defined as the unique least element2 among the θt. A par-

1Here µ0|xi denotes a Dirac measure of mass µ0({xi}) at xi.
2See Definition 6.6 and Lemma 6.7 for details on this construction.
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ticular coupling of µ0 and µt is the one that successively maps the atoms
µ0|xi to their obstructed shadows in the remainder of µt, starting with the
left-most atom xi and continuing from left to right. In the case of gen-
eral measures, we consider the restrictions µ0|(−∞,a] instead of successively
mapping the atoms. Characterization (iii) then states that a left-monotone
transport P ∈M(µ) maps µ0|(−∞,a] to its obstructed shadow at date t for all
1 ≤ t ≤ n and a ∈ R. This shows in particular that the bivariate projections
P0t = P ◦ (X0, Xt)

−1 of a left-monotone coupling are uniquely determined.
In the body of the text, we shall also give an alternative definition of the
obstructed shadow by iterating unobstructed shadows through the marginals
up to date t; see Section 6.

The above specializes to the construction of [8] for the one-step case,
which corresponds to the situation of t = 1 where there are no interme-
diate marginals obstructing the shadow. When t > 1, the obstruction by
the intermediate marginals once again entails that P0t need not be of Left-
Curtain type. More precisely, Characterization (iii) gives rise to a sharp
criterion (Proposition 6.9) on the marginals µ, describing exactly when this
coincidence arises.

(Non-)Uniqueness. We have seen above that for a left-monotone trans-
port P ∈ M(µ) the bivariate projections P0t, 1 ≤ t ≤ n are uniquely
determined. In particular, for n = 1, we recover the result of [8] that the
left-monotone coupling is unique. For n > 1, the situation turns out to be
quite different depending on the nature of the first marginal. On the one ex-
treme, we shall see that when µ0 is atomless, there is a unique left-monotone
transport P ∈ M(µ). Moreover, P has a degenerate structure reminiscent
of Brenier’s theorem: it can be disintegrated as P = µ0 ⊗ κ1 ⊗ · · · ⊗ κn
where each one-step transport kernel κt is concentrated on the graphs of two
functions. On the other extreme, if µ0 is a Dirac mass, the typical case is
that there are infinitely many left-monotone couplings—see Section 8 for a
detailed discussion. We shall also show that left-monotone transports are
not Markovian in general, even if uniqueness holds (Example 7.17).

1.2 Duality

The analysis of left-monotone transports is based on a duality result that
we develop for general reward functions f : Rn+1 → (−∞,∞] with an in-
tegrable lower bound. Formally, the dual problem (in the sense of linear
programming) for the transport problem Sµ(f) = supP∈M(µ) P (f) is the
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minimization

Iµ(f) := inf
(φ,H)

n∑
t=0

µt(φt)

where the infimum is taken over vectors φ = (φ0, . . . , φn) of real functions
and predictable processes H = (H1, . . . ,Hn) such that

n∑
t=0

φt(Xt) + (H ·X)n ≥ f ; (1.2)

here (H · X)n :=
∑n

t=1Ht (Xt − Xt−1) is the discrete-time integral. The
desired result (Theorem 5.2) states that there is no duality gap, i.e. Iµ(f) =
Sµ(f), and that the dual problem is attained whenever it is finite. From
the analysis for the one-step case in [10] we know that this assertion fails
for the above naive formulation of the dual, and requires several relaxations
regarding the integrability of the functions φt and the domain V ⊆ Rn+1

where the inequality (1.2) is required. Specifically, the inequality needs to
be relaxed on sets that are M(µ)-polar; i.e. not charged by any transport
P ∈ M(µ). These sets are characterized in Theorem 3.1 where we show
that theM(µ)-polar sets are precisely the (unions of) sets which project to
a two-dimensional polar set ofM(µt−1, µt) for some 1 ≤ t ≤ n.

The duality theorem gives rise to a monotonicity principle (Theorem 5.4)
that underpins the analysis of the left-monotone couplings. Similarly to the
cyclical monotonicity condition in classical transport, it allows one to study
the geometry of the support of optimal transports for a given function f .

1.3 Background and Related Literature

The martingale optimal transport problem (1.1) was introduced in [5] with
the dual problem as a motivation. Indeed, in financial mathematics the
function f is understood as the payoff of a derivative written on the un-
derlying X and (1.2) corresponds to superhedging f by statically trading in
European options φt(Xt) and dynamically trading in the underlying accord-
ing to the strategy H. The value Iµ(f) then corresponds to the lowest price
of f for which the seller can enter a model-free hedge (φ, H) if the marginals
Xt ∼ µt are known from option market data. In [5], it was shown (with the
above, “naive” formulation of the dual problem) that there is no duality gap
if f is sufficiently regular, whereas dual existence was shown to fail even in
regular cases. The idea of model-free hedging as well as the connection to
Skorokhod embeddings goes back to [26]; we refer to [12, 13, 14, 27, 38, 43]
for further references. A specific multiperiod martingale optimal transport
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problem also arises in the study of the maximum maximum of a martingale
given n marginals [22].

The one-step case n = 1 has been studied in great detail. In particular,
[8] introduced the Left-Curtain coupling and pioneered numerous ideas un-
derlying Theorem 1.1, [24] provided an explicit construction of that coupling,
and [31] established the stability with respect to the marginals. Our duality
results specialize to the ones of [10] when n = 1. Unsurprisingly, we shall
exploit many arguments and results from these papers wherever possible.
As indicated above, and as will be seen in the proofs below, the multistep
case allows for a richer structure and necessitates novel ideas; for instance,
the analysis of the polar sets (Theorem 3.1) is surprisingly involved. Other
works in the one-step martingale case have studied reward functions f such
as forward start straddles [28, 29] or Asian payoffs [40]. We also refer to
[20, 35] for recent developments with multidimensional marginals.

One-step martingale optimal transport problems can alternately be stud-
ied as optimal Skorokhod embedding problems with marginal constraints; cf.
[2, 3, 6, 7]. A multi-marginal extension [1] of [2] is in preparation at the time
of writing and the authors have brought to our attention that it will offer a
version of Theorem 1.1 in the Skorokhod picture, at least in the case where
µ0 is atomless and some further conditions are satisfied. The Skorokhod
embedding problem with multi-marginal constraint was also studied in [21].

A multi-step coupling quite different from ours can be obtained by com-
posing in a Markovian fashion the Left-Curtain transport kernels from µt−1

to µt, 1 ≤ t ≤ n, as discussed in [24]. In [32] the continuous-time limits
of such couplings for n → ∞ are studied to find solutions of the so-called
Peacock problem [25] where the marginals for a continuous-time martingale
are prescribed; see also [23] and [33] for other continuous-time results with
full marginal constraint. Early contributions related to the continuous-time
martingale transport problem include [16, 17, 19, 36, 39, 42].

The remainder of the paper is organized as follows. Section 2 fixes basic
terminology and recalls the necessary results from the one-step case. In Sec-
tion 3, we characterize the polar structure of M(µ). Section 4 introduces
and analyzes the space that is the domain of the dual problem in Section 5,
where we state the duality theorem and the monotonicity principle. Sec-
tion 6 introduces left-monotone transports by the shadow construction and
Section 7 develops the equivalent characterizations in terms of support and
optimality properties. The (non-)uniqueness of left-monotone transports is
discussed in Section 8. We conclude with the analysis of the problem with
unconstrained intermediate marginals in Section 9.
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2 Preliminaries

Throughout this paper, µt, µ, ν denote finite measures on R with finite first
moment, the total mass not necessarily being normalized. Generalizing the
notation from the Introduction to a vector µ = (µ0, . . . , µn) of such measures,
we will write Π(µ) for the set of couplings; that is, measures P on Rn+1 such
that P ◦X−1

t = µt for 0 ≤ t ≤ n where X = (X0, . . . , Xn) : Rn+1 → Rn+1

is the identity. Moreover, M(µ) is the subset of all P ∈ Π(µ) that are
martingales, meaning that∫

Xs1A(X0, . . . , Xs)dP =

∫
Xt1A(X0, . . . , Xs)dP

for all s ≤ t and Borel sets A ∈ B(Rs+1).
We denote by F = {Ft}0≤t≤n the canonical filtration Ft := σ(X0, . . . , Xt).

As usual, an F-predictable process H = {Ht}1≤t≤n is a sequence of real func-
tions on Rn+1 such that Ht is Ft−1-measurable; i.e. Ht = ht(X0, . . . , Xt−1)
for some Borel-measurable ht : Rt → R. Given an F-predictable process H,
the discrete stochastic integral {(H ·X)t}0≤t≤n is defined by

(H ·X)t :=

t∑
s=1

Hs · (Xs −Xs−1).

If X is a martingale under some measure P , then H · X is a generalized
(not necessarily integrable) martingale in the sense of generalized conditional
expectations; cf. [30, Proposition 1.64].

We say that µ = (µ0, . . . , µn) is in convex order if µt−1 ≤c µt for all
1 ≤ t ≤ n; that is, µt−1(φ) ≤ µt(φ) for any convex function φ : R→ R. This
implies that µt−1 and µt have the same total mass. The order can also be
characterized by the potential functions

uµt : R→ R, uµt(x) :=

∫
|x− y|µt(dy).

The following properties are elementary:

(i) uµt is nonnegative and convex,

(ii) ∂+uµt(x)− ∂−uµt(x) = 2µt({x}),

(iii) lim|x|→∞ uµt(x) =∞1µt 6=0,

(iv) lim|x|→∞ uµt(x)− µt(R)|x− bary(µt)| = 0,
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where ∂+ and ∂− denote the right and left derivatives, respectively, and
bary(µt) = (

∫
xdµt)/µt(R) is the barycenter. We can therefore extend uµt

continuously to R̄ = [−∞,∞]. The following result of Strassen is classical
(cf. [41]; the last statement is obtained as e.g. in [18, Corollary 2.95]).

Proposition 2.1. Let µ = (µ0, . . . , µn) be finite measures on R with finite
first moments and equal total mass. The following are equivalent:

(i) µ0 ≤c · · · ≤c µn,

(ii) uµ0 ≤ · · · ≤ uµn,

(iii) M(µ) 6= ∅,

(iv) there exist stochastic kernels κt(x0, . . . , xt−1, dxt) such that∫
|xt|κt(x0, . . . , xt−1, dxt) <∞ and

∫
xt κt(x0, . . . , xt−1, dxt) = xt−1

for all (x0, . . . , xt) ∈ Rt and 1 ≤ t ≤ n, and

µt = (µ0 ⊗ κ1 ⊗ · · · ⊗ κn) ◦ (Xt)
−1 for all 0 ≤ t ≤ n.

All kernels will be stochastic (i.e. normalized) in what follows. A kernel κt
with the first property in (iv) is called martingale kernel.

2.1 The One-Step Case

For the convenience of the reader, we summarize some results from [8]
and [10] for the one-step problem (n = 1) which will be used later on. In this
section we write (µ, ν) instead of (µ0, µ1) for the given marginals in convex
order.

Definition 2.2. The pair µ ≤c ν is irreducible if the set I = {uµ < uν} is
connected and µ(I) = µ(R). In this situation, let J be the union of I and
any endpoints of I that are atoms of ν; then (I, J) is the domain ofM(µ, ν).

The first result is a decomposition of the transport problem into irre-
ducible parts; cf. [8, Theorem 8.4].

Proposition 2.3. Let µ ≤c ν and let (Ik)1≤k≤N be the (open) components
of {uµ < uν}, where N ∈ {0, 1, . . . ,∞}. Set I0 = R\ ∪k≥1 Ik and µk = µ|Ik
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for k ≥ 0, so that µ =
∑

k≥0 µk. Then, there exists a unique decomposition
ν =

∑
k≥0 νk such that

µ0 = ν0 and µk ≤c νk for all k ≥ 1,

and this decomposition satisfies Ik = {uµk < uνk} for all k ≥ 1. Moreover,
any P ∈ M(µ, ν) admits a unique decomposition P =

∑
k≥0 Pk such that

Pk ∈M(µk, νk) for all k ≥ 0.

We observe that the measure P0 in Proposition 2.3 transports µ0 to itself
and is concentrated on ∆0 := ∆ ∩ I2

0 where ∆ = {(x, x) : x ∈ R} is the
diagonal. Thus, the transport problem with index k = 0 is not actually an
irreducible one, but we shall nevertheless refer to (I0, I0) as the domain of
this problem. When we want to emphasize the distinction, we call (I0, I0)
the diagonal domain and (Ik, Jk)k≥1 the irreducible domains of M(µ, ν).
Similarly, the sets Vk := Ik × Jk, k ≥ 1 will be called the irreducible com-
ponents and V0 := ∆0 will be called the diagonal component of M(µ, ν).
This terminology refers to the following result of [10, Theorem 3.2] which
essentially states that the components are the only sets that can be charged
by a martingale transport. We call a set B ⊆ R2 M(µ, ν)-polar if it is P -null
for all P ∈M(µ, ν), where a nullset is, as usual, any set contained in a Borel
set of zero measure.

Proposition 2.4. Let µ ≤c ν and let B ⊆ R2 be a Borel set. Then B is
M(µ, ν)-polar if and only if there exist a µ-nullset Nµ and a ν-nullset Nν

such that

B ⊆ (Nµ × R) ∪ (R×Nν) ∪

⋃
k≥0

Vk

c

.

The following result of [10, Lemma 3.3] will also be useful; it is the main
ingredient in the proof of the preceding proposition.

Lemma 2.5. Let µ ≤c ν be irreducible and let π be a finite measure on R2

whose marginals π1, π2 satisfy3 π1 ≤ µ and π2 ≤ ν. Then, there exists
P ∈M(µ, ν) such that P dominates π in the sense of absolute continuity.

3 The Polar Structure

The goal of this section is to identify all obstructions to martingale transports
imposed by the marginals µ = (µ0, . . . , µn), and thus, conversely, the sets

3By π1 ≤ µ we mean that π1(A) ≤ µ(A) for every Borel set A ⊆ R.
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that can indeed be charged. We recall that a subset B of Rn+1 is called
M(µ)-polar if it is a P -nullset for all P ∈ M(µ). The result for the one-
step case in Proposition 2.4 already exhibits an obvious type of polar set
B ⊆ Rn+1: if for some t there is anM(µt−1, µt)-polar set B′ ⊆ R2 such that
B ⊆ Rt−1 × B′ × Rn−t, then B must be M(µ)-polar. The following shows
that unions of such sets are in fact the only polar sets ofM(µ).

Theorem 3.1 (Polar Structure). Let µ = (µ0, . . . , µn) be in convex order.
Then a Borel set B ⊆ Rn+1 is M(µ)-polar if and only if there exist µt-
nullsets Nt such that

B ⊆
n⋃
t=0

(Xt)
−1(Nt) ∪

n⋃
t=1

(Xt−1, Xt)
−1

⋃
k≥0

V t
k

c

(3.1)

where (V t
k )k≥1 are the irreducible components of M(µt−1, µt) and V t

0 is the
corresponding diagonal component.

Before stating the proof, we introduce some additional terminology. The
second part of (3.1) can be expressed as

n⋃
t=1

(Xt−1, Xt)
−1

⋃
k≥0

V t
k

c

=

 n⋂
t=1

⋃
k≥0

(Xt−1, Xt)
−1(V t

k )

c

=

 ⋃
k1,...,kn≥0

n⋂
t=1

(Xt−1, Xt)
−1(V t

kt)

c

. (3.2)

For every k = (k1, . . . , kn), the set

Vk =

n⋂
t=1

(Xt−1, Xt)
−1(V t

kt) ⊆ Rn+1

as occurring in the last expression of (3.2) will be referred to as an irreducible
component of M(µ); these sets are disjoint since V t

k ∩ V t
k′ = ∅ for k 6= k′.

Moreover, we call their union

V = ∪kVk

the effective domain ofM(µ).
Roughly speaking, an irreducible component Vk is a chain of irreducible

components from the individual steps (t− 1, t). In the one-step case consid-
ered in [8, 10], it was possible and useful to decompose the transport problem
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Figure 2: The shaded area represents Vk for k = (1, 1).

into its irreducible components and study those separately to a large extent;
cf. Proposition 2.3. This is impossible in the multistep case, as illustrated
by the following example.

Example 3.2. Consider the two-step martingale transport problem with
marginals µ0 = δ0, µ1 = 1

2(δ−1 + δ1) and µ2 = 1
4(δ−2 + 2δ0 + δ2). Then the

irreducible components are given by

V00 = {(x, x, x) : x /∈ (−2, 2)}
V01 = {(x, x) : x ∈ (−2,−1]} × [−2, 0]

V02 = {(x, x) : x ∈ [1, 2)} × [0, 2]

V10 = (−1, 1)× {0} × {0}
V11 = (−1, 1)× [−1, 0)× [−2, 0]

V12 = (−1, 1)× (0, 1]× [0, 2].

There is only one martingale transport P ∈M(µ), given by

P =
1

4
(δ(0,−1,−2) + δ(0,−1,0) + δ(0,1,0) + δ(0,1,2)).

While P is supported on V11 ∪ V12, it cannot be decomposed into two mar-
tingale parts that are supported on V11 and V12, respectively: V11 and V12

are disjoint, but P |V11 = 1
4(δ(0,−1,−2) + δ(0,−1,0)) is not a martingale.

The main step in the proof of Theorem 3.1 will be the following lemma.

Lemma 3.3. Let Vk be an irreducible component of M(µ) and consider a
measure π concentrated on Vk such that πt ≤ µt for t = 0, . . . , n. Then there

12



exists a transport P ∈ M(µ) which dominates π in the sense of absolute
continuity.

Deferring the proof, we first show how this implies the theorem.

Proof of Theorem 3.1. Clearly (Xt)
−1(Nt) is M(µ)-polar for t = 0, . . . , n

and (Xt−1, Xt)
−1
(⋃

k≥0 V
t
k

)c
is M(µ)-polar for t = 1, . . . , n. This shows

that (3.1) is sufficient for B ⊆ Rn+1 to beM(µ)-polar.
Conversely, suppose that (3.1) does not hold; we show that B is not

M(µ)-polar. In view of (3.2), by passing to a subset of B if necessary, we
may assume that

B ⊆ V =
⋃
k

Vk =
⋃
k

n⋂
t=1

(Xt−1, Xt)
−1(V t

kt).

We may also assume that there are no µt-nullsets Nt such that B ⊆
∪nt=0(Xt)

−1(Nt). By a result of classical optimal transport [4, Proposi-
tion 2.1], this entails that B is not Π(µ)-polar; i.e. we can find a measure
ρ ∈ Π(µ) such that ρ(B) > 0.

We now write B =
⋃
kB ∩ Vk. As ρ(B) =

∑
k ρ(B ∩ Vk) > 0, we can

find some k such that ρ(B ∩ Vk) > 0. But then π := ρ|Vk satisfies the
assumptions of Lemma 3.3 which yields P ∈ M(µ) such that P � π. In
particular, P (B) > 0 and B is notM(µ)-polar.

3.1 Proof of Lemma 3.3

The reasoning for Lemma 3.3 follows an induction on the number n of time
steps; its rigorous formulation requires a certain amount of control over sub-
sequent steps of the transport problem. Thus, we first state a more quantita-
tive version of (the core part of) the lemma that is tailored to the inductive
argument.

Definition 3.4. Let µ be in convex order and V the effective domain of
M(µ). We say that a finite measure π has a compact support family if there
are disjoint compact product sets4 K1, . . . ,Km ⊆ V with π(∪iKi) = π(Rn+1)
such that Ki ⊆ Vki for some irreducible component Vki for all i = 1, . . . ,m.

Definition 3.5. Let µ be in convex order, t ≤ n and σ ≤ µt a finite
measure on R. If t = n, we say that σ is diagonally compatible (with µ) if

4By a compact product set we mean a set K = A0 × · · · × An where each At ⊆ R is
compact.

13



there is a finite family of compact sets L1, . . . , Lm ⊆ R with σ(∪iLi) = σ(R).
Whereas if t < n, we require in addition that for every i, either (a) Li ⊆ Ik
for some irreducible component (Ik, Jk) of M(µt, µt+1) or (b) Li ⊆ I0 and
there is t + 1 ≤ t′ ≤ n such that Li ⊆ Is0 for the diagonal components
of M(µs, µs+1) for all t ≤ s < t′ and Li ⊆ It

′
k for some (non-diagonal)

irreducible component (It
′
k , J

t′
k ) ofM(µt′ , µt′+1), where we set Ink = Jnk = R

for notational convenience.

Lemma 3.6. Let t < n and let L ⊆ I0 be a compact interval contained in
the diagonal component of M(µt, µt+1) such that µt(L) > 0. There exist a
compact interval L′ ⊆ L with µt(L′) > 0 and t+1 ≤ t′ ≤ n such that L′ ⊆ Is0
for the diagonal component ofM(µs, µs+1) for all t ≤ s < t′ and L′ ⊆ It′k for
some (non-diagonal) irreducible component (It

′
k , J

t′
k ) ofM(µt′ , µt′+1), where

we again set Ink = Jnk = R for notational convenience.

Proof. The statement is trivially satisfied for t = n − 1 as we can just take
L′ = L. For t < n − 1, consider the family of irreducible components
(It+1
k , J t+1

k ) ofM(µt+1, µt+2). We distinguish three cases.
(i) First, consider the case where L ∩ It+1

k = ∅ for all k ≥ 1, then L is
contained in the diagonal component ofM(µt+1, µt+2).

(ia) If L = {x} consists of a single point with positive mass, then we can
conclude by induction from the result for t+ 1.

(ib) If no endpoint of L is on the boundary of some component Itk, then
observe that µt|L = µt+1|L. We can find L′ ⊆ L from the statement of the
lemma for t+ 1. Then L′ gives the result as µt(L′) = µt+1(L′) > 0.

(ic) If L contains more than one point, and also the endpoint of some
component Itk. When this endpoint x has positive point mass, we can set
L′ = {x} and conclude as in (ia). If the endpoint has zero mass, we can
find L̄ ⊆ L compact with µt(L̄) > 0 that does not contain this endpoint and
argue as in (ib). (Observe that there might be at most two endpoints.)

(ii) Next, let k ≥ 1 be such that µt+1(L ∩ It+1
k ) > 0 (and in particular

L∩ It+1
k 6= ∅). Then we can find a compact interval L′ ⊆ L∩ It+1

k such that
µt(L

′) > 0 and we directly see that L′ satisfies the statement of the lemma.
(iii) Finally, suppose that there is k ≥ 1 with L ∩ It+1

k 6= ∅ but µt(L ∩
It+1
k ) = 0. In particular this means that L 6⊆ It+1

k . It furthermore means
that It+1

k 6⊆ L, as otherwise µt+1(It+1
k ) = µt(I

t+1
k ) = µt(L∩ It+1

k ) = 0 which
contradicts the definition of It+1

k . As L is a compact interval and It+1
k is an

open interval, we have that L\It+1
k is a compact interval and µt(L\It+1

k ) =
µt(L) > 0. Notice that there can be at most two such components It+1

k for
fixed L and we will be in case (i) after removing both of them if necessary.
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Lemma 3.7. Let t ≤ n and let J ⊆ R be an interval such that µt(J) > 0.
Then we can find a compact interval K ⊆ J with µt(K) > 0 such that µt|K
is diagonally compatible.

Proof. The case t = n is trivial. Thus, let t < n. We consider the fam-
ily {Ik}k≥1 of open sets corresponding to the irreducible components of
M(µt, µt+1) and distinguish two cases.

(i) There is some k ≥ 1 such that µt(Ik ∩ J) > 0. In this case, we can
choose a compact interval K ⊆ Ik ∩ J such that µt(K) > 0.

(ii) Now suppose that µt(Ik ∩ J) = 0 for all k ≥ 1. Then we first
notice that there are at most two components Ik1 ,Ik2 so that Iki ∩J 6= ∅ and
J\(Ik1∪Ik2) is still a nonempty interval with positive µt-mass, since Ik cannot
be contained in J . We can therefore assume without loss of generality that
J ⊆ I0 and is compact. Now we can apply Lemma 3.6 to find a subinterval
K ⊆ J such that µt|K is diagonally compatible.

Lemma 3.8. Let t ≤ n and let π be a measure on Rt+1 that has a compact
support family with respect to µ0, . . . , µt and satisfies πs ≤ µs for s ≤ t. In
addition, suppose that πt is diagonally compatible.

Then there is a martingale measure Q on Rt+1 that dominates π in the
sense of absolute continuity and has a compact support family with respect to
µ0, . . . , µt and satisfies Qs ≤ µs for s ≤ t. In addition, Qt can be chosen to
be diagonally compatible. Finally, Q can be chosen such that dQ = gdπ+ dσ
where the density g is bounded and the measure σ is singular with respect
to π.

Proof. We proceed by induction on t. For t = 0 there is nothing to prove;
we can set Q = π.

Consider t ≥ 1 and assume that the lemma has already been shown for
(t− 1)-step measures. We disintegrate

π = π′ ⊗ κ(x0, . . . , xt−1, dxt) (3.3)

and observe that π′ satisfies the conditions of the lemma. In particular,
π′t−1 must be diagonally compatible: the compact sets that it is supported
on are either contained in irreducible components of M(µt−1, µt) or in the
diagonal component. Any such compact subset of the diagonal component
ofM(µt−1, µt) must correspond to one of the finitely many compact sets in
the support of πt so that they inherit the compatibility property from these
sets.
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By the induction assumption, we then find a martingale measure Q′ �
π′ on Rt with the stated properties. In particular, the marginal Q′t−1 is
diagonally compatible with µ.

Again, let {Ik}k≥1 be the open intervals from the irreducible domains
(Ik, Jk) ofM(µt−1, µt) and let I0 denote the corresponding diagonal domain.
We shall construct a martingale kernel κ̂ by suitably manipulating κ. Let us
observe that since π is concentrated on V and has a compact support family
with respect to µ0, . . . , µt, the following hold for π′-a.e. x = (x0, . . . , xt−1) ∈
Rt and a finite family of compact sets Li with properties (a) or (b) from
Definition 3.5:

• κ(x, ·) = δxt−1 whenever xt−1 ∈ I0,

• κ(x, ·) is concentrated on some Li with Li ⊆ Jk for xt−1 ∈ Ik with
k ≥ 1 and Q′t−1(Ik) > 0.

By changing κ on a π′-nullset, we may assume that these two properties hold
for all x ∈ Rt.

Step 1. Next, we argue that we may change Q′ and κ such that the
marginal (Q′ ⊗ κ)t = (Q′ ⊗ κ) ◦X−1

t satisfies

(Q′ ⊗ κ)t ≤ µt. (3.4)

Indeed, recall that dQ′ = dQ′abs + dσ′ = g′dπ′ + dσ′ where the density
g′ is bounded and σ′ is singular with respect to π′. Using the Lebesgue
decomposition theorem, we find a Borel set A ⊆ Rt such that σ′(A) = σ′(Rt)
and π′(A) = 0. By scaling Q′ with a constant we may assume that g′ ≤ 1/2.
As πt ≤ µt, the marginal (Q′abs⊗κ)t is then bounded by 1

2µt, and it remains
to bound (σ′ ⊗ κ)t in the same way.

Note that Q′t−1 ≤ µt−1 implies σ′t−1 ≤ µt−1. We may change κ arbitrarily
on the set A without invalidating (3.3). Indeed, for each irreducible compo-
nent (Ik, Jk) ofM(µt−1, µt) we choose and fix a compact interval Kk ⊆ Jk
with µt(Kk) > 0 such that µt|Kk is diagonally compatible; this is possible by
Lemma 3.7. For x = (x0, . . . , xt−1) ∈ A such that xt−1 ∈ Ik we then define

κ(x, ·) :=
1

µt(Kk)
µt|Kk .

Set εk = µt(Kk)/µt−1(Ik). Then

ε := inf
k:Q′t−1(Ik)>0

εk ∧ 1
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is strictly positive because there are only finitely many k with Q′t−1(Ik) > 0
(this is the purpose of the induction assumption that Q′t−1 is diagonally
compatible). As σ′t−1 ≤ µt−1, we may scale Q′ once again to obtain σ′t−1 ≤
ε
6µt−1. We now have

(σ′|Rt−1×Ik ⊗ κ)t = σ′t−1(Ik)
1

µt(Kk)
µt|Kk ≤

ε

6

µt−1(Ik)

µt(Kk)
µt|Kk ≤

1

6
µt|Kk .

For the diagonal domain I0 the corresponding inequality holds because we
have κ(x, ·) = δxt−1 for xt−1 ∈ I0 and σ′t−1|I0 ≤ 1

6µt−1|I0 ≤ 1
6µt|I0 . As a

consequence, we have (σ′⊗κ)t ≤ 1
2µt as desired, so that we may assume (3.4)

in what follows.
Step 2. We now construct a martingale kernel κ̂ such that Q = Q′ ⊗ κ̂

has the required properties. For a fixed irreducible component (Ik, Jk) we
have that Q′t−1|Ik = Q′t−1|K for some compact K ⊆ Ik. We can find compact
intervals B−, B+ ⊆ Jk with µt(B−) > 0 and µt(B+) > 0 such that B− is to
the left of K and B+ is to the right of K, in the sense that x < y < z for
x ∈ B−, y ∈ K and z ∈ B+. By Lemma 3.7, we can further assume that we
have B+ ⊆ Itk and B− ⊆ Itk′ for some k, k′ ≥ 0, where (Itl )l≥0 belong to the
components ofM(µt, µt+1), and that µt|B± is diagonally compatible.

Next, we define two nonnegative functions x 7→ ε−(x), ε+(x) for x =
(x0, . . . , xt−1) ∈ Rt−1 ×K as follows:

• for x such that bary(κ(x, ·)) < xt−1, let ε+ be the unique number such
that κ(x, ·) + ε+(x) · µt|B+ has barycenter xt−1,

• for x such that bary(κ(x, ·)) > xt−1, let ε− be the unique number such
that κ(x, ·) + ε−(x) · µt|B− has barycenter xt−1,

• ε±(x) = 0 otherwise.

Observe that these numbers always exist because B− and B+ have positive
mass and positive distance from the points xt−1 ∈ K. We now define the
martingale kernel κ̂ by

κ̂(x) := c(ε− · µt|B− + κ+ ε+ · µt|B+)

where 0 < c ≤ 1 is a normalizing constant such that κ̂ is again a stochastic
kernel. We also define κ̂(x) = κ(x) for x on the diagonal domain.

For each k ≥ 1, let B±k denote the sets associated with Ik as above. Once
again, the number

C :=
1

3
inf

k:Q′t−1(Ik)>0
[µt(B

−
k ) ∧ µt(B+

k )]
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is strictly positive because there are only finitely many k with Q′t−1(Ik) > 0.
We can now define

Q := C · (Q′ ⊗ κ̂).

Then Q is a martingale transport whose marginals satisfy Qs ≤ Q′s ≤ µs for
0 ≤ s ≤ t− 1 whereas Qt ≤ µt by (3.4), the construction of κ̂ and the choice
of C; indeed, for every xt−1 ∈ Itk we have

3Cκ̂(x) ≤ 3Cε− · µt|B− + 3Cκ+ 3Cε+ · µt|B+

≤ µt|B− + κ+ µt|B+ ≤ 2µt + κ.

To see that Qt is diagonally compatible, observe that Qt is supported by
a finite family of compact sets consisting of the following:

• a finite family of compact sets L̄i ⊆ I0 such that Q′t−1|L̄i is diagonally
compatible (from the induction hypothesis thatQ′t−1 is diagonally com-
patible),

• a finite family of compact sets Li ⊆ Jk for some k ≥ 1 with Q′t−1(Ik) >
0 such that Qt|Li ≤ µt|Li is diagonally compatible, and

• the sets B±k for the finitely many k such that Q′t−1(Ik) > 0, where
Qt|B±k ≤ µt|B±k is diagonally compatible.

It remains to check that Q has the required decomposition with respect
to π. Indeed, κ̂ can be decomposed as

κ̂ = cκ+ (1− c)κ⊥

where κ⊥ is singular to κ. Recalling the decomposition Q′ = Q′abs + σ′, we
then have

Q′ ⊗ κ̂ = cQ′abs ⊗ κ + (1− c)Q′abs ⊗ κ⊥ + σ′ ⊗ κ̂.

The last two terms are singular with respect to π = π′⊗κ, and the first term
is absolutely continuous with bounded density.

Proof of Lemma 3.3. Let π be a measure with marginals πt ≤ µt for all t
which is concentrated on some irreducible component V = Vk and thus, in
particular, on the effective domain V.

Step 1. We first decompose π =
∑∞

m=1 π
m such that each πm satisfies

the requirements of Lemma 3.8 with t = n.
Indeed, let V = ∩nt=1(Xt−1, Xt)

−1(V t
kt

) and suppose first that kt 6= 0
for 1 ≤ t ≤ n. Then, we can write V as a product of nonempty intervals:
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V = A0 × · · · × An where A0 = I1
k1
, An = Jnkn and At = J tkt ∩ I

t+1
kt+1

for
1 < t < n. Thus, we can choose increasing families of compact intervals
Km
t such that At = ∪m≥1K

m
t for all t. Setting π1 := π|∏n

t=0K
1
t
and πm :=

π|∏n
t=0K

m
t \

∏n
t=0K

m−1
t

for m > 1 yields the required decomposition.
If kt = 0 for one or more 1 ≤ t ≤ n, we have V ⊆ A0 × · · · × An, where

At is defined as above when kt 6= 0 6= kt+1 but we use R instead of J tkt when
kt = 0 and R instead of It+1

kt+1
when kt+1 = 0. After these modifications, πm

can be defined as above; recall that diagonal components are always closed.
Step 2. For each of the measures πm, Lemma 3.8 yields a martingale

measure Qm � πm with the properties stated in the lemma. In particular,
each Qm has a compact support family. We show below that there exist
Pm ∈ M(µ) such that Pm � Qm, and then P :=

∑
2−mPm satisfies

P ∈M(µ) and P � π as desired.
To complete the proof, it remains to show that for fixed m ≥ 1 there

exist 0 < ε < 1 and Q̄m ∈ M(µ − ε(Qm0 , . . . , Qmn )), as we may then con-
clude by setting Pm := εQm + Q̄m ∈ M(µ). By Proposition 2.1, the set
M(µ− ε(Qm0 , . . . , Qmn )) is nonempty if the marginals are in convex order, or
equivalently if the potential functions satisfy

uµt−1 − εuQmt−1
≤ uµt − εuQmt (3.5)

for t = 1, . . . , n. Thus, it suffices to find ε > 0 with this property for fixed t,
and we have reduced to a question about a one-step martingale transport
problem. Indeed, we have uµt−1 ≤ uµt on R. Since Qm has a compact
support family and in particular is supported by V, there is a finite collection
of compact sets Kj ⊆ R such that each Kj is contained in one of the intervals
It−1
kj

from the decomposition of (µt−1, µt) into irreducible components, Qm

transports mass from Kj to itself for each j, and Qm is the identical Monge
transport on the complement (∪jKj)

c. On each Kj , Steps (a) and (b) in the
proof of [10, Lemma 3.3] yield ε > 0 such that (3.5) holds on Kj , and we
can choose ε > 0 independently of j since there are finitely many j. On the
other hand, (3.5) trivially holds on (∪jKj)

c since uQmt−1
= uQmt on that set.

This completes the proof.

4 The Dual Space

In this section we introduce the domain of the dual optimization problem
and show that it has a certain closedness property. The latter will be crucial
for the duality theorem in the subsequent section.
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We shall need a generalized notion of integrability for the elements of the
dual space. To this end, we first recall the integral for concave functions as
detailed in [10, Section 4.1].

Definition 4.1. Let µ ≤c ν be irreducible with domain (I, J) and let χ :
J → R be a concave function. We define

(µ− ν)(χ) :=
1

2

∫
I
(uµ − uν)dχ′′ +

∫
J\I
|∆χ|dν ∈ [0,∞]

where −χ′′ is the (locally finite) second derivative measure of −χ on I and
|∆χ| is the absolute magnitude of the jumps of χ at the boundary points J\I.

Remark 4.2. As shown in [10, Lemma 4.1], this integral is well-defined and
satisfies

(µ− ν)(χ) =

∫
I

[
χ(x)−

∫
J
χ(y)κ(x, dy)

]
µ(dx)

for any P = µ ⊗ κ ∈ M(µ, ν). Moreover, it coincides with the difference
µ(χ)− ν(χ) of the usual integrals when χ ∈ L1(µ) ∩ L1(ν).

For later reference, we record two more properties of the integral.

Lemma 4.3. Let µ ≤c ν be irreducible with domain (I, J) and let χ : J → R
be concave.

(i) Assume that I has a finite right endpoint r and χ(a) = χ′(a) = 0 for
some a ∈ I. Then χ ≤ 0 and χ1[a,∞) is concave. If ν has an atom
at r, then

χ(r) ≥ − C

ν({r})
(µ− ν)(χ1[a,∞))

for a constant C ≥ 0 depending only on µ, ν.

(ii) For a, b ∈ R, the concave function χ̄(x) := χ(x) + ax+ b satisfies

(µ− ν)(χ̄) = (µ− ν)(χ).

Proof. The first part is [10, Remark 4.6] and the second part follows directly
from χ̄′′ = χ′′ and ∆χ̄ = ∆χ.

Let us now return to the multistep case with a vector µ = (µ0, . . . , µn) of
measures in convex order and introduce µ(φ) :=

∑n
t=0 µt(φt) in cases where

we do not necessarily have φt ∈ L1(µt). As mentioned previously, in contrast
to [10], the multistep transport problem does not decompose into irreducible
components, forcing us to directly give a global definition of the integral.
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Definition 4.4. Let φ = (φ0, . . . , φn) be a vector of Borel functions φt :
R→ R̄. A vector χ = (χ1, . . . , χn) of Borel functions χt : R→ R is called a
concave moderator for φ if for 1 ≤ t ≤ n,

(i) χt|J is concave for every domain (I, J) of an irreducible component of
M(µt−1, µt),

(ii) χt|I0 ≡ 0 for the diagonal domain I0 ofM(µt−1, µt),

(iii) φt − χt+1 + χt ∈ L1(µt),

where χn+1 ≡ 0. We also convene that χ0 ≡ 0. The moderated integral of φ
is then defined by

µ(φ) :=
n∑
t=0

µt(φt − χt+1 + χt) +
n∑
t=1

∑
k≥1

(µt−1 − µt)k(χt) ∈ (−∞,∞], (4.1)

where (µt−1 − µt)
k(χt) denotes the integral of Definition 4.1 on the k-th

irreducible component ofM(µt−1, µt).

Remark 4.5. The moderated integral is independent of the choice of the
moderator χ. To see this, consider a second moderator χ̃ for φ; then we
have (χ̃t+1 − χt+1)− (χ̃t − χt) ∈ L1(µt). We may assume that (4.1) is finite
for at least one of the moderators. Using Remark 4.2 with arbitrary κt such
that µt−1 ⊗ κt ∈ M(µt−1, µt) for 1 ≤ t ≤ n, as well as Fubini’s theorem for
kernels,

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χt)− (µt−1 − µt)k(χ̃t)

=

∫
· · ·
∫ n∑

t=1

χt(xt−1)− χt(xt)κn(xn−1, dxn) · · ·κ1(x0, dx1)µ0(dx0)

−
∫
· · ·
∫ n∑

t=1

χ̃t(xt−1)− χ̃t(xt)κn(xn−1, dxn) · · ·κ1(x0, dx1)µ0(dx0)

=

n∑
t=0

µt((χt+1 − χ̃t+1)− (χt − χ̃t)).

It now follows that (4.1) yields the same value for both moderators.

For later reference, we also record the following property.
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Remark 4.6. If χ is a concave moderator, Definition 4.4 (ii) implies that

χt =
∑
k≥1

χt|Itk =
∑
k≥1

χt|Jtk

where (Itk, J
t
k) is the k-th irreducible domain ofM(µt−1, µt).

Next, we introduce the space of functions which have a finite integral in
the moderated sense.

Definition 4.7. We denote by Lc(µ) the space of all vectors φ admitting a
concave moderator χ with

∑n
t=1

∑
k≥1(µt−1 − µt)k(χt) <∞.

It follows that µ(φ) is finite for φ ∈ Lc(µ), and we have µ(φ) =
∑

t µt(φt)
for φ ∈ Πn

t=0L
1(µt). The definition is also consistent with the expectation

under martingale transports, in the following sense.

Lemma 4.8. Let φ ∈ Lc(µ) and let H = (H1, . . . ,Hn) be F-predictable. If

n∑
t=0

φt(Xt) + (H ·X)n

is bounded from below on the effective domain V ofM(µ), then

µ(φ) = P

[
n∑
t=0

φt(Xt) + (H ·X)n

]
, P ∈M(µ).

Proof. Let P ∈ M(µ), let χ be a concave moderator for φ, and assume
without loss of generality that 0 is the lower bound. Using Remark 4.6, we
have that

∑n
t=0 φt(Xt) + (H ·X)n equals

n∑
t=0

(φt − χt+1 + χt)(Xt) +
n∑
t=1

∑
k≥1

(χt|Itk(Xt−1)− χt|Jtk(Xt)) + (H ·X)n ≥ 0.

By assumption, the functions (φt − χt+1 + χt)(Xt) are P -integrable. There-
fore, the negative part of the remaining expression must also be P -integrable.
Writing Pt := P ◦ (X0, . . . , Xt)

−1 and using that (χt|Jtk)+ has linear growth,

22



we see that for any disintegration P = Pn−1 ⊗ κn,∫ [ n∑
t=1

∑
k≥1

(χt|Itk(Xt−1)− χt|Jtk(Xt)) + (H ·X)n

]
κn(X0, . . . , Xn−1, dXn)

=
n−1∑
t=1

∑
k≥1

(χt|Itk(Xt−1)− χt|Jtk(Xt)) + (H ·X)n−1

+
∑
k≥1

∫ [
χn|Ink (Xn−1)− χn|Jnk (Xn)

]
κn(X0, . . . , Xn−1, dXn).

Iteratively integrating with kernels such that Pt = Pt−1 ⊗ κt and observing
that we can apply Fubini’s theorem to

∑n
t=1

∑
k≥1(χt|Itk(Xt−1)−χt|Jtk(Xt))+

(H ·X)n as its negative part is P -integrable, we obtain

P

 n∑
t=1

∑
k≥1

(χt|Itk(Xt−1)− χt|Jtk(Xt)) + (H ·X)n

 =

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χt)

and the result follows.

We can now define our dual space. It will be convenient to work with non-
negative reward functions f for the moment—we shall relax this constraint
later on; cf. Remark 5.3.

Definition 4.9. Let f : Rn+1 → [0,∞]. We denote by Dµ(f) the set of
all pairs (φ, H) where φ ∈ Lc(µ) and H = (H1, . . . ,Hn) is an F-predictable
process such that

n∑
t=0

φt(Xt) + (H ·X)n ≥ f on V.

By Lemma 4.8, the expectation of the left hand side under any P ∈M(µ)
is given by the moderated integral µ(φ); this will be seen as the dual cost of
(φ, H) when we consider the dual problem inf(φ,H)∈Dµ(f)µ(φ) in Section 5
below.

The following closedness property is the key result about the dual space.

Proposition 4.10. Let fm : Rn+1 → [0,∞], m ≥ 1 be a sequence of func-
tions such that

fm → f pointwise
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and let (φm, Hm) ∈ Dµ(fm) be such that supmµ(φm) < ∞. Then there
exist (φ, H) ∈ Dµ(f) with

µ(φ) ≤ lim inf
m→∞

µ(φm).

4.1 Proof of Proposition 4.10

An attempt to prove Proposition 4.10 directly along the lines of [10] runs
into a technical issue in controlling the concave moderators. Roughly speak-
ing, they do not allow sufficiently many normalizations; this is related to
the aforementioned fact that the multistep problem cannot be decomposed
into its components. We shall introduce a generalized dual space with fami-
lies of functions indexed by the components, and prove a “lifted” version of
Proposition 4.10 in this larger space. Once that is achieved, we can infer the
closedness result in the original space as well. (The reader willing to admit
Proposition 4.10 may skip this subsection without much loss of continuity.)

Definition 4.11. Let φ = {φkt : 0 ≤ t ≤ n, k ≥ 0} be a family of Borel
functions, consisting of one function φkt : J tk → R̄ for each irreducible com-
ponent (Itk, J

t
k) ofM(µt−1, µt) as indexed by k ≥ 1 and 1 ≤ t ≤ n, functions

φ0
t : It0 → R̄ for the diagonal components It0 indexed by 1 ≤ t ≤ n , and a sin-

gle function φ0
0 : R→ R̄ for t = 0. Similarly, let χ = {χkt : 1 ≤ t ≤ n, k ≥ 0}

be a family of functions, consisting of one concave function χkt : J tk → R for
each irreducible component (Itk, J

t
k) and Borel functions χ0

t : It0 → R for the
diagonal components. We also convene that χ0

0 ≡ 0 and define the functions5

χt :=
∑

k≥0 χ
k
t |Itk for t = 1, . . . , n, as well as χn+1 ≡ 0.

We call χ a concave moderator for φ if for all t = 0, . . . , n and k ≥ 0,

φkt + χkt − χt+1 ∈ L1(µkt )

and the sum
∑

k≥0 µ
k
t (φ

k
t +χkt −χt+1) converges in (−∞,∞], where µkt is the

second marginal of the k-th irreducible component in the decomposition of
M(µt−1, µt) as in Proposition 2.3 and µ0

0 ≡ µ0. The generalized6 moderated
integral is then defined by

µ(φ) :=

n∑
t=0

∑
k≥0

µkt (φ
k
t + χkt − χt+1) +

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt ).

5The restriction to Itk is important to avoid “double counting” in the sums. Note that
the intervals J may overlap at their endpoints.

6This integral is not related to the notion of a generalized martingale.
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We denote by Lc,g(µ) the set of all families φ which admit a concave mod-
erator χ such that

n∑
t=0

∑
k≥0

|µkt (φkt + χkt − χt+1)|+
n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt ) <∞.

For φ ∈ Lc,g(µ), the value of µ(φ) is independent of the choice of the
moderator χ. This is shown similarly as in Remark 4.5. We can now intro-
duce the generalized dual space.

Definition 4.12. Let f : Rn+1 → [0,∞]. We denote by Dgµ(f) the set of all
pairs (φ, H) where φ ∈ Lc,g(µ), H = (H1, . . . ,Hn) is F-predictable, and

n∑
t=0

φktt (xt) + (H · x)n ≥ f(x)

for all x = (x0, . . . , xn) and k = (k0, . . . , kn) such that (xt−1, xt) ∈ (Itkt , J
t
kt

)
for some (irreducible or diagonal) component7 and t = 1, . . . , n.

We observe that for any x ∈ V the corresponding k = (k0, . . . , kn) is
uniquely defined, where the index k0 ≡ 0 exists purely for notational conve-
nience.

For later reference, the following lemma elaborates on certain degrees of
freedom in choosing elements of Dgµ(f).

Lemma 4.13. Let (φ, H) ∈ Dgµ(f) and let χ be a corresponding concave
moderator. Let 1 ≤ t ≤ n, let (Itk, J

t
k) be the domain of an irreducible

component of M(µt−1, µt) and c1, c2 ∈ R. Introduce new families (φ̃, H̃)
and χ̃ by either (i) or (ii):

(i) Define

φ̃kt (y) = φkt (y)− (c1y − c2), χ̃kt (y) = χkt (y) + (c1y − c2),

φ̃k
′
t−1(x) = φk

′
t−1(x) + (c1x− c2)|Itk , χ̃k

′
t−1 = χk

′
t−1,

φ̃k
′
s = φk

′
s , χ̃k

′
s = χk

′
s for s /∈ {t− 1, t},

H̃t = Ht + c1|X−1
t−1(Itk), H̃s = Hs for s 6= t

where k′ runs over all components of the corresponding step in the
subscript.

7 Given an irreducible component (I, J), the notation (x, y) ∈ (I, J) means that x ∈
I, y ∈ J , whereas for a diagonal component (I0, I0) it is to be understood as x = y ∈ I0.
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(ii) Define

φ̃0
t = φ0

t + χ0
t − χ0

t+1|It0 , χ̃0
t = 0, and

φ̃kt = φkt − χ0
t+1, χ̃kt = χkt for k ≥ 1, t = 0, . . . , n.

Then (φ̃, H̃) ∈ Dgµ(f) and χ̃ is a corresponding concave moderator. More-
over, we have

n∑
t=0

φktt (xt) + (H · x)n =

n∑
t=0

φ̃ktt (xt) + (H̃ · x)n and

φkt + χkt − χt+1 = φ̃kt + χ̃kt − χ̃t+1 for all k ≥ 1, t = 0, . . . , n,

as well as µ(φ) = µ(φ̃).

Proof. (i) If x is such that (xt−1, xt) /∈ Itk × J tk, then φ̃
kt
t (xt) = φktt (xt) for

t = 0, . . . , n and H̃(x) = H(x). Otherwise,

φ̃ktt (xt) + φ̃
kt−1

t−1 (xt−1) + H̃t(xt − xt−1) = φktt (xt) + φ
kt−1

t−1 (xt−1)

+Ht(xt − xt−1),

φ̃kt + χ̃kt − χ̃t+1 = φkt + χkt − χt+1, and

φ̃k
′
t−1 + χ̃k

′
t−1 − χ̃t = φk

′
t−1 + χk

′
t−1 − χt.

Along with the fact that (µt−µt−1)k(χkt ) = (µt−µt−1)k(χ̃kt ), these identities
imply the assertions.

(ii) Similarly as in (i), the terms in question coincide by construction.

Remark 4.14. The modification of Lemma 4.13 (i) can be applied simulta-
neously for infinitely many k’s without difficulties. In this case we set

φ̃k
′
t−1(x) := φk

′
t−1(x) +

∑
k≥1

(ck1x− ck2)|Itk ,

as well as φ̃kt (y) = φkt (y)− (ck1y− ck2) and χ̃kt (y) = χkt (y) + (ck1y− ck2) for the
components k ≥ 1 in step t. The pointwise equalities still hold as above and
in particular, the moderated integral does not change.

Remark 4.15. Any (φ, H) ∈ Dµ(f) induces an element (φg, H) ∈ Dgµ(f)
with µ(φg) = µ(φ) by choosing some concave moderator χ for φ and setting

φkt := φt|Jtk , χkt := χt|Jtk .
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We now show the analogue to Lemma 4.8 for the generalized dual space.

Lemma 4.16. Let φ ∈ Lc,g(µ) and let H = (H1, . . . ,Hn) be F-predictable. If
n∑
t=0

φ
kt(x)
t (xt) + (H · x)n

is bounded from below on the effective domain V ofM(µ), then

µ(φ) = P

[
n∑
t=0

φ
kt(x)
t (xt) + (H · x)n

]
, P ∈M(µ).

Proof. Let P ∈M(µ), let χ be a concave moderator for φ such that χ0
t ≡ 0

and assume that 0 is the lower bound. It is easy to see that
∑n

t=0 φ
kt(x)
t (xt)+

(H · x)n equals

n∑
t=0

(φ
kt(x)
t −χt+1 +χ

kt(x)
t )(xt)+

n∑
t=1

(χ
kt(x)
t (xt−1)−χkt(x)

t (xt))+(H ·x)n ≥ 0.

By assumption
∑n

t=0(φ
kt(x)
t − χt+1 + χ

kt(x)
t )(xt) is P -integrable. There-

fore, the negative part of the remaining expression must also be P -integrable.
Writing Pt := P ◦ (X0, . . . , Xt)

−1 and using that (χkt )
+ has linear growth,

we see that for any disintegration P = Pn−1 ⊗ κn,

∫ [ n∑
t=1

(χ
kt(x)
t (xt−1)− χkt(x)

t (xt)) + (H · x)n

]
κn(x0, . . . , xn−1, dxn)

=
n−1∑
t=1

(χ
kt(x)
t (xt−1)− χkt(x)

t (xt)) + (H · x)n−1

+

∫ [
(χkn(x)
n (xn−1)− χkn(x)

n (xn))
]
κn(x0, . . . , xn−1, dxn).

Iteratively integrating with kernels such that Pt = Pt−1⊗κt and observing
that we can apply Fubini’s theorem to

∑n
t=1(χ

kt(x)
t (xt−1)−χkt(x)

t (xt))+(H ·
x)n as its negative part is P -integrable, we obtain

P

[
n∑
t=1

(χ
kt(x)
t (xt−1)− χkt(x)

t (xt)) + (H · x)n

]
=

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt )

and the result follows.

27



Next, we establish that lifting from Dµ(f) to Dgµ(f) does not change the
range of dual costs.

Proposition 4.17. Let f : Rn+1 → [0,∞]. We have

{µ(φg) : (φg, H) ∈ Dgµ(f)} = {µ(φ) : (φ, H) ∈ Dµ(f)}.

Proof. Remark 4.15 shows the inclusion “⊇.” To show the reverse, we may
apply Lemma 4.13 (i) together with Remark 4.14 to modify a given pair
(φg, H) ∈ Dgµ(f) such that φkt (x) = 0 for x ∈ J tk\Itk, for all irreducible
domains (Itk, J

t
k) of M(µt−1, µt) and 1 ≤ t ≤ n. Here we have used that

x ∈ J tk\Itk implies µtk({x}) > 0, cf. Definition 2.2, and therefore φg ∈ Lc,g(µ)
implies φkt (x) ∈ R; that is, such endpoints can indeed be shifted to 0 by
adding affine functions to φkt .

Let χg be a concave moderator for φg. Using Lemma 4.3 (ii) and again
Lemma 4.13 as above, we can modify χkt to satisfy χkt (x) = 0 for x ∈ J tk\Itk,
for all irreducible domains (Itk, J

t
k) of M(µt−1, µt) and 1 ≤ t ≤ n. Here,

the finiteness of χkt at the endpoints follows from Lemma 4.3 (i) and (µt−1−
µt)

k(χkt ) <∞.
Still denoting the modified dual element by (φg, H), we define φ ∈ Lc(µ)

and a corresponding concave moderator χ by

φt(x) := φkt (x), χt(x) := χkt (x), for x ∈ J tk;

they are well-defined since φkt and χkt vanish at points that belong to more
than one set J tk. We have µ(φ) = µ(φg) by construction and the result
follows.

Definition 4.18. Let 1 ≤ t ≤ n and xt ∈ R. A sequence x = (x0, . . . , xt) is
a predecessor path of xt if there are indices (k0, . . . , kt) such that (xs−1, xs) ∈
(Isks , J

s
ks

) for some component (irreducible or diagonal) ofM(µs−1, µs), for all
1 ≤ s ≤ t. We write k(x) for the (unique) associated sequence (k0, . . . , kt)
followed by the path x in the above sense, and Ψk

t (xt) for the set of all
predecessor paths with kt = k.

These notions will be useful in the next step towards the closedness result,
which is to “regularize” the concave moderators. For concreteness in some of
the expressions below, we convene that ∞−∞ :=∞.

Lemma 4.19. Let (φ, H) ∈ Dgµ(0). There is a concave moderator χ of φ
such that

φkt + χkt − χt+1 ≥ 0 on J tk for all t = 0, . . . , n, k ≥ 1, and (4.2)
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φ0
t + χ0

t − χt+1 ≥ 0 µt-a.s. on It0 for all t = 1, . . . , n. (4.3)

As a consequence,

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt ) ≤ µ(φ).

Proof. Fix 1 ≤ t ≤ n and let (Itk, J
t
k) be the domain of some component of

M(µt−1, µt). We define χ = (χkt ) by χ0
0 = 0 and

χkt (xt) = inf
x∈Ψkt (xt)

{
t−1∑
s=0

φks(x)
s (xs) + (H · x)t

}
;

then χkt is concave on J tk for k ≥ 1 as an infimum of affine functions.
We first show that

{χkt = +∞} ⊆
{
φk
′
t−1 = +∞

}
∪ {χk′t−1 = +∞}.

In particular, such points only exist after a chain of diagonal components
from a point where φkt (xt) = ∞. Suppose χkt (xt) = +∞ and k ≥ 1, then
the predecessor paths of xt agree with the predecessor paths of all of Jkt up
to t − 1, but {

∑t−1
s=0 φ

ks(x)
s (xs) < ∞} must holdM(µ)-q.s. as φ ∈ Lc,g(µ).

We must therefore have xt ∈ I0
t . Then, by definition, χ0

t (xt) = χkt−1(xt) +
φkt−1(xt) and the claim follows.

Next, we verify that χ satisfies (4.2) and (4.3). For notational conve-
nience we for now set χn+1 ≡ infx∈V

{∑n
s=0 φ

ks(x)
s (xs) + (H · x)n

}
≥ 0.

Restricting the infimum in the definition of χ to the set of paths x with
xt+1 = xt ∈ It+1

k′ ∩ J
t
k yields

χt+1(xt) = χk
′
t+1(xt) = inf

x∈Ψk
′
t+1(xt)

{
t∑

s=0

φks(x)
s (xs) + (H · x)t+1

}

≤ inf
x∈Ψkt (xt)

{
t−1∑
s=0

φks(x)
s (xs) + (H · x)t

}
+ φkt (xt)

= χkt (xt) + φkt (xt).

Since ∪k′≥0I
t+1
k′ = R, this will imply (4.2) after we check that χkt > −∞ for

k ≥ 1 and χ0
t > −∞ holds µ0

t -a.s., which also implies that χt > −∞ holds
µt−1-almost surely. We show this inductively for t ≥ 1.
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Clearly χn+1 ≥ 0 > −∞. Now, for t ≤ n the induction hypothesis is
that χt+1 > −∞ holds almost surely µt.

From φ ∈ Lc,g and χt+1 > −∞ µt-a.s. we have that

φkt <∞, χt+1 > −∞ hold µkt -a.s.

As χkt is concave and Jkt is the convex hull of the topological support of µkt
we then get χkt > −∞ on all of Jkt from the previous inequality.

For k = 0, the inequality yields {χ0
t = −∞} ⊆ {χt+1 = −∞}∪{φ0

t (xt) =
∞} and both of these sets are µt nullsets. Finally µt−1({χt = −∞}) = 0 as
this is a subset of the diagonal component where µt−1 is dominated by µt.

Set φ̄kt := φkt +χkt −χt+1|Jtk for 0 ≤ t ≤ n; then φ̄kt ≥ 0. Moreover, choose
an arbitrary P ∈M(µ) with disintegration P = µ0⊗ κ1⊗ · · · ⊗ κn for some
stochastic kernels κt(x0, . . . , xt−1, dxt). From Lemma 4.16 we know that

µ(φ) = P

[
n∑
t=0

φ
kt(X)
t (Xt) + (H ·X)n

]
<∞.

We can therefore apply Fubini’s theorem for kernels as in the proof of
Lemma 4.16 to the expression

0 ≤
n∑
t=0

φ
kt(x)
t (xt) + (H · x)n

=

n∑
t=0

φ̄
kt(x)
t (xt) +

n∑
t=1

(
χt(xt−1)− χkt(x)

t (xt)
)

+ (H · x)n

and obtain

P

[
n∑
t=0

φ
kt(X)
t (Xt) + (H ·X)n

]
=

n∑
t=0

∑
k≥0

µkt (φ̄
k
t ) +

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt )

which shows that the right hand side is finite, and therefore χ is a concave
moderator for φ. Finally, the second claim follows from µkt (φ̄

k
t ) ≥ 0.

The last tool for our closedness result is a compactness property for
concave functions in the one-step case; cf. [10, Proposition 5.5].

Proposition 4.20. Let µ ≤c ν be irreducible with domain (I, J) and let
a ∈ I be the common barycenter of µ and ν. Let χm : J → R be concave
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functions such that8

χm(a) = χ′m(a) = 0 and sup
m≥1

(µ− ν)(χm) <∞.

There exists a subsequence χmk which converges pointwise on J to a concave
function χ : J → R, and (µ− ν)(χ) ≤ lim infk(µ− ν)(χmk).

We are now ready to state and prove the analogue of Proposition 4.10 in
the generalized dual.

Proposition 4.21. Let fm : Rn+1 → [0,∞], m ≥ 1 be a sequence of func-
tions such that

fm → f pointwise

and let (φm, Hm) ∈ Dgµ(fm) be such that supmµ(φm) < ∞. Then there
exist (φ, H) ∈ Dgµ(f) with

µ(φ) ≤ lim inf
m→∞

µ(φm).

Proof. Since (φm, Hm) ∈ Dgµ(fm) and fm ≥ 0, we can introduce a sequence
of concave moderators χm as in Lemma 4.19. A normalization of (φm, Hm)
as in Lemma 4.13 (i) and (ii), in the general form of Remark 4.14, allows us to
assume without loss of generality that χ0

t,m ≡ 0 and χkt,m(akt ) = (χkt,m)′(akt ) =

0, where akt is the barycenter of µkt—this modification is the main merit
of lifting to the generalized dual space. While the generalized dual gives
enough degrees of freedom to choose this normalization, the dual without
the generalization does not. This is related to the possible overlap of the
intervals I, J at the different times t; see also Figure 2 and the paragraph
preceding Example 3.2.

By passing to a subsequence as in Proposition 4.20 for each component
and using a diagonal argument, we obtain pointwise limits χkt : J tk → R for
χkt,m after passing to another subsequence.

Since φkt,m+χkt,m−χt+1,m ≥ 0 on J tk
9 and χkt,m → χkt as well as χt+1,m →

χt+1, we can apply Komlos’ lemma (in the form of [15, Lemma A1.1] and its
remark) to find convex combinations φ̃kt,m ∈ conv{φkt,m, φkt,m+1, . . . } which
converge µkt -a.s. for 0 ≤ t ≤ n. We may assume without loss of generality
that φ̃kt,m = φkt,m. Thus, we can set

φkt := lim supφkt,m on J tk for t = 1, . . . , n,

φ0 := lim inf φ0,m

8To be specific, let us convene that χ′m is the left derivative—this is not important
here.

9Observe that this inequality will still hold after modifying φ and χ as in Lemma 4.13.
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to obtain

φkt,m → φkt µkt -a.s. and φkt + χkt − χt+1 ≥ 0 on J tk.

We can now apply Fatou’s lemma and Proposition 4.20 to deduce that

µ(φ) =
n∑
t=0

∑
k≥0

µkt (φ
k
t + χkt − χt+1) +

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt )

≤
n∑
t=0

∑
k≥0

lim inf µkt (φ
k
t,m + χkt,m − χt+1,m)

+

n∑
t=1

∑
k≥1

lim inf(µt−1 − µt)k(χkt,m)

≤ lim inf

 n∑
t=0

∑
k≥0

µkt (φ
k
t,m + χkt,m − χt+1,m) +

n∑
t=1

∑
k≥1

(µt−1 − µt)k(χkt,m)


= lim inf µ(φm) <∞.

In particular, we see that φ ∈ Lc,g(µ) with concave moderator χ.
It remains to construct the predictable process H = (H1, . . . ,Hn). With

a mild abuse of notation, we shall identify Ht(x0, . . . , xn) with the corre-
sponding function of (x0, . . . , xt−1) in this proof.

We first define for each k = (k0, . . . , kt) and x = (x0, . . . , xt) such that
k = k(x), the functions Gkt,m and Gkt by

Gkt,m(x) :=
t∑

s=0

φkss,m(xs) +
t∑

s=1

Hs,m(x0, . . . , xs−1) · (xs − xs−1),

Gkt (x) := lim inf Gkt,m(x).

Given k = (k0, . . . , kt), we write k′ = (k0, . . . , kt−1). We claim that there
exists an F-predictable process H such that for all 1 ≤ t ≤ n,

Gk
′
t−1(x0, . . . , xt−1)+φktt (xt)+Ht(x0, . . . , xt−1) ·(xt−xt−1) ≥ Gkt (x0, . . . , xt).

(4.4)
Once this is established, the proposition follows by induction sinceG(0)

0 (x0) =
φ0(x0) and Gkn(x0, . . . , xn) ≥ f(x0, . . . , xn).

To prove the claim, write gconc for the concave hull of a function g and
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observe that

lim inf[Gk
′
t−1,m(x0, . . . , xt−1) +Ht,m(x0, . . . , xt−1) · (xt − xt−1)]

≥ lim inf[(Gkt,m(x0, . . . , xt−1, ·)− φktt,m(·))conc(xt)]

≥ [lim inf(Gkt,m(x0, . . . , xt−1, ·)− φktt,m(·)]conc(xt)

≥ [Gkt (x0, . . . , xt−1, ·)− φktt (·)]conc(xt)

=: φ̂kt (x0, . . . , xt−1, xt).

By construction, φ̂kt is concave in the last variable and satisfies

Gk
′
t−1(x0, . . . , xt−1) ≥ φ̂kt (x0, . . . , xt−1, xt−1).

Let ∂tφ̂kt denote the left partial derivative in the last variable and set

Hk
t (x0, . . . , xt−1) := ∂tφ̂

k
t (x0, . . . , xt−1, xt−1)

for kt ≥ 1 and Hk
t (x0, . . . , xt−1) = 0 for kt = 0; then we have

Gk
′
t−1(x0, . . . , xt−1) +Hk

t (x0, . . . , xt−1) · (xt − xt−1)

≥ φ̂kt (x0, . . . , xt−1, xt−1) +Hk
t (x0, . . . , xt−1) · (xt − xt−1)

≥ φ̂kt (x0, . . . , xt−1, xt)

≥ Gkt (x0, . . . , xt)− φktt (xt).

Finally, for any (x0, . . . , xt−1) ∈ Rt, we define Ht(x0, . . . , xt−1) as{
Hk
t (x0, . . . , xt−1), if k = k(x0, . . . , xt−1, xt) for some xt ∈ R

0, otherwise;

this is well-defined since k(x0, . . . , xt) depends only on (x0, . . . , xt−1). The
predictable process H satisfies (4.4) and thus the proof is complete.

Proof of Proposition 4.10. In view of Remark 4.15 and Proposition 4.17, the
result follows from Proposition 4.21.

5 Duality Theorem and Monotonicity Principle

The first goal of this section is a duality result for the multistep martin-
gale transport problem; it establishes the absence of a duality gap and the
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existence of optimizers in the dual problem. (As is well known, an opti-
mizer for the primal problem only exists under additional conditions, such
as continuity of f .) The second goal is a monotonicity principle describing
the geometry of optimal transports; it will be a consequence of the duality
result.

As above, we consider a fixed vector µ = (µ0, . . . , µn) of marginals in
convex order. The primal and dual problems as defined follows.

Definition 5.1. Let f : Rn+1 → [0,∞]. The primal problem is

Sµ(f) := sup
P∈M(µ)

P (f) ∈ [0,∞],

where P (f) refers to the outer integral if f is not measurable. The dual
problem is

Iµ(f) := inf
(φ,H)∈Dµ(f)

µ(φ) ∈ [0,∞].

We recall that a function f : Rn+1 → [0,∞] is called upper semianalytic
if the sets {f ≥ c} are analytic for all c ∈ R, where a subset of Rn+1 is
called analytic if it is the image of a Borel subset of a Polish space under
a Borel mapping. Any Borel function is upper semianalytic and any upper
semianalytic function is universally measurable; we refer to [11, Chapter 7]
for background. The following is the announced duality result.

Theorem 5.2 (Duality). Let f : Rn+1 → [0,∞].

(i) If f is upper semianalytic, then Sµ(f) = Iµ(f) ∈ [0,∞].

(ii) If Iµ(f) <∞, there exists a dual optimizer (φ, H) ∈ Dµ(f).

Proof. Given our preceding results, much of the proof follows the lines of the
corresponding result for the one-step case in [10, Theorem 6.2]; therefore,
we shall be brief. We mention that the present theorem is slightly more
general than the cited one in terms of the measurability condition (f is
upper semianalytic instead of Borel); this is due to the global proof given
here.

Step 1. Using Lemma 4.8 we see that Sµ(f) ≤ Iµ(f) holds for all upper
semicontinuous f : Rn+1 → [0,∞].

Step 2. Using the de la Vallée–Poussin theorem and our assumption that
the marginals have a finite first moment, there exist increasing, superlinearly
growing functions ζµt : R+ → R+ such that x 7→ ζµt(|x|) is µt-integrable for
all 0 ≤ t ≤ n. Define

ζ(x0, . . . , xn) := 1 +

n∑
t=0

ζµt(|xt|)
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and let Cζ be the vector space of all continuous functions f such that f/ζ
vanishes at infinity. Then, a Hahn–Banach separation argument can be used
to show that Sµ(f) ≥ Iµ(f) holds for all f ∈ Cζ ; the details of the argument
are the same as in the proof of [10, Lemma 6.4].

Step 3. Let f be bounded and upper semicontinuous; then there exists
a sequence of bounded continuous functions fm ∈ Cb(Rn+1) which decrease
to f pointwise. As Cb(Rn+1) ⊆ Cζ , we have Sµ(fm) = Iµ(fm) for all m by
the first two steps.

Let U be the set of all bounded, nonnegative, upper semicontinuous func-
tions on Rn+1. We recall that a map C : [0,∞]R

n+1 → [0,∞] is called a
U-capacity if it is monotone, sequentially continuous upwards on [0,∞]R

n+1

and sequentially continuous downwards on U . The functional f 7→ Sµ(f)
is a U-capacity; this follows from the weak compactness of M(µ) and the
arguments in [34, Propositions 1.21, 1.26].

It follows that Sµ(fm)→ Sµ(f). By the monotonicity of f 7→ Iµ(f) and
Step 1 we obtain

Iµ(f) ≤ lim Iµ(fm) = limSµ(fm) = Sµ(f) ≤ Iµ(f).

Step 4. Since Sµ = Iµ on U by Step 3, Iµ is sequentially downward
continuous on U like Sµ. On the other hand, Proposition 4.10 implies that
it is sequentially upwards continuous on [0,∞]R

n+1 . As a result, Iµ is a
U-capacity.

Step 5. Let f : Rn+1 → [0,∞] be upper semianalytic. For any U-
capacity C, Choquet’s capacitability theorem shows that

C(f) = sup{C(g) : g ∈ U , g ≤ f}.

As Sµ and Iµ are U-capacities that coincide on U , it follows that Sµ(f) =
Iµ(f). This completes the proof of (i).

Step 6. To see that the infimum Iµ(f) is attained if it is finite, we merely
need to apply Proposition 4.10 with the constant sequence fm = f .

We can easily relax the lower bound on f .

Remark 5.3. Let f : Rn+1 → (−∞,∞] and suppose there exist φ ∈∏n
t=0 L

1(µt) and a predictable process H such that

f ≥
n∑
t=0

φt(Xt) + (H ·X)n on V.

Then we can apply Theorem 5.2 to [f −
∑n

t=0 φt(Xt)− (H ·X)n]+ and ob-
tain the analogue of its assertion for f .
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The duality result gives rise to a monotonicity principle describing the
support of optimal martingale transports, in the spirit of the cyclical mono-
tonicity condition from classical transport theory. The following generalizes
the results of [8, Lemma 1.11] and [10, Corollary 7.8] for the one-step mar-
tingale transport problem.

Theorem 5.4 (Monotonicity Principle). Let f : Rn+1 → [0,∞] be Borel
and suppose that Sµ(f) < ∞. There exists a Borel set Γ ⊆ Rn+1 with the
following properties.

(i) A measure P ∈ M(µ) is concentrated on Γ if and only if it is optimal
for Sµ(f).

(ii) Let µ̄ = (µ̄0, . . . , µ̄n) be another vector of marginals in convex order. If
P̄ ∈M(µ̄) is concentrated on Γ, then P̄ is optimal for Sµ̄(f).

Indeed, if (φ, H) ∈ Dµ(f) is an optimizer for Iµ(f), then we can take

Γ :=

{
n∑
t=0

φt(Xt) + (H ·X)n = f

}
∩ V.

Proof. As Sµ(f) < ∞, Theorem 5.2 shows that Iµ(f) = Sµ(f) < ∞ and
that there exists a dual optimizer (φ, H) ∈ Dµ(f). In particular, we can
define Γ as above.

(i) As 0 ≤ f and P (f) ≤ Sµ(f) < ∞ for all P ∈ M(µ), we see that f
is P -integrable for all P ∈M(µ). Since

∑n
t=0 φt(Xt) + (H ·X)n ≥ 0 on the

effective domain V, and P [
∑n

t=0 φt(Xt) + (H ·X)n] = µ(φ) = Iµ(f) < ∞
by Lemma 4.8, we also obtain the P -integrability of

∑n
t=0 φt(Xt)+(H ·X)n.

In particular,

0 ≤ P

[
n∑
t=0

φt(Xt) + (H ·X)n − f

]
= µ(φ)− P (f) = Sµ(f)− P (f)

and equality holds if and only if P is concentrated on Γ.
(ii) We may assume that P̄ is a probability measure with P̄ (f) <∞. As

a first step, we show that the effective domain V̄ ofM(µ̄) is a subset of the
effective domain V ofM(µ). To that end, it is sufficient to show that if 1 ≤
t ≤ n and x ∈ R are such that uµt−1(x) = uµt(x), then uµ̄t−1(x) = uµ̄t(x),
and if moreover ∂+uµt−1(x) = ∂+uµt(x), then ∂+uµ̄t−1(x) = ∂+uµ̄t(x), and
similarly for the left derivative ∂− (cf. Proposition 2.3). Indeed, for t and x
such that uµt−1(x) = uµt(x), our assumption that Γ ⊆ V implies

Γ ⊆ (Xt−1, Xt)
−1
(
(−∞, x]2 ∪ [x,∞)2

)
.
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Using also that EP̄ [Xt|Ft−1] = Xt−1 and that P̄ is concentrated on Γ,

uµ̄t−1(x) = EP̄ [|Xt−1 − x|]

= EP̄ [(Xt−1 − x)1Xt−1≥x] + EP̄ [(x−Xt−1)1Xt−1≤x]

= EP̄ [(Xt − x)1Xt−1≥x] + EP̄ [(x−Xt)1Xt−1≤x]

= EP̄ [|Xt − x|] = uµ̄t(x)

as desired. If in addition ∂+uµt−1(x) = ∂+uµt(x), then Γ ⊆ V implies

Γ ⊆ (Xt−1, Xt)
−1
(
(−∞, x]2 ∪ (x,∞)2

)
.

As P̄ is concentrated on Γ, it follows that

∂+uµ̄t−1(x) = P̄ [Xt−1 ≤ x]− P̄ [Xt−1 > x]

= P̄ [Xt ≤ x]− P̄ [Xt > x] = ∂+uµ̄t(x)

as desired. The same argument can be used for the left derivative and we
have shown that V̄ ⊆ V.

In view of that inclusion, the inequality
∑n

t=0 φt(Xt) + (H · X)n ≥ f
holds on V̄. Since P̄ is concentrated on Γ,

P̄

[
n∑
t=0

φt(Xt) + (H ·X)n

]
= P̄ (f) <∞.

We may follow the arguments in the proof of Lemma 4.19 to construct a mod-
erator χ and establish that (φ, H) ∈ Dgµ̄(f), where we are implicitly using the
embedding detailed in Remark 4.15. (Note that the proof of Lemma 4.19 uses
the condition (φ, H) ∈ Dgµ̄(0) only to establish P̄ [

∑n
t=0 φt(Xt) + (H ·X)n] <

∞. In the present situation the latter is known a priori and the condition is
not needed.) Then, we can modify χ as in the proof of Proposition 4.17 to
see that (φ, H) ∈ Dµ̄(f). As a result, we may apply Lemma 4.8 to obtain
that

P̄ (f) = P̄

[
n∑
t=0

φt(Xt) + (H ·X)n

]
= µ̄(φ),

whereas for any other P ′ ∈M(µ̄) we have

P ′(f) ≤ P ′
[

n∑
t=0

φt(Xt) + (H ·X)n

]
= µ̄(φ) = P̄ (f).

This shows that P̄ ∈M(µ̄) is optimal.
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6 Left-Monotone Transports

In this section we define left-monotone transports through a shadow property
and prove their existence.

6.1 Preliminaries

Before moving on to the n-step case, we recall the essential definitions and
results regarding the one-step version of the left-monotone transport (also
called the Left-Curtain coupling). The first notion is the so-called shadow,
and it will be useful to define it for measures µ ≤pc ν in positive convex order,
meaning that µ(φ) ≤ ν(φ) for any nonnegative convex function φ. Clearly,
this order is weaker than the convex order µ ≤c ν, and it is worth noting
that µ may have a smaller mass than ν. The following is the result of [8,
Lemma 4.6].

Lemma 6.1. Let µ ≤pc ν. Then the set

Jµ; νK := {θ : µ ≤c θ ≤ ν}

is non-empty and contains a unique least element Sν(µ) for the convex order:

Sν(µ) ≤c θ for all θ ∈ Jµ; νK .

The measure Sν(µ) is called the shadow of µ in ν.

It will be useful to have the following picture in mind: if µ is a Dirac
measure, its shadow in ν is a measure θ of equal mass and barycenter, chosen
such as to have minimal variance subject to the constraint θ ≤ ν.

The second notion is a class of reward functions.

Definition 6.2. A Borel function f : R2 → R is called second-order Spence–
Mirrlees if y 7→ f(x′, y)− f(x, y) is strictly convex for any x < x′.

We note that if f is sufficiently differentiable, this can be expressed as the
cross-derivative condition fxyy > 0 which has also been called the martin-
gale Spence–Mirrlees condition, in analogy to the classical Spence–Mirrlees
condition fxy > 0.

In the one-step case, the left-monotone transport is unique and can be
characterized as follows; cf. [8, Theorems 4.18, 4.21, 6.1] where this transport
is called the Left-Curtain coupling, as well as [37, Theorem 1.2] for the third
equivalence in the stated generality.
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Proposition 6.3. Let µ ≤c ν and P ∈ M(µ, ν). The following are equiva-
lent:

(i) For all x ∈ R and A ∈ B(R),

P [(−∞, x]×A] = Sν(µ|(−∞,x])(A).

(ii) P is concentrated on a Borel set Γ ⊆ R2 satisfying

(x, y−), (x, y+), (x′, y′) ∈ Γ, x < x′ ⇒ y′ /∈ (y−, y+).

(iii) P is an optimizer of Sµ,ν(f) for some (and then all) f : R2 → R
second-order Spence–Mirrlees such that there exist functions a ∈ L1(µ),
b ∈ L1(ν) with |f(x, y)| ≤ a(x) + b(y).

There exists a unique measure P̄ ∈ M(µ, ν) satisfying (i)–(iii), and P̄ is
called the (one-step) left-monotone transport.

If µ is a discrete measure, the characterization in (i) can be understood
as follows: the left-monotone transport P̄ processes the atoms of µ from left
to right, mapping each one of them to its shadow in the remaining target
measure.

Next, we record two more results about shadows that will be used below.
The first one, cited from [9, Theorem 3.1], generalizes the above idea in the
sense that the atoms are still mapped to their shadows but can be processed
in any given order; in the general (non-discrete) case, such an order is defined
by a coupling π from the uniform measure to µ.

Proposition 6.4. Let µ ≤c ν and π ∈ Π(λ, µ) where λ denotes the Lebesgue
measure on [0, 1]. Then there exists a unique measure Q ∈ Π(λ, µ, ν) on R3

such that Q ◦ (X0, X1)−1 = π and

Q|[0,s]×R×R ◦ (X1, X2)−1 ∈M(πs,Sν(πs)), s ∈ R,

where πs := π|[0,s]×R ◦ (X1)−1.

We shall also need the following facts about shadows.

Lemma 6.5. (i) Let µ1, µ2, ν be finite measures satisfying µ1 + µ2 ≤pc ν.
Then µ2 ≤pc ν − Sν(µ1) and Sν(µ1 + µ2) = Sν(µ1) + Sν−Sν(µ1)(µ2).

(ii) Let µ, ν1, ν2 be finite measures such that µ ≤pc ν1 ≤c ν2. Then, it
follows that Sν1(µ) ≤pc ν2. Moreover, Sν2(Sν1(µ)) = Sν2(µ) if and
only if Sν1(µ) ≤c Sν2(µ).
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Proof. Part (i) is [8, Theorem 4.8]. To obtain the first statement in (ii), we
observe that Sν1(µ) ≤ ν1 ≤c ν2 and hence

Sν1(µ)(φ) ≤ ν1(φ) ≤ ν2(φ)

for any nonnegative convex function φ. Turning to the second statement,
the “only if” implication follows directly from the definition of the shadow in
Lemma 6.1. To show the reverse implication, suppose that Sν1(µ) ≤c Sν2(µ).
Then, we have

µ ≤c Sν1(µ) ≤c Sν2(Sν1(µ)) ≤ ν2 and Sν1(µ) ≤c Sν2(µ) ≤ ν2.

These inequalities imply that

Sν2(Sν1(µ)) ∈ Jµ; ν2K and Sν2(µ) ∈ JSν1(µ); ν2K ,

and now the minimality property of the shadow shows that

Sν2(µ) ≤c Sν2(Sν1(µ)) and Sν2(Sν1(µ)) ≤c Sν2(Sν2(µ)) = Sν2(µ)

as desired.

6.2 Construction of a Multistep Left-Monotone Transport

Our next goal is to define and construct a multistep left-monotone transport.
The following concept will be crucial.

Definition 6.6. Let µ0 ≤pc µ1 ≤c · · · ≤c µn. For 1 ≤ t ≤ n, the obstructed
shadow of µ0 in µt through µ1, . . . , µt−1 is iteratively defined by

Sµ1,...,µt(µ0) := Sµt(Sµ1,...,µt−1(µ0)).

The obstructed shadow is well-defined due to Lemma 6.5 (ii). An alter-
native definition is provided by the following characterization.

Lemma 6.7. Let µ0 ≤pc µ1 ≤c · · · ≤c µn and 1 ≤ t ≤ n. Then Sµ1,...,µt(µ0)
is the unique least element of the set

Jµ0;µtKµ1,...,µt−1 := {θt ≤ µt : ∃θs ≤ µs, 1 ≤ s ≤ t−1, µ0 ≤c θ1 ≤c · · · ≤c θt}

for the convex order; that is, Sµ1,...,µt(µ0) ≤c θ for all elements θ.
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Proof. For t = 1 this holds by the definition of the shadow in Lemma 6.1.
For t > 1, we inductively assume that Sµ1,...,µt−1(µ0) is the least element of
Jµ0;µt−1Kµ1,...,µt−2 . Consider an arbitrary element θt ∈ Jµ0;µtKµ1,...,µt−1 and
fix some

µ0 ≤c θ1 ≤c · · · ≤c θt−1 ≤c θt with θs ≤ µs, 1 ≤ s ≤ t− 1.

Then, θt−1 ∈ Jµ0;µt−1Kµ1,...,µt−2 and in particular Sµ1,...,µt−1(µ0) ≤c θt−1.
Recall that Sµ1,...,µt(µ0) is defined as the least element for ≤c of

JSµ1,...,µt−1(µ0);µtK = {θ ≤ µt : Sµ1,...,µt−1(µ0) ≤c θ}
⊇ {θ ≤ µt : θt−1 ≤c θ} 3 θt.

Hence, Sµ1,...,µt(µ0) ≤c θt, and as θt ∈ Jµ0;µtKµ1,...,µt−1 was arbitrary, this
shows that Sµ1,...,µt(µ0) is a least element of Jµ0;µtKµ1,...,µt−1 . The uniqueness
of the least element follows from the general fact that θ1

t ≤c θ2
t and θ2

t ≤c θ1
t

imply θ1
t = θ2

t .

We can now state the main result of this section.

Theorem 6.8. Let µ = (µ0, . . . , µn) be in convex order. Then there exists
P ∈M(µ) such that the bivariate projections P0t := P ◦ (X0, Xt)

−1 satisfy

P0t[(−∞, x]×A] = Sµ1,...,µt(µ0|(−∞,x])(A) for x ∈ R, A ∈ B(R),

for all 1 ≤ t ≤ n. Any such P ∈M(µ) is called a left-monotone transport.

We observe that an n-step left-monotone transport is defined purely in
terms of its bivariate projections P ◦ (X0, Xt)

−1. In the one-step case, this
completely determines the transport. For n > 1, we shall see that there
can be multiple (and then infinitely many) left-monotone transports; in fact,
they form a convex compact set. This will be discussed in more detail in
Section 8, where it will also be shown that uniqueness does hold if µ0 is
atomless.

Proof of Theorem 6.8. Step 1. We first construct measures πt ∈ Π(λ, µt),
0 ≤ t ≤ n such that

πt|[0,µ0((−∞,x])]×R ◦X−1
1 = Sµ1,...,µt(µ0|(−∞,x])

for all x ∈ R, as well as measures Qt ∈ Π(λ, µt−1, µt), 1 ≤ t ≤ n such that

Qt|[0,µ0((−∞,x])]×R×R ◦ (X1, X2)−1 ∈
M
(
Sµ1,...,µt−1(µ0|(−∞,x]),Sµ1,...,µt(µ0|(−∞,x])

)
(6.1)
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for all x ∈ R. Indeed, for t = 0, we take π0 ∈ Π(λ, µ0) to be the quan-
tile10 coupling. Then, applying Proposition 6.4 to π0 yields the measure
Q1, and we can define π1 := Q1 ◦ (X0, X2)−1. Proceeding inductively, ap-
plying Proposition 6.4 to πt−1 yields Qt which in turn allows us to define
πt := Qt ◦ (X0, X2)−1.

Step 2. For 1 ≤ t ≤ n, consider a disintegration Qt = πt−1 ⊗ κt of Qt.
By (6.1), we may choose κt(s, xt−1, dxt) to be a martingale kernel; that is,∫

xt κt(s, xt−1, dxt) = xt−1

holds for all (s, xt−1) ∈ R2. We now define a measure π ∈ Π(λ, µ0, . . . , µn)
on Rn+2 via

π = π0 ⊗ κ1 ⊗ · · · ⊗ κn.

Then, π satisfies

π ◦ (X0, Xt)
−1 = πt−1 and π ◦ (X0, Xt, Xt+1)−1 = Qt

for 1 ≤ t ≤ n, and setting P = π ◦ (X1, . . . , Xn+1)−1 yields the theorem.

The following result studies the bivariate projections P0t of a left-monotone
transport and shows in particular that P0t may differ from the Left-Curtain
coupling [8] inM(µ0, µt).

Proposition 6.9. Let µ = (µ0, . . . , µn) be in convex order and let P ∈
M(µ) be a left-monotone transport. The following are equivalent:

(i) The bivariate projection P0t = P ◦ (X0, Xt)
−1 ∈ M(µ0, µt) is left-

monotone for all 1 ≤ t ≤ n.

(ii) The marginals µ satisfy

Sµ1(µ0|(−∞,x]) ≤c · · · ≤c Sµn(µ0|(−∞,x]) for all x ∈ R. (6.2)

Proof. Given µ ≤ µ0, an iterative application of Lemma 6.5 (ii) shows that
the obstructed shadows coincide with the ordinary shadows, i.e. Sµ1,...,µt(µ) =
Sµt(µ) for 1 ≤ t ≤ n, if and only if Sµ1(µ) ≤c · · · ≤c Sµn(µ). The proposition
follows by applying this observation to µ = µ0|(−∞,x].

The following example illustrates the proposition and shows that (6.2)
may indeed fail.

10The quantile coupling (or Fréchet–Hoeffding coupling) is given by the law of
(F−1
λ , F−1

µ0
) under λ, where F−1

µ0
is the inverse c.d.f. of µ0.
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µ0

µ1

µ2

µ0

µ2

µ0

µ2

Figure 3: The left panel shows the support of the left-monotone transport P
from Example 6.10. The right panel shows the support of P02 (top) and the
support of the left-monotone transport inM(µ0, µ2) (bottom). The elements
of the support are represented by the diagonal lines.

Example 6.10. Consider the marginals

µ0 =
1

2
δ−1 +

1

2
δ1, µ1 =

1

2
δ−2 +

1

2
δ2, µ2 =

1

4
δ−4 +

1

2
δ0 +

1

4
δ4.

Then the setM(µ) consists of a single transport P ; cf. the left panel of Fig-
ure 3. Thus, P is necessarily left-monotone. Similarly, P01 = P ◦ (X0, X1)−1

is the unique element ofM(µ0, µ1). However, P02 = P ◦ (X0, X2)−1 is given
by

3

16
δ(−1,−4) +

1

4
δ(−1,0) +

1

16
δ(−1,4) +

1

16
δ(1,−4) +

1

4
δ(1,0) +

3

16
δ(1,4)

whereas the unique left-monotone transport in M(µ0, µ2) can be found to
be

1

8
δ(−1,−4) +

3

8
δ(−1,0) +

1

8
δ(1,−4) +

1

8
δ(1,0) +

1

4
δ(1,4).

Therefore, there exists no transport P ∈ M(µ) such that both P01 and P02

are left-monotone, and Proposition 6.9 shows that (6.2) fails.

Remark 6.11. Of course, all our results on left-monotone transports have
“right-monotone” analogues, obtained by reversing the orientation on the
real line (i.e. replacing x 7→ −x everywhere).

7 Geometry and Optimality Properties

In this section we introduce the optimality properties for transports and the
geometric properties of their supports that were announced in the Introduc-
tion, and prove that they equivalently characterize left-monotone transports.
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7.1 Geometry of Optimal Transports for Reward Functions
of Spence–Mirrlees Type

The first goal is to show that optimal transports for specific reward functions
are concentrated on sets Γ ⊆ Rn+1 satisfying certain no-crossing conditions
that we introduce next. Given 1 ≤ t ≤ n, we write

Γt = {(x0, . . . , xt) ∈ Rt+1 : (x0, . . . , xn) ∈ Γ for some (xt+1, . . . , xn) ∈ Rn−t}

for the projection of Γ onto the first t+ 1 coordinates.

Definition 7.1. Let Γ ⊆ Rn+1 and 1 ≤ t ≤ n. Consider x = (x0, . . . , xt−1),
x′ = (x′0, . . . , x

′
t−1) ∈ Rt and y+, y−, y′ ∈ R with y− < y+ such that

(x, y+), (x, y−), (x′, y′) ∈ Γt. Then, the projection

Γt is left-monotone if y′ /∈ (y−, y+) whenever x0 < x′0.

The set Γ is left-monotone11 if Γt is left-monotone for all 1 ≤ t ≤ n.

We also need the following notion.

Definition 7.2. Let Γ ⊆ Rn+1 and 1 ≤ t ≤ n. The projection Γt is nonde-
generate if for all x = (x0, . . . , xt−1) ∈ Rt and y ∈ R such that (x, y) ∈ Γt,
the following hold:

(i) if y > xt−1, there exists y′ < xt−1 such that (x, y′) ∈ Γt;

(ii) if y < xt−1, there exists y′ > xt−1 such that (x, y′) ∈ Γt.

The set Γ is called nondegenerate12 if Γt is nondegenerate for all 1 ≤ t ≤ n.

Broadly speaking, this definition says that for any path to the right
in Γ there exists a path to the left, and vice versa. For a set supporting a
martingale, nondegeneracy is not a restriction, in the following sense.

Remark 7.3. Let µ be in convex order, V its effective domain and Γ ⊆ V.
(i) There exists a nondegenerate, universally measurable set Γ′ ⊆ Γ such

that P (Γ′) = 1 for all P ∈M(µ) with P (Γ) = 1.
(ii) Fix P ∈M(µ) with P (Γ) = 1. There exists a nondegenerate, Borel-

measurable set Γ′P ⊆ Γ such that P (Γ′P ) = 1.
11This terminology for Γ is abusive since Γ = Γn is in fact a projection itself—it will be

clear from the context what is meant.
12Footnote 11 applies here as well.
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Proof. Let Nt be the set of all x ∈ Γt such that (i) or (ii) of Definition 7.2
fail. If P is a martingale with P (Γ) = 1, we see that Nt × Rn−t+1 is P -null.
Moreover, Nt is universally measurable (as the projection of a Borel set) and
we can set

Γ′ := Γ\
n⋃
t=1

(Nt × Rn−t+1)

to prove (i). Turning to (ii), universal measurability implies that there
exists a Borel set N ′t ⊇ Nt such that N ′t\Nt is Pt−1-null, where Pt−1 =
P ◦ (X0, . . . , Xt−1)−1. We can then set Γ′P := Γ\ ∪nt=1 (N ′t × Rn−t+1).

Next, we introduce a notion of competitors along the lines of [8, Defini-
tion 1.10].

Definition 7.4. Let π be a finite measure on Rt+1 whose marginals have
finite first moments and consider a disintegration π = πt ⊗ κ, where πt is
the projection of π onto the first t coordinates. A measure π′ = πt ⊗ κ′ is a
t-competitor of π if it has the same last marginal and

bary(κ(x, ·)) = bary(κ′(x, ·)) for πt-a.e. x = (x0, . . . , xt−1).

Using these definitions, we now formulate a variant of the monotonic-
ity principle stated in Theorem 5.4 (i) that will be convenient to infer the
geometry of Γ.

Lemma 7.5. Let µ = (µ0, . . . , µn) be in convex order, 1 ≤ t ≤ n and let
f̄ : Rt+1 → [0,∞) be Borel. Consider f(X0, . . . , Xn) := f̄(X0, . . . , Xt) and
suppose that Iµ(f) <∞. Let (φ, H) ∈ Dµ(f) be an optimizer for Iµ(f) with
the property that φs ≡ Hs ≡ 0 for s = t+ 1, . . . , n and define the set

Γ :=

{
n∑
t=0

φt(Xt) + (H ·X)n = f

}
∩ V.

Let π be a finitely supported probability on Rt+1 which is concentrated on Γt.
Then π(f̄) ≥ π′(f̄) for any t-competitor π′ of π that is concentrated on Vt.

Proof. Recall that the projections πt and π′t onto the first t coordinates
coincide. Thus,

π[Ht · (Xt −Xt−1)] =

∫
Ht · (bary(κ(X0, . . . , Xt−1, ·)−Xt−1)dπt

=

∫
Ht · (bary(κ′(X0, . . . , Xt−1, ·)−Xt−1)dπ′t

= π′[Ht · (Xt −Xt−1)].
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Using also that the last marginals coincide, we deduce that

π[f̄ ] = π

[
t∑

s=0

φs(Xs) + (H ·X)t

]
= π′

[
t∑

s=0

φs(Xs) + (H ·X)t

]
≥ π′[f̄ ].

Next, we formulate an intermediate result relating optimality for Spence–
Mirrlees reward functions to left-monotonicity of the support.

Lemma 7.6. Let 1 ≤ t ≤ n and let Γ ⊆ V be a subset such that Γt is
nondegenerate. Moreover, let f : Rt+1 → R be of the form f(X0, . . . , Xt) =
f̄(X0, Xt) for a second-order Spence–Mirrlees function f̄ . Assume that for
any finitely supported probability π that is concentrated on Γt and any t-
competitor π′ of π that is concentrated on Vt, we have π(f) ≥ π′(f). Then,
the projection Γt is left-monotone.

Proof. Consider (x, y1), (x, y2), (x′, y′) ∈ Γt satisfying x0 < x′0 and suppose
for contradiction that y1 < y′ < y2. We define λ = y2−y′

y2−y1 and

π =
λ

2
δ(x,y1) +

1− λ
2

δ(x,y2) +
1

2
δ(x′,y′)

π′ =
λ

2
δ(x′,y1) +

1− λ
2

δ(x′,y2) +
1

2
δ(x,y′).

Then π and π′ have the same projection πt = π′t on the first t marginals
and their last marginals also coincide. Moreover, disintegrating π = πt ⊗ κ
and π′ = πt ⊗ κ′, the measures κ(x), κ(x′), κ′(x), κ(x′) all have barycen-
ter y′. Therefore, π and π′ are t-competitors. We must also have that π′ is
concentrated on Vt, by the shape of V. Now our assumption implies that
π(f) ≥ π′(f), but the second-order Spence–Mirrlees property of f̄ implies
that π(f) < π′(f).

7.2 Geometry of Left-Monotone Transports

Next, we establish that transports with left-monotone support are indeed
left-monotone in the sense of Theorem 6.8.

Theorem 7.7. Let µ = (µ0, . . . , µn) be in convex order and let P ∈ M(µ)
be concentrated on a nondegenerate, left-monotone set Γ ⊆ Rn+1. Then P is
left-monotone.
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Before stating the proof of the theorem, we record two auxiliary results
about measures on the real line. The first one is a direct consequence of
Proposition 2.1.

Lemma 7.8. Let a < b and µ ≤c ν. If ν is concentrated on (−∞, a], then
so is µ, and moreover ν({a}) ≥ µ({a}). The analogue holds for [b,∞).

The second result is [8, Lemma 5.2].

Lemma 7.9. Let σ be a nontrivial signed measure on R with σ(R) = 0 and
let σ = σ+ − σ− be its Hahn decomposition. There exist a ∈ supp(σ+) and
b > a such that

∫
(b− y)+1[a,∞) dσ(y) > 0.

We can now give the proof of the theorem; it is inspired by [8, Theo-
rem 5.3] which corresponds to the case n = 1.

Proof of Theorem 7.7. Since the case n = 1 is covered by Proposition 6.3,
we may assume that the theorem has been proved for transports with n− 1
steps and focus on the induction argument.

For every x ∈ R we denote by µtx the marginal (P |(−∞,x]×Rn) ◦X−1
t . In

particular, we then have µ0
x = µ0|(−∞,x] and µtx is the image of µ0

x under P
after t steps. For the sake of brevity, we also set νtx := Sµ1,...,µt(µ0

x). By
definition, P is left-monotone if µtx = νtx for all x ∈ R and t ≤ n, and by the
induction hypothesis, we may assume that this holds for t ≤ n− 1.

We argue by contradiction and assume that there exists x ∈ R such that
µnx 6= νnx . Then, the signed measure

σ := νnx − µnx

is nontrivial and we can find a < b with a ∈ supp(σ+) as in Lemma 7.9.
Observe that σ+ ≤ µn−µnx where µn−µnx is the image of µn|(x,∞) under P .
Hence, a ∈ supp(µn − µnx) and as P is concentrated on Γ, we conclude that
there exists a sequence of points

xm = (xm0 , . . . , x
m
n ) ∈ Γ with x < xm0 and xmn → a. (7.1)

Moreover, by the characterization of the obstructed shadow in Lemma 6.7,
we must have

νnx ≤c µnx
as µnx ∈

q
µ0
x;µn

yµ1,...,µn−1 due to the fact that µnx is the image of µ0
x under a

martingale transport.
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Step 1. We claim that for all x = (x0, . . . , xn−1) with x0 ≤ x and
xn−1 ≤ a, it holds that

Γx ∩ (a,∞) = ∅,

where Γx = {y ∈ R : (x, y) ∈ Γ} is the section of Γ at x. By way of
contradiction, assume that for some x with x0 ≤ x and xn−1 ≤ a we have
Γx ∩ (a,∞) 6= ∅, then in particular Γx ∩ (xn−1,∞) 6= ∅. In view of the
nondegeneracy of Γ, we conclude that Γx ∩ (−∞, xn−1) 6= ∅ and hence that
Γx ∩ (−∞, a) 6= ∅. This yields a contradiction to the left-monotonicity of Γ
by using xm from (7.1) for x′ in Definition 7.1 for large enough m, and the
proof of the claim is complete.

Step 2. Similarly, we can show that for all x = (x0, . . . , xn−1) with x0 ≤ x
and xn−1 ≥ a,

Γx ∩ (−∞, a) = ∅.

Step 3. Next, we consider the marginals

µtx,a :=
(
P |(−∞,x]×Rn−2×(−∞,a]×R

)
◦X−1

t .

Then, in particular, µn−1
x,a = µn−1

x |(−∞,a] and µnx,a is the image of µn−1
x,a under

the last step of P . Step 1 of the proof thus implies that µnx,a is concentrated
on (−∞, a]. We also write

νnx,a := Sµn(µn−1
x |(−∞,a]).

We have µn−1
x,a ≤c µnx,a asM(µn−1

x,a , µ
n
x,a) 6= ∅, and µnx,a ≤ µnx ≤ µn. Therefore,

νnx,a ≤c µnx,a (7.2)

by the minimality of the shadow. Next, we show that

νnx − νnx,a ≤c µnx − µnx,a. (7.3)

Observe that µnx − µnx,a is the image of µn−1
x |(a,∞) under P and therefore

concentrated on [a,∞) by Step 2. Using this observation, that µnx,a is con-
centrated on (−∞, a] as mentioned above, and the fact that νnx,a({a}) ≤
µnx,a({a}) as a consequence of (7.2) and Lemma 7.8, we have

µnx−µnx,a = (µnx−µnx,a)|[a,∞) ≤ (µn−µnx,a)|[a,∞) ≤ (µn−νnx,a)|[a,∞) ≤ µn−νnx,a.

We also have µn−1
x |(a,∞) ≤c µnx−µnx,a since the latter measure is the image of

the former under P . Together with the preceding display, we have established
that

µnx − µnx,a ∈
q
µn−1
x |(a,∞);µn − νnx,a

y
.
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On the other hand,

νnx − νnx,a = Sµn−νnx,a(µn−1
x |(a,∞))

from the additivity property of the shadow in Lemma 6.5 (i), and there-
fore (7.3) follows by the minimality of the shadow.

Step 4. Recall from Step 3 that µnx,a is concentrated on (−∞, a] and
that µnx − µnx,a is concentrated on [a,∞). Therefore, νnx,a is concentrated on
(−∞, a] and νnx − νnx,a is concentrated on [a,∞), by Lemma 7.8. Moreover,
we have νnx,a({a}) ≤ µnx,a({a}) by the same lemma, and finally, the function
y 7→ (b − y)+1[a,∞)(y) is convex on [a,∞) as a < b. Using these facts
and (7.3),∫

(b− y)+1[a,∞)(y)νnx (dy)

=

∫
(b− y)+1[a,∞)(y)(νnx − νnx,a)(dy) + (b− a)νnx,a({a})

≤
∫

(b− y)+1[a,∞)(y)(µnx − µnx,a)(dy) + (b− a)µnx,a({a})

=

∫
(b− y)+1[a,∞)(y)µnx(dy).

This contradicts the choice of a and b, cf. Lemma 7.9, and thus completes
the proof.

7.3 Optimality Properties

In this section we relate left-monotone transports and left-monotone sets to
the optimal transport problem for Spence–Mirrlees functions.

Theorem 7.10. For 1 ≤ t ≤ n, let ft : R2 → R be second-order Spence–
Mirrlees functions such that |ft(x, y)| ≤ a0(x) + at(y) for some a0 ∈ L1(µ0)
and at ∈ L1(µt). There exists a universally measurable, nondegenerate, left-
monotone set Γ′ ⊆ Rn+1 such that any simultaneous optimizer P ∈ M(µ)
for Sµ(ft(X0, Xt)), 1 ≤ t ≤ n is concentrated on Γ′. In particular, any such
P is left-monotone.

Proof. The last assertion follows by an application of Theorem 7.7, so we
may focus on finding Γ′. For each 1 ≤ t ≤ n, we use Theorem 5.2 and
Remark 5.3 to find a dual optimizer (φ, H) ∈ Dµ(ft) for Iµ(ft(X0, Xt)) and
define the Borel set

Γ(t) :=

{
n∑
s=0

φs(Xs) + (H ·X)n = ft

}
∩ V.
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Here, we may choose a dual optimizer such that φs ≡ Hs ≡ 0 for s =
t + 1, . . . , n. (This can be seen by applying Theorem 5.2 to the transport
problem involving only the marginals (µ0, . . . , µt) and taking the correspond-
ing dual optimizer.) Theorem 5.4 shows that any simultaneous optimizer
P ∈M(µ) is concentrated on Γ(t) for all t, and hence also on the Borel set

Γ :=
n⋂
t=1

Γ(t).

Using Remark 7.3 (i), we find a universally measurable, nondegenerate subset
Γ′ ⊆ Γ with the same property. Since the projection (Γ′)t is contained in
the projection (Γ(t))t, Lemma 7.5 and Lemma 7.6 yield that (Γ′)t is left-
monotone for all t; that is, Γ′ is left-monotone.

Remark 7.11. In Theorem 7.10, if we only wish to find a nondegener-
ate, left-monotone set Γ′P ⊆ Rn+1 such that a given simultaneous optimizer
P ∈ M(µ) is concentrated on Γ′P , then we may choose Γ′P to be Borel in-
stead of universally measurable. This follows by replacing the application of
Remark 7.3 (i) by Remark 7.3 (ii) in the proof.

The following is a converse to Theorem 7.10.

Theorem 7.12. Given 1 ≤ t ≤ n, let f ∈ C1,2(R2) be such that fxyy ≥ 0
and suppose that the following integrability condition holds:{

f(X0, Xt), f(0, Xt), f(X0, 0), h̄(X0)X0, h̄(X0)Xt

are P -integrable for all P ∈M(µ),
(7.4)

where h̄(x) := ∂y|y=0[f(x, y)− f(0, y)]. Then every left-monotone transport
P ∈M(µ) is an optimizer for Sµ(f).

The integrability condition clearly holds when f is Lipschitz continuous;
in particular, a smooth second-order Spence–Mirrlees function (as defined in
the Introduction) satisfies the assumptions of the theorem for any µ.

The proof will be given by an approximation based on the following
building blocks for Spence–Mirrlees functions; the construction is novel and
may be of independent interest.

Lemma 7.13. Let 1 ≤ t ≤ n and let f(X0, . . . , Xn) := 1(−∞,a](X0)ϕ(Xt)
for a concave function ϕ and a ∈ R. Then every left-monotone transport
P ∈M(µ) is an optimizer for Sµ(f).
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Proof. In view of Lemma 6.7, this follows directly by applying the defining
shadow property from Theorem 6.8 with x = a.

The integrability condition (7.4) implies that setting

g(x, y) := f(x, 0) + f(0, y)− f(0, 0) + h̄(x)y,

the three terms constituting

g(X0, Xt) = [f(X0, 0) + h̄(X0)X0] + [f(0, Xt)− f(0, 0)] + [h̄(X0)(Xt −X0)]

are P -integrable and P [g(X0, Xt)] is constant over P ∈M(µ). By replacing
f with f − g, we may thus assume without loss of generality that

f(x, 0) = f(0, y) = fy(x, 0) = 0 for all (x, y) ∈ R2. (7.5)

After this normalization, integration by parts yields the representation

f(x, y) =

∫ y

0

∫ x

0
(y − t)fxyy(s, t) ds dt. (7.6)

Lemma 7.14. Theorem 7.12 holds under the following additional condition:
there exists a constant c > 0 such that

x 7→ f(x, y) is constant on {x > c} and on {x < −c},
y 7→ f(x, y) is affine on {y > c} and on {y < −c}.

Proof. Integration by parts implies that for all (x, y) ∈ R2, we have the
representation

f(x, y) = −
∫ c

−c

∫ c

−c
1(−∞,s](x)(y − t)+fxyy(s, t) ds dt

+ [f(x,−c)− (−c)fy(x,−c)]
+ [f(c, y)− f(c,−c)− fy(c,−c)(y − (−c))]
+ fy(x,−c)y.

The last three terms are of the form g(x, y) = φ̃(x)+ψ̃(y)+h̃(x)y and of linear
growth due to the additional condition. Hence, as above, P ′[g(X0, Xt)] = C
is constant for P ′ ∈ M(µ). If P ∈ M(µ) is left-monotone and P ′ ∈ M(µ)
is arbitrary, Fubini’s theorem and Lemma 7.13 yield that

P [f ] = −
∫ c

−c

∫ c

−c
P [1(−∞,s](x)(y − t)+]fxyy(s, t) ds dt+ C

≥ −
∫ c

−c

∫ c

−c
P ′[1(−∞,s](x)(y − t)+]fxyy(s, t) ds dt+ C

= P ′[f ],
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where P, P ′ are understood to integrate with respect to (x, y) and the ap-
plication of Fubini’s theorem is justified by the nonnegativity of the inte-
grand.

Proof of Theorem 7.12. Let f be as in the theorem. We shall construct
functions fm, m ≥ 1 satisfying the assumption of Lemma 7.14 as well as
P [fm]→ P [f ] for all P ∈M(µ). Once this is achieved, the theorem follows
from the lemma.

Indeed, we may assume that f is normalized as in (7.5). Let m ≥ 1 and
let ρm : R → [0, 1] be a smooth function such that ρm = 1 on [−m,m] and
ρm = 0 on [−m− 1,m+ 1]c. In view of (7.6), we define fm by

fm(x, y) =

∫ y

0

∫ x

0
(y − t)fxyy(s, t)ρm(s)ρm(t) ds dt.

It then follows that fm satisfies the assumptions of Lemma 7.14 with the
constant c = m+ 1. Moreover, we have

0 ≤ fm(x, y) ≤ fm+1(x, y) ≤ f(x, y) for x ≥ 0

and the opposite inequalities for x ≤ 0, as well as fm(x, y) → f(x, y) for
all (x, y).

Let P ∈M(µ). Since f is P -integrable, applying monotone convergence
separately on {x ≥ 0} and {x ≤ 0} yields that P [fm]→ P [f ], and the proof
is complete.

Remark 7.15. The function

f̄(x, y) := tanh(x)
√

1 + y2

satisfies the conditions of Theorem 7.12 for all marginals µ in convex order,
since the latter are assumed to have a finite first moment.

We can now collect the preceding results to obtain, in particular, the
equivalences stated in Theorem 1.1.

Theorem 7.16. Let µ = (µ0, . . . , µn) be in convex order. There exists a left-
monotone, nondegenerate, universally measurable set Γ ⊆ Rn+1 such that for
any P ∈M(µ), the following are equivalent:

(i) P is an optimizer for Sµ(f(X0, Xt)) whenever f is a smooth second-
order Spence–Mirrlees function and 1 ≤ t ≤ n,

(ii) P is concentrated on Γ,
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(ii’) P is concentrated on a left-monotone set,

(iii) P is left-monotone; i.e. P0t transports µ0|(−∞,a] to Sµ1,...,µt(µ0|(−∞,a])
for all 1 ≤ t ≤ n and a ∈ R.

Moreover, there exists P ∈M(µ) satisfying (i)–(iii).

Proof. Let Γ be the set provided by Theorem 7.10 for the function ft = f̄
of Remark 7.15. Given P ∈M(µ), Theorem 7.10 shows that (i) implies (ii)
which trivially implies (ii’). Theorem 7.7 and Remark 7.3 show that (ii’)
implies (iii), and Theorem 7.12 shows that (iii) implies (i). Finally, the
existence of a left-monotone transport was stated in Theorem 6.8.

We conclude this section with an example showing that left-monotone
transports are not Markovian in general, even if they are unique and (6.2)
holds for µ.

Example 7.17. Consider the marginals

µ0 =
1

2
δ0 +

1

2
δ1, µ1 =

3

4
δ0 +

1

4
δ2, µ2 =

1

8
δ−1 +

1

2
δ0 +

1

8
δ1 +

1

4
δ2.

The transport P ∈M(µ) given by

P =
1

2
δ(0,0,0) +

1

8
δ(1,0,−1) +

1

8
δ(1,0,1) +

1

4
δ(1,2,2)

is left-monotone because its support is left-monotone (Figure 4), and it is
clearly not Markovian. On the other hand, it is not hard to see that this is
the only way to build a left-monotone transport inM(µ).

µ0

µ1

µ2

Figure 4: Support of the non-Markovian transport in Example 7.17.
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8 Uniqueness of Left-Monotone Transports

In this section we consider the (non-)uniqueness of left-monotone transports.
It turns out the presence of atoms in µ0 is important in this respect—let us
start with the following simple observation.

Remark 8.1. Let µ = (µ0, . . . , µn) be in convex order. If µ0 is a Dirac mass,
then every P ∈M(µ) is left-monotone. Indeed,M(µ0, µt) is a singleton for
every 1 ≤ t ≤ n, hence P0t must be the (one-step) left-monotone transport.

Exploiting this observation, the following shows that left-monotone trans-
ports need not be unique when n ≥ 2.

Example 8.2. Let µ0 = δ0, µ1 = 1
2δ−1 + 1

2δ1, µ2 = 3
8δ−2 + 1

4δ0 + 3
8δ2. By

the remark, any element in M(µ) is left-monotone. Moreover, M(µ) is a
continuum sinceM(µ1, µ2) contains the convex hull of the two measures

Pl =
1

4
δ(−1,−2) +

1

4
δ(−1,0) +

1

8
δ(1,−2) +

3

8
δ(1,2),

Pr =
3

8
δ(−1,−2) +

1

8
δ(−1,2) +

1

4
δ(1,0) +

1

4
δ(1,2).

The corresponding supports are depicted in Figure 5.

µ0

µ1

µ2

µ0

µ1

µ2

Figure 5: Supports of two left-monotone transports for the same marginals.

The example illustrates that non-uniqueness can typically be expected
when µ0 has atoms. On the other hand, we have the following uniqueness
result.

Theorem 8.3. Let µ = (µ0, . . . , µn) be in convex order. If µ0 is atomless,
there exists a unique left-monotone transport P ∈M(µ).
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The remainder of this section is devoted to the proof. Let us call a kernel
κ(x, dy) binomial if for all x ∈ R, the measure κ(x, dy) consists of (at most)
two point masses. A martingale transport will be called binomial if it can
be disintegrated using only binomial kernels. We shall show that when µ0

is atomless, any left-monotone transport is a binomial martingale, and then
conclude the uniqueness via a convexity argument.

The first step is the following set-theoretic result.

Lemma 8.4. Let k ≥ 1 be an integer and Γ ⊆ Rt+1. For x ∈ Rt, we denote
by Γx := {y ∈ R : (x, y) ∈ Γ} the section at x. If the set

{x ∈ Rt : |Γx| ≥ k}

is uncountable, then it has an accumulation point. More precisely, there are
x = (x0, . . . , xt) ∈ Rt and y1 < · · · < yk in Γx such that for all ε > 0 there
exist x′ = (x′0, . . . , x

′
t) ∈ Rt and y′1 < · · · < y′k in Γx′ satisfying

(i) ‖x− x′‖ < ε,

(ii) x0 < x′0,

(iii) maxi=1,...,k |yi − y′i| < ε.

Proof. The proof is similar to the one of [8, Lemma 3.2] and therefore omit-
ted.

The following statement on the binomial structure generalizes a result
of [8] for the one-step case and is of independent interest.

Proposition 8.5. Let µ = (µ0, . . . , µn) be in convex order and let µ0 be
atomless. There exists a universally measurable set Γ ⊆ Rn+1 such that
every left-monotone transport P ∈M(µ) is concentrated on Γ and such that
for all 1 ≤ t ≤ n and x ∈ Rt,

|{y ∈ R : (X0, . . . , Xt)
−1(x, y) ∩ Γ 6= ∅}| ≤ 2. (8.1)

In particular, every left-monotone transport P ∈ M(µ) is a binomial mar-
tingale.

Proof. Let Γ be as in Theorem 7.16; then every left-monotone P ∈ M(µ)
is concentrated on Γ. Let At be the set of all x ∈ Rt such that (8.1) fails.
Suppose that At is uncountable; then Lemma 8.4 yields points x,x′ such that
for some y1, y2 ∈ Γtx and y ∈ Γtx′ we have y1 < y < y2. This contradicts the
left-monotonicity of Γ (Definition 7.1), thus At must be countable. Hence,
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(X0, . . . , Xt−1)−1(At) is Borel and P -null for all P ∈M(µ), as µ0 is atomless.
The set Γ′ = Γ \∪nt=1(X0, . . . , Xt−1)−1(At) then has the required properties.

Proof of Theorem 8.3. We will prove this result using induction on n. For
n = 1 the result holds by Proposition 6.3, with or without atoms. To
show the induction step, let P ′ be the unique left-monotone transport in
M(µ0, . . . , µn−1) and let P1 = P ′ ⊗ κ1 and P2 = P ′ ⊗ κ2 be disintegrations
of two n-step left-monotone transports. Then,

P1 + P2

2
= P ′ ⊗ κ1 + κ2

2

is again left-monotone, and Proposition 8.5 yields that (κ1 + κ2)/2 must be
a binomial kernel P ′-a.s. Using also the martingale property of κ1 and κ2,
this can only be true if κ1 = κ2 holds P ′-a.s., and therefore P1 = P2.

9 Free Intermediate Marginals

In this section we discuss a variant of our transport problem where the
intermediate marginal constraints µ1, . . . , µn−1 are omitted; that is, only the
first and last marginals µ0, µn are prescribed. (One could similarly adapt
the results to a case where some, but not all of the intermediate marginals
are given.)

The primal space will be denoted byMn(µ0, µn) and consists of all mar-
tingale measures P on Rn+1 such that µ0 = P ◦(X0)−1 and µn = P ◦(Xn)−1.
To make the connection with the previous sections, we note that

Mn(µ0, µn) =
⋃
M(µ)

where the union is taken over all vectors µ = (µ0, µ1, . . . , µn−1, µn) in convex
order.

9.1 Polar Structure

We first characterize the polar sets ofMn(µ0, µn). To that end, we introduce
an analogue of the irreducible components.

Definition 9.1. Let µ0 ≤c µn and let (Ik, Jk) ⊆ R2 be the corresponding
irreducible domains in the sense of Proposition 2.3. The n-step components
ofMn(µ0, µn) are the sets13

13A superscript m indicates the m-fold Cartesian product; ∆n is the diagonal in Rn+1.
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(i) Ink × Jk, where k ≥ 1,

(ii) In+1
0 ∩∆n,

(iii) Itk × {p}n−t+1, where p ∈ Jk \ Ik and 1 ≤ t ≤ n, k ≥ 1.

The characterization then takes the following form.

Theorem 9.2 (Polar Structure). Let µ0 ≤c µn. A Borel set B ⊆ Rn+1

is Mn(µ0, µn)-polar if and only if there exist a µ0-nullset N0 and a µn-
nullset Nn such that

B ⊆ (N0 × Rn) ∪ (Rn ×Nn) ∪
(⋃

Vj

)c
where the union runs over all n-step components Vj ofMn(µ0, µn).

It turns out that our previous results can be put to work to prove the
theorem, by means of the following lemma which may be of independent
interest.

Lemma 9.3. Let µ ≤c ν be irreducible with domain (I, J) and let ρ be a
probability concentrated on J . Then, there exists a probability µ ≤c θ ≤c ν
satisfying θ � ρ such that µ ≤c θ and θ|I ≤c (ν− θ|J\I) are both irreducible.

Proof. Step 1. We first assume that ρ = δx for some x ∈ J and show that
there exists θ satisfying

µ ≤c θ ≤c ν and θ � δx.

If ν has an atom at x, we can choose θ = ν. Thus, we may assume that
ν({x}) = 0 and in particular that x ∈ I. Let a be the common barycenter
of µ and ν and suppose that x < a. For all b ∈ R and 0 ≤ c ≤ ν({b}), the
measure

νb,c := ν|(−∞,b) + cδb

satisfies νb,c ≤ ν, and as x < a there are unique b, c such that bary(νb,c) = x.
Setting α = νb,c and ε0 = α(R), we then have ε0δx ≤c α ≤ ν, and a similar
construction yields this result for x ≥ a. The existence of such α implies
that

εδx ≤pc ν, 0 ≤ ε ≤ ε0
and thus the shadow Sν(εδx) is well-defined. This measure is given by the
restriction of ν to an interval (possibly including fractions of atoms at the
endpoints); cf. [8, Example 4.7]. Moreover, the interval is bounded after
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possibly reducing the mass ε0. Thus, for all ε < ε0, the difference of potential
functions

uSν(εδx) − uεδx ≥ 0

vanishes outside a compact interval, and it converges uniformly to zero as
ε→ 0.

On the other hand, as µ ≤c ν is irreducible, the difference uν −uµ ≥ 0 is
uniformly bounded away from zero on compact subsets of I and has nonzero
derivative on J \ I. Together, it follows that

uν − uSν(εδx) + uεδx ≥ uµ (9.1)

for small enough ε > 0, so that

θ := ν − Sν(εδx) + εδx

satisfies µ ≤c θ ≤c ν; moreover, θ � δx as ν({x}) = 0.
Step 2. We turn to the case of a general probability measure ρ on J . By

Step 1, we can find a measure θx for each x ∈ J such that

µ ≤c θx ≤c ν and θx � δx.

The map x 7→ θx can easily be chosen to be measurable (by choosing the ε
for (9.1) in a measurable way). We can then define the probability measure

θ′(A) :=

∫
J
θx(A)ρ(dx), A ∈ B(R)

which satisfies µ ≤c θ′ ≤c ν. Moreover, we have θ′ � ρ; indeed, if A ∈ B(R)
is a θ′-nullset, then θx(A) = 0 for ρ-a.e. x and thus ρ(A) = 0 as θx � δx.

Finally, θ := (µ+ θ′+ ν)/3 shares these properties. As uµ < uν on I due
to irreducibility, we have uµ < uθ < uν on I and it follows that µ ≤c θ and
θ|I ≤c (ν − θ|J\I) are irreducible.

Lemma 9.4. Let µ0 ≤c µn and let π be a measure on Rn+1 which is con-
centrated on an n-step component V ofMn(µ0, µn) and whose first and last
marginals satisfy

π0 ≤ µ0, πn ≤ µn.

Then there exists P ∈Mn(µ0, µn) such that P � π.

Proof. If V = In+1
0 ∩∆n, then π must be an identical transport and we can

take P to be any element of M(µ0, µ0, . . . , µ0, µn). Thus, we may assume
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that V is of type (i) or (iii) in Definition 9.1, and then, by fixing k ≥ 1, that
µ0 ≤c µn is irreducible with domain (I, J).

Using Lemma 9.3, we can find intermediate marginals µt with

µ0 ≤c µ1 ≤c · · · ≤c µn−1 ≤c µn

such that µt � πt for all 1 ≤ t ≤ n − 1, and each of the steps µt−1 ≤c µt,
1 ≤ t ≤ n has a single irreducible domain given by (I, J) as well as (possibly)
a diagonal component on J \ I. We note that V is an irreducible component
ofM(µ0, µ1, . . . , µn) as introduced after Theorem 3.1.

Let ft = dπt/dµt be the Radon–Nikodym derivative of the marginal at
date t. For m ≥ 1, we define the measure πm � π by

πm(dx0, . . . , dxn) = 2−m

(
n−1∏
t=1

1ft(xt)≤2m

)
π(dx0, . . . , dxn).

Then, the marginals πmt satisfy the stronger condition πmt ≤ µt for 0 ≤ t ≤ n.
Thus, we can apply Lemma 3.3 to µ = (µ0, . . . , µn) and the irreducible
component V , to find Pm ∈ M(µ) ⊆ Mn(µ0, µn) such that Pm � πm.
Noting that

∑
m≥1 2−mπm � π, we see that P :=

∑
m≥1 2−mPm � π

satisfies the requirements of the lemma.

Proof of Theorem 9.2. The result is deduced from Lemma 9.4 by following
the argument in the proof of Theorem 3.1.

9.2 Duality

In this section we formulate a duality theorem for the transport problem
with free intermediate marginals.

Definition 9.5. Let f : Rn+1 → [0,∞]. The primal problem is

Snµ0,µn(f) := sup
P∈Mn(µ0,µn)

P (f) ∈ [0,∞]

and the dual problem is

Inµ0,µn(f) := inf
(φ,ψ,H)∈Dnµ0,µn (f)

µ0(φ) + µn(ψ) ∈ [0,∞],

where Dnµ0,µn(f) consists of all triplets (φ, ψ,H) such that (φ, ψ) ∈ Lc(µ0, µn)
and H = (H1, . . . ,Hn) is F-predictable with

φ(X0) + ψ(Xn) + (H ·X)n ≥ f Mn(µ0, µn)-q.s.

i.e. the inequality holds P -a.s. for all P ∈Mn(µ0, µn).
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The analogue of Theorem 5.2 reads as follows.

Theorem 9.6 (Duality). Let f : Rn+1 → [0,∞].

(i) If f is upper semianalytic, then Snµ0,µn(f) = Inµ0,µn(f) ∈ [0,∞].

(ii) If Inµ0,µn(f) <∞, there exists a dual optimizer (φ, ψ,H) ∈ Dnµ0,µn(f).

The main step for the proof is again a closedness result. We shall only
discuss the case where µ0 ≤c µn is irreducible; the extension to the general
case can be obtained along the lines of Section 4.

Proposition 9.7. Let µ0 ≤c µn be irreducible and let fm : Rn+1 → [0,∞]
be a sequence of functions such that fm → f pointwise. Moreover, let
(φm, ψm, Hm) ∈ Dnµ0,µn(fm) be such that supm µ0(φm)+µn(ψm) <∞. Then
there exist (φ, ψ,H) ∈ Dnµ0,µn(f) such that

µ0(φ) + µn(ψ) ≤ lim inf
m→∞

µ0(φm) + µn(ψm).

Proof. Let µt, 1 ≤ t ≤ n−1 be such that µ = (µ0, . . . , µn) is in convex order
and µt−1 ≤c µt is irreducible for all 1 ≤ t ≤ n; such µt are easily constructed
by prescribing their potential functions. Setting φm = (φm, 0, . . . , 0, ψm) we
have (φm, Hm) ∈ Dgµ(fm) and can thus apply Proposition 4.21 to obtain
(φ, H) ∈ Dgµ(f). The construction in the proof of that proposition yields
φt ≡ 0 for 1 ≤ t ≤ n− 1. Therefore, (φ0, φn, H) ∈ Dnµ0,µn(f) and

µ0(φ0) + µn(φn) = µ(φ) ≤ lim inf
m→∞

µ(φm) = lim inf
m→∞

µ0(φm) + µn(ψm).

Proof of Theorem 9.6. On the strength of Proposition 9.7, the proof is anal-
ogous to the one of Theorem 5.2.

9.3 Monotone Transport

The analogue of our result on left-monotone transports is somewhat degener-
ate: with unconstrained intermediate marginals, the corresponding coupling
is the identical transport in the first n − 1 steps and the (one-step) left-
monotone transport in the last step. The full result runs as follows.

Theorem 9.8. Let P ∈Mn(µ0, µn). The following are equivalent:

(i) P is a simultaneous optimizer for Snµ0,µn(f(X0, Xt)) for all smooth
second-order Spence–Mirrlees functions f and 1 ≤ t ≤ n.
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(ii) P is concentrated on a left-monotone set Γ ⊂ Rn+1 such that

Γn−1 = {(x, . . . , x) : x ∈ Γ0}.

(iii) For 0 ≤ t ≤ n− 1, we have P ◦ (Xt)
−1 = µ0 and P ◦ (Xt, Xn)−1 is the

(one-step) left-monotone transport inM(µ0, µn).

There exists a unique P ∈Mn(µ0, µn) satisfying (i)–(iii).

Proof. A transport P as in (iii) exists and is unique, because the identi-
cal transport between equal marginals and the left-monotone transport in
M(µ0, µn) exist and are unique; cf. Proposition 6.3. The equivalence of (ii)
and (iii) follows from the same proposition and the fact that the only mar-
tingale transport from µ0 to µ0 is the identity.

Let P ∈ Mn(µ0, µn) satisfy (i). In particular, P is then an optimizer
for Snµ0,µn(f(X0, Xn)), which by Proposition 6.3 implies that P0n = P ◦
(X0, Xn)−1 is the (one-step) left-monotone transport in M(µ0, µn). For
t = 1, . . . , n − 1, P is an optimizer for Snµ0,µn(−1{X0≤a}|Xt − b|), for all
a, b ∈ R. This implies that P0t transports µ0|(−∞,a] to the minimal element
of {θ : µ0|(−∞,a] ≤c θ ≤pc µn} in the sense of the convex order, which is θ =
µ0|(−∞,a]. Therefore, P0t must be the identical transport for t = 1, . . . , n− 1
and all but the last marginal are equal to µ0.

Conversely, let P ∈ Mn(µ0, µn) have the properties from (iii). Then,
P is optimal for Snµ0,µn(−1{X0≤a}(Xt − b)+) for all 1 ≤ t ≤ n and this can
be extended to the optimality (i) for smooth second-order Spence–Mirrlees
functions as in the proof of Theorem 7.12.
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