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Abstract

In this thesis we study the utility maximization problem for power utility
random �elds in a general semimartingale �nancial market, with and without
intermediate consumption. The notion of an opportunity process is intro-
duced as a reduced form of the value process for the resulting stochastic
control problem. This process is shown to describe the key objects: the op-
timal strategy, the value function, and the convex-dual problem. We show
that the existence of an optimal strategy implies that the opportunity pro-
cess solves the so-called Bellman equation. The optimal strategy is described
pointwise in terms of the opportunity process, which is also characterized as
the minimal solution of the Bellman equation. Furthermore, we provide
veri�cation theorems for this equation. As an example, we consider expo-
nential Lévy models, for which we construct an explicit solution in terms of
the Lévy triplet. Finally, we study the asymptotic properties of the optimal
strategy as the relative risk aversion tends to in�nity or to one. The con-
vergence of the optimal consumption is obtained for the general case, while
the convergence of the optimal trading strategy is obtained for continuous
semimartingale models.
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Kurzfassung

Diese Dissertation beschäftigt sich mit dem Nutzenmaximierungs-Problem
für Potenznutzen, mit oder ohne Konsum, in einem allgemeinen Semimartin-
galmodell eines Finanzmarktes. Der so genannte Opportunitätsprozess wird
eingeführt als reduzierte Form des Wertprozesses des zugehörigen stochastis-
chen Kontrollproblems. Dieser Prozess beschreibt die fundamentalen Grössen:
die optimale Strategie, die Wertfunktion und das konvex-duale Problem. Der
Opportunitätsprozess erfüllt die zugehörige Bellman-Gleichung, sobald eine
optimale Strategie existiert. Umgekehrt wird dieser Prozess als die min-
imale Lösung dieser Gleichung charakterisiert, und die optimale Strategie
wird punktweise mit Hilfe dieses Prozesses beschrieben. Desweiteren zeigen
wir verschiedene Veri�kationstheoreme für die Bellman-Gleichung. Für den
Spezialfall eines exponentiellen Lévy-Modells leiten wir die explizite Lösung
des Problems unter minimalen Annahmen her. Schliesslich untersuchen wir
das asymptotische Verhalten der optimalen Strategien, wenn die relative
Risikoaversion gegen unendlich oder gegen eins strebt. Wir zeigen die Kon-
vergenz des optimalen Konsums im allgemeinen Fall und die Konvergenz der
optimalen Handelsstrategie für stetige Semimartingalmodelle.
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Chapter I

Introduction

This chapter describes the optimization problem at hand, embeds the thesis
in the literature and gives an overview of the main results.

I.1 Power Utility Maximization

Expected utility criteria are used to describe the preferences of a rational
economic agent. We shall start with a given utility function U and refer
to Föllmer and Schied [22] for a general introduction to the modeling of
preferences and the relations to economic axioms for the latter.

We consider an agent who begins with an initial endowment x0 > 0 and
invests in a �nancial market in continuous time. Her preferences are modeled
by an increasing and concave function U and her aim is to maximize a certain
utility functional. We shall consider two problems of this type. The �rst one
is the maximization of expected utility from terminal wealth, i.e, the agent
chooses her trading strategy � such as to maximize the expectation

E
[
U
(
XT (�)

)]
,

where XT (�) denotes the wealth resulting from x0 and � at a given time
horizon T . In the second problem the agent is also allowed to consume
during the interval [0, T ]; i.e., she chooses a trading strategy � as well as a
consumption rate c with the aim of maximizing

E

[ ∫ T

0
Ũ(ct) dt+ U

(
XT (�, c)

)]
,

where Ũ is again some utility function. We shall treat both of these speci�-
cations in a uni�ed notation, or more precisely, a slight extension involving a
time-dependent (and possibly random) utility function Ut(⋅). For simplicity,
we restrict our attention to classical utility functions in this introduction. As
usual, the problem is simpli�ed by assuming that the agent is �small� in the
sense that her actions do not in�uence the �nancial market. Moreover, the
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market is supposed to be frictionless, i.e., free of transaction costs, liquidity
e�ects, and so on.

The most frequently used explicit examples of utility functions U(x) (de-
�ned for x > 0) are those for which the relative risk aversion −xU ′′(x)/U ′(x)
is constant. This choice is a compromise between tractability and general-
ity, and also due to the lack of other �canonical� examples. The logarithmic
utility corresponds to unit relative risk aversion and yields the most explicit
results as it leads to a �myopic� behavior1; but this also means that many
interesting properties of general utility functions cannot be observed there.
The functions with constant relative risk aversion in (0,∞) ∖ {1} are called
power utilities and of the form U(x) = 1

px
p with p ∈ (−∞, 0) ∪ (0, 1). They

entail non-myopic phenomena while their scaling properties still lead to a
substantial simpli�cation: in a suitable parametrization, the optimal strate-
gies do not depend on the level of wealth. The frequent use of power utilities
motivates their study in a general �nancial market model, and this is the
content of the present thesis.

I.2 Classi�cation of the Literature

There is a vast literature on the maximization of expected utility and we
con�ne ourselves to a brief classi�cation of the approaches. The book of
Karatzas and Shreve [42, pp. 153] contains a survey of the literature up to
its date of writing.

Existence. The existence of an optimal strategy in a frictionless semi-
martingale �nancial market has been established in satisfactory generality
using martingale theory and convex duality. This works for general util-
ity functions; see Kramkov and Schachermayer [49] for the case of terminal
wealth (on ℝ+) and Karatzas and �itkovi¢ [43] for the case with consumption
(and random endowment).

In the light of these results, the focus of mathematical research in (single-
agent) expected utility maximization has shifted to the study of the proper-
ties of the optimal strategy as well as to markets with friction. In the sequel,
we focus on the �rst aspect and power utility.

Explicit Solutions. The most evident approach is to explicitly solve the
utility maximization problem for suitable market models. In the case with
consumption this turns out to be di�cult: except for complete markets, an
explicit solution can be expected only for Lévy models (see Chapter IV).
In the case of terminal wealth, certain algebraic properties of a market

1�No doubt some will say: `I'm not sure of my taste for risk. I lack a rule to act on.
So I grasp at one that at least ends doubt: better to act to make the odds big that I win
than to be left in doubt?' Not so. There is more than one rule to end doubt. Why pick
on one odd one?� (from Samuelson's comment [66] on logarithmic utility�a paper whose
most distinctive feature is to consist of words of one syllable.)
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model can lead to an explicit solution also in the incomplete case. The
exponentially-quadratic model of Kim and Omberg [47] was among the �rst
of this kind; other examples include certain exponentially-a�ne speci�ca-
tions as in Kallsen and Muhle-Karbe [40] and Muhle-Karbe [58].

Markovian Dynamic Programming and PDEs. When the asset prices
follow a Markov process, dynamic programming is often used to show that
the value function satis�es the corresponding Hamilton-Jacobi-Bellman par-
tial di�erential equation (PDE) in the viscosity sense (or integro-PDE in the
case with jumps). In turn, the value function can be used to describe the op-
timal strategy�at least formally, in the sense that the expression at hand in-
volves the derivatives of the value function while its regularity is known only
under strong assumptions on the model. We refer to Fleming and Soner [21]
for background and general references. Of course, the important early work
of Merton [55, 56] falls in this category. Stoikov and Zariphopoulou [72]
study optimal consumption in a di�usion model with constant correlation;
we extend some of their results to semimartingale models in Chapter II.

Non-Markovian Dynamic Programming and BSDEs. In a suitable
formulation, dynamic programming can be applied also when the asset prices
are not Markovian, and this is the approach taken in this thesis. In contrast
to the Markov case, the corresponding �local� equation is stochastic. In
Chapter III we shall state it as a backward stochastic di�erential equation
(BSDE) in the context of a general semimartingale model. For the case of
terminal wealth, this was previously obtained for certain continuous models
by Mania and Tevzadze [54] and Hu et al. [33]. It is worth noting that the
BSDE formulation does not extend to general utility functions, whereas in
the Markov case, the corresponding PDE (or integro-PDE) is standard.

I.3 Overview of the Thesis

In view of the general existence results mentioned above, the problem at the
center of the thesis is the description of the optimal strategy in a general

model. The results are divided into four chapters which correspond to the
articles [61, 59, 60, 62]. The interdependencies are as follows:

I Introduction

��
II Opportunity Process

��
III Bellman Equation

ttiiiiiiiiiiiiiiii

**UUUUUUUUUUUUUUUUU

IV Lévy Models V Risk Aversion Asymptotics
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However, each part is written in a self-contained way, i.e., necessary results
from other chapters are always recalled. The following paragraphs give a
synthesis of each part.

Opportunity Process. The concept of dynamic programming plays an
important role in this thesis. Its fundamental quantity is the value function,
i.e., the maximal expected utility that the agent can achieve, given certain
initial conditions. In a non-Markovian context, this means that we freeze
some strategy � (resp. (�, c)) to be used until some point t in time. Then
we consider the maximal (conditional) expected utility Jt(�) that can be
achieved by optimizing the strategy on the remaining time interval [t, T ].
The stochastic process t 7→ Jt(�) is called the value process corresponding
to �.

The scaling property of our power utility functional leads to a factoriza-
tion of the value process into one part which depends on the current wealth,
and a process L. It is called opportunity process as Lt encodes the maxi-
mal conditional expected utility which can be attained from time t, starting
from one unit of endowment. The factorization itself is very classical�for
instance, it can already be found in Merton's work�and an opportunity pro-
cess is present (in a more or less explicit form) in almost any paper dealing
with so-called isoelastic utility functions. However, there was thus far no
general study of L for power utility. We shall not indicate all the related
literature but merely mention that the name �opportunity process� was in-
troduced by �erný and Kallsen [11] for an analogous object in the context
of mean-variance hedging.

In Chapter II we �rst introduce rigorously the opportunity process and
then proceed to establish the connection to the �dual problem� in the sense
of convex duality. On the one hand, the dual problem has a scaling property
similar to the one of the (primal) utility maximization problem and this
gives rise to a dual opportunity process denoted by L∗. It turns out that
L∗ is simply a power of L. This allows us to relate uniform bounds for L
to so-called reverse Hölder inequalities for processes belonging to the dual
domain. On the other hand, the optimal supermartingale solving the dual
problem is expressed via L and the optimal wealth process. In the case
with consumption, it is known that this supermartingale coincides with the
marginal utility of the optimal consumption rate ĉ. Therefore, we obtain a
feedback formula for ĉ in terms of L. We exploit this connection to obtain
model-independent bounds for the optimal consumption and to study how
it is a�ected by certain changes in the model.

Bellman Equation. In contrast to the optimal consumption, nothing is
said in Chapter II about the trading strategy, which forms the second part
of the optimal strategy. Its description via the opportunity process requires
a more involved stochastic analysis approach, which is the content of Chap-
ter III. We present a local representation of the optimization problem that
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we call Bellman equation in analogy to classical Markovian control prob-
lems. Its main ingredient is a random function which is de�ned in terms of
the semimartingale characteristics of the asset prices and the opportunity
process. Optimal trading strategies are characterized as maximizers for this
function. We also recover, with a quite di�erent proof, the feedback formula
for the optimal consumption.

The Bellman equation is stated in two forms: �rst as an equation of dif-
ferential semimartingale characteristics and then as a backward stochastic
di�erential equation (BSDE). The main result is that whenever an opti-
mal strategy exists, the opportunity process (resp. the joint characteristics
with the price process) solves the Bellman equation. Our construction re-
lies purely on dynamic programming and necessitates neither additional no-
arbitrage assumptions nor duality theory. This allows us to formulate the
problem under portfolio constraints that need not be convex.

We can see the Bellman equation as a description for the opportunity
process. In certain models the equation can be solved directly using existence
results for BSDEs with quadratic growth. However, a veri�cation result is
needed to show that a solution of the equation corresponds to the solution
of our optimization problem. We provide su�cient (and also necessary)
conditions for this to hold. This is also a �rst answer to the question whether
the opportunity process is fully described by the Bellman equation. While
there are no general uniqueness results for BSDEs driven by semimartingales,
we show that the opportunity process can be characterized as the minimal
solution of the Bellman equation.

Lévy Models. In Chapter IV we consider the special case when the asset
prices follow an exponential Lévy process. In the continuous case this cor-
responds to a drifted geometric Brownian motion, which is the speci�cation
in the original Merton problem. A classical observation in various models
is that when the asset returns are i.i.d., the optimal portfolio and consump-
tion are given by a constant and a deterministic function, respectively, in a
suitable parametrization. The aim of Chapter IV is to establish this fact for
convex-constrained Lévy models under minimal assumptions.

The optimal portfolio is characterized as the maximizer of a deterministic

function g de�ned in terms of the Lévy triplet; and the maximum value of
g yields the optimal consumption. The function g is closely related to the
random function mentioned above. While it is clear that the �niteness of the
value function is a necessary requirement to study the utility maximization
problem, it is in general impossible to describe this condition directly in terms
of the model primitives. In the present special case, we succeed to state a
description in terms of the Lévy triplet. We also consider the q-optimal
equivalent martingale measures that are linked to utility maximization by
convex duality (q ∈ (−∞, 1) ∖ {0}); this results in an explicit existence
characterization and a formula for the density process. Finally, we study
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some generalizations to non-convex constraints.
The approach in Chapter IV is classical and consists in solving the Bell-

man equation, which reduces to an ordinary di�erential equation in the Lévy
setting. The main di�culty is to construct the maximizer for g; once this is
achieved, we can apply the general veri�cation results from Chapter III. The
necessary compactness is obtained from a minimal no-free-lunch condition
via scaling arguments which were developed by Kardaras [44] for log-utility.
In our case, these arguments require certain additional integrability proper-
ties of the asset returns. Without compromising the generality, integrability
is achieved by a transformation which replaces the given assets by certain
portfolios. In fact, these portfolios are special cases of the �representative
portfolios� that are introduced in the appendix of Chapter III to clarify cer-
tain technical issues (which we shall not detail in this overview).

Risk Aversion Asymptotics. Thus far, we have considered the power
utility function U (p)(x) = 1

px
p for a �xed parameter p ∈ (−∞, 0) ∪ (0, 1).

In Chapter V we vary p and our main interest concerns the behavior of the
optimal strategies in the limits p→ −∞ and p→ 0.

The relative risk aversion of U (p) tends to in�nity for p → −∞, hence
we guess by the economic interpretation of this quantity that the optimal
investment portfolio tends to zero. If there is no trading, optimizing the
consumption becomes a deterministic problem that is readily solved. We
prove (in a general semimartingale model) that the optimal consumption,
expressed as a proportion of wealth, converges pointwise to a deterministic
function. This function corresponds to the consumption which would be
optimal in the case where trading is not allowed. In the continuous semi-
martingale case, we show that the optimal trading strategy tends to zero.

Our second result pertains to the same limit p→ −∞ but concerns utility
from terminal wealth only. It can be seen as a �rst-order asymptotic: in the
continuous case, we show that the optimal trading strategy scaled by 1 − p
converges to a strategy which is optimal for exponential utility.

For the limit p → 0, we note that p = 0 formally corresponds to the
logarithmic utility function. Again, we establish the convergence of the cor-
responding optimal consumption in the general case, and the convergence of
the trading strategy in the continuous case.

In view of the feedback formula for the optimal consumption mentioned
before, we study the dependence of the (primal and dual) opportunity pro-
cesses on p and their convergence. This uses control-theoretic arguments and
convex analysis. To obtain the convergence of the strategies, we study the
asymptotics of the Bellman equation. The continuity assumption simpli�es
the equation and renders the optimal portfolio relatively explicit (in terms
of the Kunita-Watanabe decomposition of the opportunity process). Despite
this, we are not in a standard framework for quadratic BSDEs, and therefore
we give the proofs by direct arguments.



Chapter II

Opportunity Process

In this chapter, which corresponds to the article [61], we lay the foundations
for the rest of the thesis. We present the basic dynamic programming for
the power utility maximization problem and we introduce the opportunity
process. We also give applications to the study of the optimal consumption
strategy.

II.1 Introduction

We consider the utility maximization problem in a semimartingale model for
a �nancial market, with and without intermediate consumption. While the
model is general, we focus on power utilities. If the maximization is seen as
a stochastic control problem, the power form leads to a factorization of the
value process into a part which depends on the current wealth and a process
L around which our analysis is built. It is called opportunity process as Lt
encodes the maximal conditional expected utility that can be attained from
time t. This name was introduced by �erný and Kallsen [11] for an analogous
object in the context of mean-variance hedging. Surprisingly, there exists no
general study of L for the case of power utility, which is a gap we try to �ll
here.

The opportunity process is a suitable tool to derive qualitative results
about the optimal consumption strategy. We present monotonicity proper-
ties and bounds which are quite explicit despite the generality of the model.

This chapter is organized as follows. After the introduction, we specify
the optimization problem in detail. Section II.3 introduces the opportunity
process L via dynamic programming and examines its basic properties. Sec-
tion II.4 relates L to convex duality theory and reverse Hölder inequalities,
which is useful to obtain bounds for the opportunity process. Section II.5
gives applications to the study of the optimal consumption. We establish
a feedback formula in terms of L and use it to study how certain changes
in the model a�ect the optimal consumption. These applications illustrate
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the usefulness of the opportunity process: they are general but have very
simple proofs. Two appendices supply facts about dynamic programming
and duality theory.

We refer to Jacod and Shiryaev [34] for unexplained notation.

II.2 The Optimization Problem

Financial Market. We �x the time horizon T ∈ (0,∞) and a �ltered
probability space (Ω,ℱ , (ℱt)t∈[0,T ], P ) satisfying the usual assumptions of
right-continuity and completeness, as well as ℱ0 = {∅,Ω} P -a.s. We consider
an ℝd-valued càdlàg semimartingale R with R0 = 0. The (componentwise)
stochastic exponential S = ℰ(R) represents the discounted price processes
of d risky assets, while R stands for their returns. Our agent also has a bank
account paying zero interest at his disposal.

Trading Strategies and Consumption. The agent is endowed with a
deterministic initial capital x0 > 0. A trading strategy is a predictable R-
integrable ℝd-valued process �, where the ith component is interpreted as
the fraction of wealth (or the portfolio proportion) invested in the ith risky
asset. A consumption strategy is a nonnegative optional process c such that∫ T

0 ct dt < ∞ P -a.s. We want to consider two cases. Either consumption
occurs only at the terminal time T (utility from �terminal wealth� only);
or there is intermediate consumption plus a bulk consumption at the time
horizon. To unify the notation, de�ne the measure � on [0, T ] by

�(dt) :=

{
0 in the case without intermediate consumption,

dt in the case with intermediate consumption.

We also de�ne �∘ := � + �{T}, where �{T} is the unit Dirac measure at T .
The wealth process X(�, c) corresponding to a pair (�, c) is described by the
linear equation

Xt(�, c) = x0 +

∫ t

0
Xs−(�, c)�s dRs −

∫ t

0
cs �(ds), 0 ≤ t ≤ T (2.1)

and the set of admissible trading and consumption pairs is

A(x0) =
{

(�, c) : X(�, c) > 0, X−(�, c) > 0 and cT = XT (�, c)
}
.

The convention cT = XT (�, c) means that all the remaining wealth is con-
sumed at time T ; it is merely for notational convenience. Indeed, X(�, c)
does not depend on cT , hence any given consumption strategy c can be rede-
�ned to satisfy cT = XT (�, c). We �x the initial capital x0 and usually write
A for A(x0). A consumption strategy c is called admissible if there exists �
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such that (�, c) ∈ A; we write c ∈ A for brevity. The meaning of � ∈ A is
analogous.

Sometimes it is convenient to parametrize the consumption strategies as
fractions of wealth. Let (�, c) ∈ A and let X = X(�, c) be the corresponding
wealth process. Then

� :=
c

X
(2.2)

is called the propensity to consume corresponding to (�, c). Note that �T = 1
due to our convention that cT = XT .

Remark 2.1. (i) The parametrization (�, �) allows to express wealth pro-
cesses as stochastic exponentials: by (2.1),

X(�, �) = x0ℰ
(
� ∙ R− � ∙ �

)
(2.3)

coincides with X(�, c) for � := c/X(�, c), where we have used that X(�, c) =
X(�, c)− �-a.e. because it is càdlàg. The symbol ∙ indicates an integral, e.g.,
� ∙ R =

∫
�s dRs.

(ii) Relation (2.2) induces a one-to-one correspondence between the pairs
(�, c) ∈ A and the pairs (�, �) such that � ∈ A and � is a nonnegative
optional process satisfying

∫ T
0 �s ds < ∞ P -a.s. and �T = 1. Indeed, given

(�, c) ∈ A, de�ne � by (2.2) with X = X(�, c). As X,X− > 0 and as X
is càdlàg, almost every path of X is bounded away from zero and � has
the desired integrability. Conversely, given (�, �), de�ne X via (2.3) and
c := �X; then X = X(�, c). From admissibility we deduce �⊤ΔR > −1 up
to evanescence, which in turn shows X > 0. Now X− > 0 by a standard
property of stochastic exponentials [34, II.8a], so (�, c) ∈ A.

Preferences. LetD be a càdlàg adapted strictly positive process such that
E
[ ∫ T

0 Ds �
∘(ds)

]
< ∞ and �x p ∈ (−∞, 0) ∪ (0, 1). We de�ne the utility

random �eld
Ut(x) := Dt

1
px

p, x ∈ [0,∞), t ∈ [0, T ],

where 1/0 := ∞. To wit, this is any p-homogeneous utility random �eld
such that a constant consumption yields �nite expected utility. The positive
number 1 − p is called the relative risk aversion of U . Sometimes we shall
assume that there are constants 0 < k1 ≤ k2 <∞ such that

k1 ≤ Dt ≤ k2, t ∈ [0, T ]. (2.4)

The expected utility corresponding to a consumption strategy c ∈ A is
given by E[

∫ T
0 Ut(ct)�

∘(dt)]. We recall that this is either E[UT (cT )] or
E[
∫ T

0 Ut(ct) dt+UT (cT )]. In the case without intermediate consumption, Ut
is irrelevant for t < T . We remark that Zariphopoulou [74] and Tehranchi [73]
have used utility functions modi�ed by a multiplicative random variable, in
the case where utility is obtained from terminal wealth.
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Remark 2.2. The process D can be used for discounting utility and con-
sumption, or to determine the weight of intermediate consumption compared
to terminal wealth. Our utility functional can also be related to the usual
power utility function 1

px
p in the following ways. If we write

E
[ ∫ T

0
Ut(ct)�

∘(dt)
]

= E
[ ∫ T

0

1
pc
p
t dKt

]
for dKt := Dt �

∘(dt), we have the usual power utility, but with a stochastic

clock K (cf. Goll and Kallsen [25]).
To model taxation of the consumption, let % > −1 be the tax rate and

D := (1 + %)−p. If c represents the cash�ow out of the portfolio, c/(1 + %)
is the e�ectively obtained amount of the consumption good, yielding the
instantaneous utility 1

p(ct/(1 + %t))
p = Ut(ct). Similarly, DT can model a

multiplicative bonus payment.
For yet another alternative, assume either that there is no intermediate

consumption or that D is a martingale, and that E[DT ] = 1. Then

E
[ ∫ T

0
Ut(ct)�

∘(dt)
]

= EP̃
[ ∫ T

0

1
pc
p
t �
∘(dt)

]
with the equivalent probability P̃ de�ned by dP̃ = DT dP . This is the
standard power utility problem for an agent with subjective beliefs, i.e., who
uses P̃ instead of the objective probability P .

Of course, these applications can be combined in a multiplicative way.

We assume that the value of the utility maximization problem is �nite:

u(x0) := sup
c∈A(x0)

E
[ ∫ T

0
Ut(ct)�

∘(dt)
]
<∞. (2.5)

This is a standing assumption for the entire chapter. It is void if p < 0
because then U < 0. If p > 0, it needs to be checked on a case-by-
case basis (see also Remark 4.7). A strategy (�̂, ĉ) ∈ A(x0) is optimal if
E
[ ∫ T

0 Ut(ct)�
∘(dt)

]
= u(x0). Of course, a no-arbitrage property is required

to guarantee its existence. Let M S be the set of equivalent �-martingale
measures for S. If

M S ∕= ∅, (2.6)

arbitrage is excluded in the sense of the NFLVR condition (see Delbaen and
Schachermayer [17]). We can cite the following existence result of Karatzas
and �itkovi¢ [43]; it was previously obtained by Kramkov and Schacher-
mayer [49] for the case without intermediate consumption.

Proposition 2.3. Under (2.4) and (2.6), there exists an optimal strategy

(�̂, ĉ) ∈ A. The corresponding wealth process X̂ = X(�̂, ĉ) is unique. The

consumption strategy ĉ can be chosen to be càdlàg and is unique P ⊗ �∘-a.e.
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In the sequel, ĉ denotes a càdlàg version. We note that under (2.6), the
requirement X(�, c)− > 0 in the de�nition of A is automatically satis�ed
as soon as X(�, c) > 0, because X(�, c) is then a positive supermartingale
under an equivalent measure.

Remark 2.4. In Proposition 2.3, the assumption on D can be weakened
by exploiting that (2.6) is invariant under equivalent changes of measure.
Suppose that D = D′D′′, where D′ meets (2.4) and D′′ is a martingale
with unit expectation. As in Remark 2.2, we consider the problem under
the probability dP̃ = D′′T dP , then Proposition 2.3 applies under P̃ with D′

instead of D, and we obtain the existence of a solution also under P .

II.3 The Opportunity Process

This section introduces the main object under discussion. We do not yet
impose the existence of an optimal strategy, but recall the standing assump-
tion (2.5). To apply dynamic programming, we introduce for each (�, c) ∈ A
and t ∈ [0, T ] the set

A(�, c, t) =
{

(�̃, c̃) ∈ A : (�̃, c̃) = (�, c) on [0, t]
}
. (3.1)

These are the controls available on (t, T ] after having used (�, c) until t. The
notation c̃ ∈ A(�, c, t) means that there exists �̃ such that (�̃, c̃) ∈ A(�, c, t).
Given (�, c) ∈ A, we consider the value process

Jt(�, c) := ess sup
c̃∈A(�,c,t)

E
[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt]. (3.2)

We choose the càdlàg version of this process (see Proposition 6.2 in the
Appendix). The p-homogeneity of the utility functional leads to the following
factorization of J .

Proposition 3.1. There exists a unique càdlàg semimartingale L, called

opportunity process, such that

Lt
1
p

(
Xt(�, c)

)p
= Jt(�, c) = ess sup

c̃∈A(�,c,t)
E
[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt] (3.3)

for any admissible strategy (�, c) ∈ A. In particular, LT = DT .

Proof. Let (�, c), (�̌, č) ∈ A and X := X(�, c), X̌ := X(�̌, č). We claim that

1

X̌p
t

ess sup
c̃∈A(�̌,č,t)

E
[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt] (3.4)

=
1

Xp
t

ess sup
c̃∈A(�,c,t)

E
[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt].
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Indeed, using the lattice property given in Fact 6.1, we can �nd a sequence
(cn) in A(�̌, č, t) such that, with a monotone increasing limit,

Xp
t

X̌p
t

ess sup
c̃∈A(�̌,č,t)

E
[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt] =

Xp
t

X̌p
t

lim
n
E
[ ∫ T

t
Us(c

n
s )�∘(ds)

∣∣∣ℱt]
= lim

n
E
[ ∫ T

t
Us
(
Xt
X̌t
cns
)
�∘(ds)

∣∣∣ℱt] ≤ ess sup
c̃∈A(�,c,t)

E
[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt],

where we have used Fact 6.3 in the last step. The claim follows by symmetry.
Thus, if we de�ne Lt := Jt(�, c)/

[
1
p

(
Xt(�, c)

)p], L does not depend on the
choice of (�, c) ∈ A and inherits the properties of J(�, c) andX(�, c) > 0.

The opportunity process describes (p times) the maximal amount of con-
ditional expected utility that can be accumulated on [t, T ] from one unit of
wealth. Note that the value function (2.5) can be expressed as u(x) = L0

1
px

p.
In a Markovian setting, the factorization of the value function (which

then replaces the value process) is very classical; for instance, it can already
be found in Merton [56]. Mania and Tevzadze [54] study power utility from
terminal wealth in a continuous semimartingale model; that paper contains
some of the basic notions used here as well.

Remark 3.2. Let D be a martingale with D0 = 1 and P̃ as in Remark 2.2.
Bayes' rule and (3.3) show that L̃ := L/D can be understood as �opportunity
process under P̃ � for the standard power utility function.

Remark 3.3. We can now formalize the fact that the optimal strategies (in
a suitable parametrization) do not depend on the current level of wealth, a
special feature implied by the choice of power utility. If (�̂, ĉ) ∈ A is optimal,
X̂ = X(�̂, ĉ), and �̂ = ĉ/X̂ is the optimal propensity to consume, then (�̂, �̂)
de�nes a conditionally optimal strategy for the problem

ess sup
c̃∈A(�,c,t)

E
[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt]; for any (�, c) ∈ A, t ∈ [0, T ].

To see this, �x (�, c) ∈ A and t ∈ [0, T ]. De�ne the pair (�̄, c̄) by �̄ =

�1[0,t] + �̂1(t,T ] and c̄ = c1[0,t] + Xt(�,c)

X̂t
ĉ1(t,T ] and let X̄ := X(�̄, c̄). Note

that (�̂, ĉ) is conditionally optimal in A(�̂, ĉ, t), as otherwise Fact 6.1 yields a
contradiction to the global optimality of (�̂, ĉ). Now (3.4) with (�̌, č) := (�̂, ĉ)
shows that (�̄, c̄) is conditionally optimal in A(�, c, t). The result follows as
c̄/X̄ = ĉ/X̂ = �̂ on (t, T ] by Fact 6.3.

The martingale optimality principle of dynamic programming takes the
following form in our setting.
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Proposition 3.4. Let (�, c) ∈ A be an admissible strategy and assume that

E[
∫ T

0 Us(cs)�
∘(ds)] > −∞. Then the process

Lt
1
p

(
Xt(�, c)

)p
+

∫ t

0
Us(cs)�(ds), t ∈ [0, T ]

is a supermartingale; it is a martingale if and only if (�, c) is optimal.

Proof. Combine Proposition 3.1 and Proposition 6.2.

The following lemma collects some elementary properties of L. The
bounds are obtained by comparison with no-trade strategies, hence they are
independent of the price process. If D is deterministic or if there are con-
stants k1, k2 > 0 as in (2.4), we obtain bounds which are model-independent;
they depend only on the utility function and the time to maturity.

Lemma 3.5. The opportunity process L is a special semimartingale.

(i) If p ∈ (0, 1), L is a supermartingale satisfying

Lt ≥
(
�∘[t, T ]

)−p
E
[ ∫ T

t
Ds �

∘(ds)
∣∣∣ℱt], 0 ≤ t ≤ T (3.5)

and L,L− > 0. In particular, L ≥ k1 if D ≥ k1.

(ii) If p < 0, L satis�es

0 ≤ Lt ≤
(
�∘[t, T ]

)−p
E
[ ∫ T

t
Ds �

∘(ds)
∣∣∣ℱt], 0 ≤ t ≤ T (3.6)

and in particular Lt ≤ k2

(
�∘[t, T ]

)1−p
if D ≤ k2. In the case without

intermediate consumption, L is a submartingale. Moreover, in both

cases, L,L− > 0 if there exists an optimal strategy (�̂, ĉ).

Proof. Consider the cases where either p > 0, or p < 0 and there is no
intermediate consumption. Then � ≡ 0, c ≡ x01{T} is an admissible strat-
egy and Proposition 3.4 shows that Lt 1

px
p
0 +

∫ t
0 Us(0)�(ds) = Lt

1
px

p
0 is a

supermartingale, proving the super/submartingale properties in (i) and (ii).
Let p be arbitrary and assume there is no intermediate consumption.

Applying (3.3) with � ≡ 0 and c ≡ x01{T}, we get Lt
1
px

p
0 ≥ E[UT (cT )∣ℱt] =

E[DT ∣ℱt]1
px

p
0. Hence Lt ≥ E[DT ∣ℱt] if p > 0 and Lt ≤ E[DT ∣ℱt] if p < 0,

which corresponds to (3.5) and (3.6) for this case.
If there is intermediate consumption (and p is arbitrary), we consume

at a constant rate after the �xed time t. That is, we use (3.3) with � ≡ 0

and c = x0(T − t + 1)−11[t,T ] to obtain Lt 1
px

p
0 ≥ E

[ ∫ T
t Us(cs)�

∘(ds)
∣∣ℱt] =

1
px

p
0(1+T − t)−pE

[ ∫ T
t Ds �

∘(ds)
∣∣ℱt]. This ends the proof of (3.5) and (3.6).

In the case p < 0, (3.6) shows that L is dominated by a martingale, hence
L is of class (D) and in particular a special semimartingale.
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It remains to prove the positivity. If p > 0, (3.5) shows L > 0 and
then L− > 0 follows by the minimum principle for positive supermartin-
gales. For p < 0, let X̂ = X(�̂, ĉ) be the optimal wealth process. Clearly
L > 0 follows from (3.3) with (�̂, ĉ). From Proposition 3.4 we have that
1
pX̂

pL+
∫
Us(ĉs)�(ds) is a negative martingale, hence X̂pL is a positive su-

permartingale. Therefore P [inf0≤t≤T X̂
p
t Lt > 0] = 1 and it remains to note

that the paths of X̂p are P -a.s. bounded because X̂, X̂− > 0.

The following concerns the submartingale property in Lemma 3.5(ii).

Example 3.6. Consider the case with intermediate consumption and assume
that D ≡ 1 and S ≡ 1. Then an optimal strategy is given by (�̂, ĉ) ≡
(0, x0/(1+T )) and Lt = (1+T−t)1−p is a decreasing function. In particular,
L is not a submartingale.

Remark 3.7. We can also consider the utility maximization problem under
constraints in the following sense. Suppose that for each (!, t) ∈ Ω × [0, T ]
we are given a set Ct(!) ⊆ ℝd. We assume that each of these sets contains
the origin. A strategy (�, c) ∈ A is called C -admissible if �t(!) ∈ Ct(!) for
all (!, t), and the set of all these strategies is denoted by AC . The example
(�, c) ≡ (0, x0/�

∘[0, T ]) shows that AC ∕= ∅.
We do not impose assumptions on the set-valued mapping C at this stage.

For dynamic programming, the relevant point is that the constraints are
speci�ed as a pointwise condition in (!, t), rather than as a set of processes
�. We note that all arguments in this section remain valid if A is replaced by
AC throughout. This generalization is not true for the subsequent section,
and existence of an optimal strategy is not guaranteed for general C .

II.4 Relation to the Dual Problem

We discuss how the problem dual to utility maximization relates to the
opportunity process L. We assume (2.4) and (2.6) in the entire Sec-

tion II.4, hence Proposition 2.3 applies. The dual problem will be de�ned
on a domain Y introduced below. Since its de�nition is slightly cumber-
some, we point out that to follow the results in the body of this chapter,
only two facts about Y are needed. First, the density process of each mar-
tingale measure Q ∈ M S , scaled by a certain constant y0, is contained in
Y . Second, each element of Y is a positive supermartingale.

Following [43], the dual problem is

inf
Y ∈Y (y0)

E
[ ∫ T

0
U∗t (Yt)�

∘(dt)
]
, (4.1)

where y0 := u′(x0) = L0x
p−1
0 and U∗t is the convex conjugate of x 7→ Ut(x),

U∗t (y) := sup
x>0

{
Ut(x)− xy

}
= −1

qy
qD�

t . (4.2)
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We have denoted by

� :=
1

1− p
> 0, q :=

p

p− 1
∈ (−∞, 0) ∪ (0, 1) (4.3)

the relative risk tolerance and the exponent conjugate to p, respectively.
These constants will be used very often in the sequel and it is useful to note
sign(p) = − sign(q). It remains to de�ne the domain Y = Y (y0). Let

X = {H ∙ S : H ∈ L(S), H ∙ S is bounded below}

be the set of gains processes from trading. The set of �supermartingale
densities� is de�ned by

Y ∗ = {Y ≥ 0 càdlàg : Y0 ≤ y0, Y G supermartingale for all G ∈X };

its subset corresponding to probability measures equivalent to P on ℱT is

Y M = {Y ∈ Y ∗ : Y > 0 is a martingale and Y0 = y0}.

We place ourselves in the setting of [43] by considering the same dual domain
Y D ⊆ Y ∗. It consists of density processes of (the regular parts of) the
�nitely additive measures in the �((L∞)∗, L∞)-closure of {YT : Y ∈ Y M } ⊂
L1 ⊆ (L∞)∗. More precisely, we multiply each density with the constant y0.
We refer to [43] for details as the precise construction of Y D is not important
here, it is relevant for us only that Y M ⊆ Y D ⊆ Y ∗. In particular, y0M S ⊆
Y D if we identify measures and their density processes. For notational
reasons, we make the dual domain slightly smaller and let

Y := {Y ∈ Y D : Y > 0}.

By [43, Theorem 3.10] there exists a unique Ŷ = Ŷ (y0) ∈ Y such that the
in�mum in (4.1) is attained, and it is related to the optimal consumption ĉ
via the marginal utility by

Ŷt = ∂x Ut(x)∣x=ĉt = Dtĉ
p−1
t (4.4)

on the support of �∘. In the case without intermediate consumption, an
existence result was previously obtained in [49].

Remark 4.1. All the results stated below remain true if we replace Y by
{Y ∈ Y ∗ : Y > 0}; i.e., it is not important for our purposes whether we use
the dual domain of [43] or the one of [49]. This is easily veri�ed using the
fact that Y D contains all maximal elements of Y ∗ (see [43, Theorem 2.10]).
Here Y ∈ Y ∗ is called maximal if Y = Y ′B, for some Y ′ ∈ Y ∗ and some
càdlàg nonincreasing process B ∈ [0, 1], implies B ≡ 1.
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Proposition 4.2. Let (ĉ, �̂) ∈ A be an optimal strategy and X̂ = X(�̂, ĉ).
The solution to the dual problem is given by

Ŷ = LX̂p−1.

Proof. As LT = DT and ĉT = X̂T , (4.4) already yields ŶT = LT X̂
p−1
T .

Moreover, by Lemma 7.1 in the Appendix, Ŷ has the property that

Zt := ŶtX̂t +

∫ t

0
Ŷsĉs �(ds) = ŶtX̂t + p

∫ t

0
Us(ĉs)�(ds)

is a martingale. By Proposition 3.4, Z̃t := LtX̂
p
t + p

∫ t
0 Us(ĉs)�(ds) is also a

martingale. The terminal values of these martingales coincide, hence Z̃ = Z.
We deduce Ŷ = LX̂p−1 as X̂ > 0.

The formula Ŷ = LX̂p−1 could be used to de�ne the opportunity process
L. This is the approach taken in Muhle-Karbe [58] (see also Kallsen and
Muhle-Karbe [40]), where utility from terminal wealth is considered and the
opportunity process is used as a tool to verify the optimality of an explicit
candidate solution. Our approach via the value process has the advantage
that it immediately yields the properties in Lemma 3.5 and monotonicity
results (see Section II.5).

II.4.1 The Dual Opportunity Process

We now introduce the analogue of L for the dual problem. De�ne for Y ∈ Y
and t ∈ [0, T ] the set

Y (Y, t) :=
{
Ỹ ∈ Y : Ỹ = Y on [0, t]

}
.

We recall the constants (4.3) and the standing assumptions (2.4) and (2.6).

Proposition 4.3. There exists a unique càdlàg process L∗, called dual op-
portunity process, such that for all Y ∈ Y and t ∈ [0, T ],

−1
qY

q
t L
∗
t = ess inf

Ỹ ∈Y (Y,t)
E
[ ∫ T

t
U∗s (Ỹs)�

∘(ds)
∣∣∣ℱt].

An alternative description is

L∗t =

⎧⎨⎩ess supY ∈Y E
[ ∫ T

t D�
s (Ys/Yt)

q �∘(ds)
∣∣∣ℱt] if q ∈ (0, 1),

ess infY ∈Y E
[ ∫ T

t D�
s (Ys/Yt)

q �∘(ds)
∣∣∣ℱt] if q < 0

and the extrema are attained at Y = Ŷ .



II.4 Relation to the Dual Problem 17

Proof. The fork convexity of Y [43, Theorem 2.10] shows that if Y, Y̌ ∈ Y
and Ỹ ∈ Y (Y̌ , t), then Y 1[0,t) + (Yt/Y̌t)Ỹ 1[t,T ] is in Y (Y, t). It also implies
that if A ∈ ℱt and Y 1, Y 2 ∈ Y (Y, t), then Y 11A + Y 21Ac ∈ Y (Y, t). The
proof of the �rst claim is now analogous to that of Proposition 3.1. The
second part follows by using that L∗ does not depend on Y .

The process L∗ is related to L by a simple power transformation.

Proposition 4.4. Let � = 1
1−p . Then L

∗ = L�.

Proof. The martingale property of Zt := X̂tŶt+
∫ t

0 ĉsŶs �(ds) from Lemma 7.1
implies that X̂tŶt = E[ZT ∣ℱt] −

∫ t
0 ĉsŶs �(ds) = E

[ ∫ T
t ĉsŶs �

∘(ds)
∣∣ℱt] =

E
[ ∫ T

t D�
s Ŷ

q
s �∘(ds)

∣∣ℱt], where the last equality is obtained by expressing ĉ
via (4.4). The right hand side equals Ŷ q

t L
∗
t by Proposition 4.3; so we have

shown X̂Ŷ = Ŷ qL∗. On the other hand, (LX̂p−1)q = Ŷ q by Proposition 4.2
and this can be written as X̂Ŷ = Ŷ qL� . We deduce L∗ = L� as Ŷ > 0.

II.4.2 Reverse Hölder Inequality and Boundedness of L

Let q = p
p−1 be the exponent conjugate to p. Given a general positive process

Y , we consider the following inequality of reverse Hölder type:⎧⎨⎩
∫ T

�
E
[
(Ys/Y� )q

∣∣ℱ� ]�∘(ds) ≤ Cq if q < 0,∫ T

�
E
[
(Ys/Y� )q

∣∣ℱ� ]�∘(ds) ≥ Cq if q ∈ (0, 1),

(Rq(P ))

for all stopping times 0 ≤ � ≤ T and some constant Cq > 0 independent
of � . It is useful to recall that q < 0 corresponds to p ∈ (0, 1) and vice versa.

Without intermediate consumption, Rq(P ) reduces to E[(YT /Y� )q∣ℱ� ] ≤
Cq (resp. �≥�). Inequalities of this type are well known. See, e.g., Doléans-
Dade and Meyer [19] for an introduction or Delbaen et al. [16] and the
references therein for some connections to �nance. In most applications, the
considered exponent q is greater than one; Rq(P ) then takes the form as for
q < 0. We recall once more the standing assumptions (2.4) and (2.6).

Proposition 4.5. The following are equivalent:

(i) The process L is uniformly bounded away from zero and in�nity.

(ii) Inequality Rq(P ) holds for the dual minimizer Ŷ ∈ Y .

(iii) Inequality Rq(P ) holds for some Y ∈ Y .

Proof. Under the standing assumption (2.4), a one-sided bound for L always
holds by Lemma 3.5, namely L ≥ k1 if p ∈ (0, 1) and L ≤ const. if p < 0.

(i) is equivalent to (ii): We use (2.4) and then Propositions 4.3 and 4.4
to obtain that

∫ T
� E

[
(Ŷs/Ŷ� )q

∣∣ℱ� ]�∘(ds) = E
[ ∫ T

� (Ŷs/Ŷ� )q �∘(ds)
∣∣ℱ� ] ≤
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k−�1 E
[ ∫ T

� D�
s (Ŷs/Ŷ� )q �∘(ds)

∣∣ℱ� ] = k−�1 L∗� = k−�1 L�� . Thus when p ∈ (0, 1)

and hence q < 0, Rq(P ) for Ŷ is equivalent to an upper bound for L. For
p < 0, we replace k1 by k2.

(iii) implies (i): Assume p ∈ (0, 1). Using Propositions 4.4 and 4.3
and (4.2), −1

qY
q
t L

�
t ≤ E

[ ∫ T
t U∗s (Ys)�

∘(ds)
∣∣ℱt] ≤ −1

qk
�
2

∫ T
t E[Y q

s ∣ℱt]�∘(ds).
Hence L ≤ k2C

−�
q . If p < 0, we obtain L ≥ k1C

−�
q in the same way.

If the equivalent conditions of Proposition 4.5 are satis�ed, we say that
�Rq(P ) holds� for the given �nancial market model. Although quite frequent
in the literature, this condition is rather restrictive in the sense that it often
fails in explicit models that have stochastic dynamics. For instance, in the
a�ne models of [40], L is an exponentially a�ne function of a typically
unbounded factor process, in which case Proposition 4.5 implies that Rq(P )
fails. Similarly, L is an exponentially quadratic function of an Ornstein-
Uhlenbeck process in the model of Kim and Omberg [47]. On the other
hand, exponential Lévy models have constant dynamics and here L turns
out to be simply a smooth deterministic function.

In a given model, it may be hard to check whether Rq(P ) holds. Re-
calling y0M S ⊆ Y , an obvious approach in view of Proposition 4.5(iii) is
to choose for Y/y0 the density process of some speci�c martingale measure.
We illustrate this with an essentially classical example.

Example 4.6. Assume that R is a special semimartingale with decomposi-
tion

R = � ∙ ⟨Rc⟩+MR, (4.5)

where Rc denotes the continuous local martingale part of R, � ∈ L2
loc(R

c),
and MR is the local martingale part of R. Suppose that the process

�t :=

∫ t

0
�⊤s d⟨Rc⟩s �s , t ∈ [0, T ]

is uniformly bounded. Then Z := ℰ(−� ∙ Rc) is a martingale by Novikov's
condition and the measure Q ≈ P with density dQ/dP = ZT is a local
martingale measure for S as Zℰ(R) = ℰ(−� ∙ Rc + MR) by Yor's formula;
hence y0Z ∈ Y . Fix q. Using Zq = ℰ(−q� ∙ Rc) exp

(
1
2q(q − 1)�

)
, and that

ℰ(−q� ∙ Rc) is a martingale by Novikov's condition, one readily checks that
Z satis�es inequality Rq(P ).

If R is continuous, (4.5) is the structure condition of Schweizer [71] and
under (2.6) R is necessarily of this form. Then � is called mean-variance
tradeo� process and Q is the �minimal� martingale measure. In Itô process
models, � takes the form �t =

∫ t
0 �
⊤
s �s ds, where � is the market price of risk

process. Thus � will be bounded whenever � is.

Remark 4.7. The example also gives a su�cient condition for (2.5). This
is of interest only for p ∈ (0, 1) and we remark that for the case of Itô
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process models with bounded �, the condition corresponds to Karatzas and
Shreve [42, Remark 6.3.9].

Indeed, if there exists Y ∈ Y satisfying Rq(P ), then with (4.2) and (2.4)
it follows that the the value of the dual problem (4.1) is �nite, and this
su�ces for (2.5), as in Kramkov and Schachermayer [50].

The rest of the section studies the dependence of Rq(P ) on q.

Remark 4.8. Assume that Y satis�es Rq(P ) with a constant Cq. If q1 is
such that q < q1 < 0 or 0 < q < q1 < 1, then Rq1(P ) is satis�ed with

Cq1 =
(
�∘[0, T ]

)1−q1/q(Cq)q1/q.
Similarly, if q < 0 < q1 < 1, we can take Cq1 = (Cq)

q1/q. This follows from
Jensen's inequality.

There is also a partial converse.

Lemma 4.9. Let 0 < q < q1 < 1 and let Y > 0 be a supermartingale. If Y
satis�es Rq1(P ), it also satis�es Rq(P ).

In particular, the following dichotomy holds: Y satis�es either all or none

of the inequalities
{

Rq(P ), q ∈ (0, 1)
}
.

Proof. From Lemma 4.10 stated below we have
∫ T
t E

[
(Ys/Yt)

q
∣∣ℱt]�∘(ds) ≥∫ T

t

(
E
[
(Ys/Yt)

q1
∣∣ℱt]) 1−q

1−q1 �∘(ds). Noting that 1−q
1−q1 > 1, we apply Jensen's

inequality to the right-hand side and then use Rq1(P ) to deduce the claim

with Cq :=
(
�∘[t, T ]

) q−q1
1−q1 (Cq1)

1−q
1−q1 . The dichotomy follows by the previous

remark.

For future reference, we state separately the main step of the above proof.

Lemma 4.10. Let Y > 0 be a supermartingale. For �xed 0 ≤ t ≤ s ≤ T ,

� : (0, 1)→ ℝ+, q 7→ �(q) :=
(
E
[
(Ys/Yt)

q
∣∣ℱt]) 1

1−q

is a monotone decreasing function P -a.s. If in addition Y is a martingale,

then limq→1− �(q) = exp
(
− E

[
(Ys/Yt) log(Ys/Yt)

∣∣ℱt]) P -a.s., where the

conditional expectation has values in ℝ ∪ {+∞}.

Proof. Suppose �rst that Y is a martingale; by scaling we may assume
E[Y.] = 1. We de�ne a probability Q ≈ P on ℱs by dQ/dP := Ys. With
r := (1− q) ∈ (0, 1) and Bayes' formula,

�(q) =
(
Y 1−q
t EQ

[
Y q−1
s

∣∣ℱt]) 1
1−q

= Yt

(
EQ
[
(1/Ys)

r
∣∣ℱt]) 1

r
.

This is increasing in r by Jensen's inequality, hence decreasing in q.
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Now let Y be a supermartingale. We can decompose it as Yu = BuMu,
u ∈ [0, s], where M is a martingale and Bs = 1. That is, Mt = E[Ys∣ℱt]
and Bt = Yt/E[Ys∣ℱt] ≥ 1, by the supermartingale property. Hence Bq/(q−1)

t

is decreasing in q ∈ (0, 1). Together with the �rst part, it follows that

�(q) = B
q/(q−1)
t

(
E
[
(Ms/Mt)

q
∣∣ℱt]) 1

1−q is decreasing.
Assume again that Y is a martingale. The limit limq→1− log

(
�(q)

)
can

be calculated as

lim
q→1−

log
(
E
[
(Ys/Yt)

q
∣∣ℱt])

1− q
= lim

q→1−
−
E
[
(Ys/Yt)

q log(Ys/Yt)
∣∣ℱt]

E
[
(Ys/Yt)q

∣∣ℱt] P -a.s.

using l'Hôpital's rule and E[(Ys/Yt)∣ℱt] = 1. The result follows using mono-
tone and bounded convergence in the numerator and dominated convergence
in the denominator.

Remark 4.11. The limiting case q = 1 corresponds to the entropic in-
equality RL logL(P ) which reads

∫ T
� E

[
(Ys/Y� ) log(Ys/Y� )

∣∣ℱ� ]�∘(ds) ≤ C1.
Lemma 4.10 shows that for a martingale Y > 0, Rq1(P ) with q1 ∈ (0, 1)
is weaker than RL logL(P ), which, in turn, is obviously weaker than Rq0(P )
with q0 > 1.

A much deeper argument [19, Proposition 5] shows that if Y is a martin-
gale satisfying the �condition (S)� that k−1Y− ≤ Y ≤ kY− for some k > 0,
then Y satis�es Rq0(P ) for some q0 > 1 if and only if it satis�es Rq(P ) for
some q < 0, and then by Remark 4.8 also Rq1(P ) for all q1 ∈ (0, 1).

Coming back to the utility maximization problem, we obtain the follow-
ing dichotomy from Lemma 4.9 and the implication (iii) ⇒ (ii) in Proposi-
tion 4.5.

Corollary 4.12. For the given market model, Rq(P ) holds either for all or

no values of q ∈ (0, 1).

II.5 Applications

In this section we consider only the case with intermediate consumption.
We assume (2.4) and (2.6). However, we remark that all results except for
Proposition 5.4 and Remark 5.5 hold true as soon as there exists an optimal
strategy (�̂, ĉ) ∈ A.

We �rst show that given the opportunity process, the optimal propensity
to consume �̂ can be expressed in feedback form, and therefore any result
about L leads to a statement about �̂. This extends results known for special
settings (e.g., Stoikov and Zariphopoulou [72]).

Theorem 5.1. With � = 1
1−p we have

ĉt =
(Dt

Lt

)�
X̂t and hence �̂t =

(Dt

Lt

)�
. (5.1)
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Proof. This follows from Proposition 4.2 via (4.4) and (2.2).

Remark 5.2. In Theorem III.3.2 (and Remark III.3.6) of Chapter III we
establish the same formula for �̂ in the utility maximization problem under
constraints as described in Remark 3.7, under the sole assumption that an
optimal constrained strategy exists.

The special case where the constraints set C ⊆ ℝd is linear can be de-
duced from Theorem 5.1 by rede�ning the price process S. For instance, set
S1 ≡ 1 for C = {(x1, . . . , xd) ∈ ℝd : x1 = 0}.

In the remainder of the section we discuss how certain changes in the
model and the discounting process D a�ect the optimal propensity to con-
sume. This is based on (5.1) and the relation

1
px

p
0Lt = ess sup

c∈A(0,x01{T},t)
E
[ ∫ T

t
Ds

1
pc
p
s �
∘(ds)

∣∣∣ℱt], (5.2)

which is immediate from Proposition 3.1. In the present non-Markovian
setting the parametrization by the propensity to consume is crucial as one
cannot make statements for ��xed wealth�. There is no immediate way to
infer results about ĉ, except of course for the initial value ĉ0 = �̂0x0.

II.5.1 Variation of the Investment Opportunities

It is classical in economics to compare two �identical� agents with utility
function U , where only one has access to a stock market. The opportunity
to invest in risky assets gives rise to two contradictory e�ects. The presence
of risk incites the agent to save cash for the uncertain future; this is the
precautionary savings e�ect and its strength is related to the absolute pru-

dence P(U) = −U ′′′/U ′′. On the other hand, the agent may prefer to invest
rather than to consume immediately. This substitution e�ect is related to
the absolute risk aversion A (U) = −U ′′/U ′.

Classical economic theory (e.g., Gollier [27, Proposition 74]) states that
in a one period model, the presence of a complete �nancial market makes
the optimal consumption at time t = 0 smaller if P(U) ≥ 2A (U) holds
everywhere on (0,∞), and larger if the converse inequality holds. For power
utility, the former condition holds if p < 0 and the latter holds if p ∈ (0, 1).
We go a step further in the comparison by considering two di�erent sets of
constraints, instead of giving no access to the stock market at all (which is
the constraint {0}).

Let C and C ′ be set-valued mappings of constraints as in Remark 3.7,
and let C ′ ⊆ C in the sense that C ′t (!) ⊆ Ct(!) for all (t, !). Assume that
there exist corresponding optimal constrained strategies.

Proposition 5.3. Let �̂ and �̂′ be the optimal propensities to consume for

the constraints C and C ′, respectively. Then C ′ ⊆ C implies �̂ ≤ �̂′ if p > 0
and �̂ ≥ �̂′ if p < 0. In particular, ĉ0 ≤ ĉ′0 if p > 0 and ĉ0 ≥ ĉ′0 if p < 0.
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Proof. Let L and L′ be the corresponding opportunity processes; we make
use of Remarks 3.7 and 5.2. Consider relation (5.2) with AC instead of A
and the analogue for L′ with AC ′ . We see that AC ′ ⊆ AC implies 1

pL
′ ≤ 1

pL,
as the supremum is taken over a larger set in the case of C . By (5.1), �̂ is a
decreasing function of L.

Proposition 5.4. The optimal propensity to consume satis�es

�̂t ≤
(k2/k1)�

1 + T − t
if p ∈ (0, 1) and �̂t ≥

(k2/k1)�

1 + T − t
if p < 0.

In particular, we have a model-independent deterministic threshold indepen-

dent of p in the standard case D ≡ 1,

�̂t ≤
1

1 + T − t
if p ∈ (0, 1) and �̂t ≥

1

1 + T − t
if p < 0.

Proof. This follows from Lemma 3.5 and (5.1). The second part can also be
seen as special case of Proposition 5.3 with constraint set C ′ = {0} since
then �̂′ = (1 + T − t)−1 as in Example 3.6.

The threshold (1 + T − t)−1 coincides with the optimal propensity to
consume for the log-utility function (cf. [25]), which formally corresponds
to p = 0. This suggests that the threshold is attained by �̂(p) in the limit
p→ 0, a result we prove in Chapter V.

Remark 5.5. Uniform bounds for �̂ opposite to the ones in Proposition 5.4
exist if and only if Rq(P ) holds for the given �nancial market model. Quan-
titatively, if Cq > 0 is the constant for Rq(P ), then

�̂t ≥
(k2

k1

)� 1

Cq
if p ∈ (0, 1) and �̂t ≤

(k1

k2

)� 1

Cq
if p < 0.

This follows from (5.1) and (2.4) by (the proof of) Proposition 4.5. In view
of Corollary 4.12 we have the following dichotomy: �̂ = �̂(p) has a uniform
upper bound either for all values of p < 0, or for none of them.

II.5.2 Variation of D

We now study how �̂ is a�ected if we increase D on some time interval
[t1, t2). To this end, let 0 ≤ t1 < t2 ≤ T be two �xed points in time and � a
bounded càdlàg adapted process which is strictly positive and nonincreasing
on [t1, t2). In addition to Ut(x) = Dt

1
px

p we consider the utility random �eld

U ′t(x) := D′t
1
px

p, D′ :=
(
1 + �1[t1,t2)

)
D.

As an interpretation, recall the modeling of taxation by D from Re-
mark 2.2. Then we want to �nd out how the agent reacts to a temporary
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change of the tax policy on [t1, t2)�in particular whether a reduction of the
tax rate % := D−1/p − 1 stimulates consumption. For p > 0, the next result
shows this to be true during [t1, t2), while the contrary holds before the pol-
icy change and there is no e�ect after t2. An agent with p < 0 reacts in the
opposite way. Remark 2.2 also suggests other interpretations of the same
result.

Proposition 5.6. Let �̂ and �̂′ be the optimal propensities to consume for

U and U ′, respectively. Then⎧⎨⎩
�̂′t < �̂t if t < t1,

�̂′t > �̂t if t ∈ [t1, t2),

�̂′t = �̂t if t ≥ t2.

Proof. Let L and L′ be the opportunity processes for U and U ′. We con-
sider (5.2) and compare it with its analogue for L′, whereD is replaced byD′.
As � > 0, we then see that L′t > Lt for t < t1; moreover, L′t = Lt for t ≥ t2.
Since � is nonincreasing, we also see that L′t < (1+�t)Lt for t ∈ [t1, t2). It re-
mains to apply (5.1). For t < t1, �̂′ = (D′t/L

′
t)
� = (Dt/L

′
t)
� < (Dt/Lt)

� = �̂.
For t ∈ [t1, t2) we have

�̂′ = (D′t/L
′
t)
� =

((1 + �t)Dt

L′t

)�
>
((1 + �t)Dt

(1 + �t)Lt

)�
= �̂,

while for t ≥ t2, D′t = Dt implies �̂′t = �̂t.

Remark 5.7. (i) For t2 = T , the statement of Proposition 5.6 remains true
if the closed interval is chosen in the de�nition of D̃.

(ii) One can see [72, Proposition 12] as a special case of Proposition 5.6.
In our notation, the authors consider D = 1[0,T )K1 + 1{T}K2 for two con-
stants K1,K2 > 0 and obtain monotonicity of the consumption with respect
to the ratio K2/K1. This is proved in a Markovian setting by a comparison
result for PDEs.

II.6 Appendix A: Dynamic Programming

This appendix collects the facts about dynamic programming which are used
in this chapter. Recall the standing assumption (2.5), the set A(�, c, t)
from (3.1) and the process J from (3.2). We begin with the lattice property.

Fact 6.1. Fix (�, c) ∈ A and let Γt(c̃) := E[
∫ T
t Us(c̃s)�

∘(ds)∣ℱt]. The set
{Γt(c̃) : c̃ ∈ A(�, c, t)} is upward �ltering for each t ∈ [0, T ].

Indeed, if (�i, ci) ∈ A(�, c, t), i = 1, 2, we have Γt(c
1) ∨ Γt(c

2) = Γt(c
3)

for (�3, c3) := (�1, c1)1A + (�2, c2)1Ac with A := {Γt(c1) > Γt(c
2)}. Clearly

(�3, c3) ∈ A(�, c, t). Regarding Remark 3.7, we note that �3 satis�es the
constraints if �1 and �2 do.
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Proposition 6.2. Let (�, c) ∈ A and It(�, c) := Jt(�, c) +
∫ t

0 Us(cs)�(ds).
If E[ ∣It(�, c)∣ ] < ∞ for each t, then I(�, c) is a supermartingale having a

càdlàg version. It is a martingale if and only if (�, c) is optimal.

Proof. The technique of proof is well known; see El Karoui and Quenez [46]
or Laurent and Pham [52] for arguments in di�erent contexts.

We �x (�, c) ∈ A as well as 0 ≤ t ≤ u ≤ T and prove the supermartin-
gale property. Note that It(�, c) = ess supc̃∈A(�,c,t) Υt(c̃) for the martingale

Υt(c̃) := E
[ ∫ T

0 Us(c̃s)�
∘(ds)

∣∣ℱt]. (More precisely, the expectation is well
de�ned with values in ℝ ∪ {−∞} by (2.5).)

As Υu(c̃) = Γu(c̃) +
∫ u

0 Us(c̃s)�(ds), Fact 6.1 implies that there exists
a sequence (cn) in A(�, c, u) such that limn Υu(cn) = Iu(�, c) P -a.s., where
the limit is monotone increasing in n. We conclude that

E[Iu(�, c)∣ℱt] = E[lim
n

Υu(cn)∣ℱt] = lim
n
E[Υu(cn)∣ℱt]

≤ ess supc̃∈A(�,c,u)E[Υu(c̃)∣ℱt] = ess supc̃∈A(�,c,u) Υt(c̃)

≤ ess supc̃∈A(�,c,t) Υt(c̃) = It(�, c).

To construct the càdlàg version, denote by I ′ the process obtained by
taking the right limits of t 7→ It(�, c) =: It through the rational numbers,
with I ′T := IT . Since I is a supermartingale and the �ltration satis�es the
�usual assumptions�, these limits exist P -a.s., I ′ is a (càdlàg) supermartin-
gale, and I ′t ≤ It P -a.s. (see Dellacherie and Meyer [18, VI.1.2]). But in fact,
equality holds here because for all (�̃, c̃) ∈ A(�, c, t) we have

Υt(c̃) = E
[ ∫ T

0
Us(c̃s) d�

∘
∣∣∣ℱt] = E[IT (�̃, c̃)∣ℱt] = E[IT ∣ℱt] ≤ I ′t

due to IT = I ′T , and hence also I ′t ≥ ess supc̃∈A(�,c,t) Υt(c̃) = It. Therefore I ′

is a càdlàg version of I.
Turning to the martingale property, let (�, c) be optimal. Then I0(�, c) =

Υ0(�, c) = E[IT (�, c)], so the supermartingale I(�, c) is a martingale. Con-
versely, this relation states that (�, c) is optimal, by de�nition of I(�, c).

The following property was used in the body of the text.

Fact 6.3. Consider (�, c), (�′, c′) ∈ A with corresponding wealths Xt, X
′
t at

time t ∈ [0, T ] and (�′′, c′′) ∈ A(�′, c′, t). Then

c1[0,t] +
Xt

X ′t
c′′ 1(t,T ] ∈ A(�, c, t).

Indeed, for the trading strategy �1[0,t] + �′′1(t,T ], the corresponding wealth
process is X1[0,t] + Xt

X′t
X ′′1(t,T ] > 0 by (2.1).
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II.7 Appendix B: Martingale Property of the Op-

timal Processes

The purpose of this appendix is to provide a statement which follows from [43]
and is known to its authors, but which we could not �nd in the literature.
For the case without intermediate consumption, the following assertion is
contained in [49, Theorem 2.2].

Lemma 7.1. Assume (2.4) and (2.6). Let (�, c) ∈ A, X = X(�, c) and

Y ∈ Y D , then

Zt := XtYt +

∫ t

0
csYs �(ds), t ∈ [0, T ]

is a supermartingale. If (X, c, Y ) = (X̂, ĉ, Ŷ ) are the optimal processes solv-

ing the primal and the dual problem, respectively, then Z is a martingale.

Proof. It follows from [43, Theorem 3.10(vi)] that E[ZT ] = E[Z0] for the
optimal processes, so it su�ces to prove the �rst part.

(i) Assume �rst that Y ∈ Y M , i.e., Y/Y0 is the density process of a
measure Q ≈ P . As Y M ⊆ Y ∗, the process X+

∫
cu �(du) = x0+

∫
X−� dR

is a Q-supermartingale, that is, EQ[Xt +
∫ t

0 cu �(du)∣ℱs] ≤ Xs +
∫ s

0 cu �(du)
for s ≤ t. We obtain the claim by Bayes' rule,

E
[
XtYt +

∫ t

s
cuYu �(du)

∣∣∣ℱs] ≤ XsYs.

(ii) Let Y ∈ Y D be arbitrary. By [43, Corollary 2.11], there is a sequence
Y n ∈ Y M which Fatou-converges to Y . Consider the supermartingale Y ′ :=
lim infn Y

n. By �itkovi¢ [75, Lemma 8], Y ′t = Yt P -a.s. for all t in a (dense)
subset Λ ⊆ [0, T ] which contains T and whose complement is countable. It
follows from Fatou's lemma and step (i) that Z is a supermartingale on Λ;
indeed, for s ≤ t in Λ,

E
[
XtYt +

∫ t

s
cuYu �(du)

∣∣∣ℱs] = E
[
XtY

′
t +

∫ t

s
cuY

′
u �(du)

∣∣∣ℱs]
≤ lim inf

n
E
[
XtY

n
t +

∫ t

s
cuY

n
u �(du)

∣∣∣ℱs]
≤ lim inf

n
XsY

n
s = XsYs P -a.s.

We can extend Z∣Λ to [0, T ] by taking right limits in Λ and obtain a right-
continuous supermartingale Z ′ on [0, T ], by right-continuity of the �ltration.
But Z ′ is indistinguishable from Z because Z is also right-continuous. Hence
Z is a supermartingale as claimed.
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Chapter III

Bellman Equation

In this chapter, which corresponds to the article [59], we consider a general
semimartingale model with closed portfolio constraints. We focus on the
local representation of the optimization problem, which is formalized by the
Bellman equation.

III.1 Introduction

This chapter presents the local dynamic programming for power utility max-
imization in a general constrained semimartingale framework. We have seen
that the homogeneity of these utility functions leads to a factorization of
the value process into a power of the current wealth and the opportunity
process L. In our setting, the Bellman equation describes the drift rate of L
and clari�es the local structure of our problem. Finding an optimal strategy
boils down to maximizing a random function y 7→ g(!, t, y) on ℝd for every
state ! and date t. This function is given in terms of the semimartingale
characteristics of L as well as the asset returns, and its maximum yields
the drift rate of L. The role of the opportunity process is to augment the
information contained in the return characteristics in order to have a local
su�cient statistic for the global optimization problem.

We present three main results. First, we show that if there exists an opti-
mal strategy for the utility maximization problem, the opportunity process L
solves the Bellman equation and we provide a local description of the optimal
strategies. We state the Bellman equation in two forms, as an identity for the
drift rate of L and as a backward stochastic di�erential equation (BSDE) for
L. Second, we characterize the opportunity process as the minimal solution

of this equation. Finally, given some solution and an associated strategy, one
can ask whether the strategy is optimal and the solution is the opportunity
process. We present two di�erent approaches which lead to two veri�cation

theorems not comparable in strength unless the constraints are convex.
The present dynamic programming approach should be seen as comple-
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mentary to convex duality, which remains the only method to obtain exis-

tence of optimal strategies in general models; see Kramkov and Schacher-
mayer [49], Karatzas and �itkovi¢ [43], Karatzas and Kardaras [41]. In some
cases the Bellman equation can be solved directly, e.g., in the setting of
Example 5.8 with continuous asset prices or in the Lévy process setting of
Chapter IV. In addition to existence, one then typically obtains additional
properties of the optimal strategies.

This chapter is organized as follows. The next section speci�es the op-
timization problem in detail, recalls the opportunity process and the mar-
tingale optimality principle, and �xes the notation for the characteristics.
We also introduce set-valued processes describing the budget condition and
state the assumptions on the portfolio constraints. Section III.3 derives the
Bellman equation, �rst as a drift condition and then as a BSDE. It becomes
more explicit as we specialize to the case of continuous asset prices. The def-
inition of a solution of the Bellman equation is given in Section III.4, where
we show the minimality of the opportunity process. Section III.5 deals with
the veri�cation problem, which is converse to the derivation of the Bellman
equation since it requires the passage from the local maximization to the
global optimization problem. We present an approach via the value pro-
cess and a second approach via a de�ator, which corresponds to the dual
problem in a suitable setting. Appendix A is linked to Section III.3 and
contains the measurable selections for the construction of the Bellman equa-
tion. It is complemented by Appendix B, where we construct an alternative
parametrization of the market model by representative portfolios.

III.2 Preliminaries

The following notation is used. If x, y ∈ ℝ are reals, x+ = max{x, 0} and
x ∧ y = min{x, y}. We set 1/0 := ∞ where necessary. If z ∈ ℝd is a
d-dimensional vector, zi is its ith coordinate, z⊤ its transpose, and ∣z∣ =
(z⊤z)1/2 the Euclidean norm. If X is an ℝd-valued semimartingale and
� is an ℝd-valued predictable integrand, the vector stochastic integral is a
scalar semimartingale with initial value zero and denoted by

∫
� dX or by

� ∙ X. The quadratic variation of X is the d × d-matrix [X] := [X,X]
and if Y is a scalar semimartingale, [X,Y ] is the d-vector which is given
by [X,Y ]i := [Xi, Y ]. Relations between measurable functions hold almost
everywhere unless otherwise mentioned. Our reference for any unexplained
notion from stochastic calculus is Jacod and Shiryaev [34].

III.2.1 The Optimization Problem

We �x the time horizon T ∈ (0,∞) and a stochastic basis (Ω,ℱ ,F, P ),
where the �ltration F = (ℱt)t∈[0,T ] satis�es the usual assumptions of right-
continuity and completeness as well as ℱ0 = {∅,Ω} P -a.s. We consider an
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ℝd-valued càdlàg semimartingale R with R0 = 0 representing the returns of d
risky assets. Their discounted prices are given by the stochastic exponential
S = ℰ(R) = (ℰ(R1), . . . , ℰ(Rd)). Our agent also has a bank account at his
disposal; it does not pay interest.

The agent is endowed with a deterministic initial capital x0 > 0. A
trading strategy is a predictable R-integrable ℝd-valued process �, where
�i indicates the fraction of wealth (or the portfolio proportion) invested
in the ith risky asset. A consumption strategy is a nonnegative optional
process c such that

∫ T
0 ct dt < ∞ P -a.s. We want to consider two cases.

Either consumption occurs only at the terminal time T (utility from �terminal
wealth� only); or there is intermediate consumption plus a bulk consumption
at the time horizon. To unify the notation, we introduce the measure � on
[0, T ] by

�(dt) :=

{
0 in the case without intermediate consumption,

dt in the case with intermediate consumption.

Let also �∘ := �+�{T}, where �{T} is the unit Dirac measure at T . The wealth
process X(�, c) corresponding to a pair (�, c) is de�ned by the equation

Xt(�, c) = x0 +

∫ t

0
Xs−(�, c)�s dRs −

∫ t

0
cs �(ds), 0 ≤ t ≤ T.

We de�ne the set of trading and consumption pairs

A0(x0) :=
{

(�, c) : X(�, c) > 0, X−(�, c) > 0 and cT = XT (�, c)
}
.

These are the strategies that satisfy the budget constraint. The convention
cT = XT (�, c) means that all the remaining wealth is consumed at time
T . We consider also exogenous constraints imposed on the agent. For each
(!, t) ∈ Ω × [0, T ] we are given a set Ct(!) ⊆ ℝd which contains the origin.
The set of (constrained) admissible strategies is

A(x0) :=
{

(�, c) ∈ A0(x0) : �t(!) ∈ Ct(!) for all (!, t)
}

;

it is nonempty as 0 ∈ Ct(!). Further assumptions on the set-valued mapping
C will be introduced in Section III.2.4. We �x the initial capital x0 and
usually write A for A(x0). We write c ∈ A and call c admissible if there
exists � such that (�, c) ∈ A; an analogous convention is used for similar
expressions.

We will often parametrize the consumption strategies as a fraction of
wealth. Let (�, c) ∈ A and X = X(�, c). Then

� :=
c

X

is called the propensity to consume corresponding to (�, c). This yields a one-
to-one correspondence between the pairs (�, c) ∈ A and the pairs (�, �) such
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that � ∈ A and � is a nonnegative optional process satisfying
∫ T

0 �s ds <∞
P -a.s. and �T = 1 (see Remark II.2.1 for details). We shall abuse the nota-
tion and identify a consumption strategy with the corresponding propensity
to consume, e.g., we write (�, �) ∈ A. Note that

X(�, �) = x0ℰ
(
� ∙ R− � ∙ �

)
.

This simpli�es verifying that some pair (�, �) is admissible as X(�, �) > 0
implies X−(�, �) > 0 (cf. [34, II.8a]).

The preferences of the agent are modeled by a time-additive random
utility function as follows. Let D be a càdlàg, adapted, strictly positive
process such that E

[ ∫ T
0 Ds �

∘(ds)
]
< ∞ and �x p ∈ (−∞, 0) ∪ (0, 1). We

de�ne the power utility random �eld

Ut(x) := Dt
1
px

p, x ∈ (0,∞), t ∈ [0, T ].

This is the general form of a p-homogeneous utility random �eld such that
a constant consumption yields �nite expected utility. Interpretations and
applications for the process D are discussed in Chapter II. We denote by U∗

the convex conjugate of x 7→ Ut(x),

U∗t (y) = sup
x>0

{
Ut(x)− xy

}
= −1

qy
qD�

t ; (2.1)

here q := p
p−1 ∈ (−∞, 0) ∪ (0, 1) is the exponent conjugate to p and the

constant � := 1
1−p > 0 is the relative risk tolerance of U . Note that we

exclude the well-studied logarithmic utility (e.g., Goll and Kallsen [25]) which
corresponds to p = 0.

The expected utility corresponding to a consumption strategy c ∈ A is
E
[ ∫ T

0 Ut(ct)�
∘(dt)

]
, i.e., either E[UT (cT )] or E[

∫ T
0 Ut(ct) dt+UT (cT )]. The

utility maximization problem is said to be �nite if

u(x0) := sup
c∈A(x0)

E
[ ∫ T

0
Ut(ct)�

∘(dt)
]
<∞. (2.2)

Note that this condition is void if p < 0 as then U < 0. If (2.2) holds, a
strategy (�, c) ∈ A(x0) is called optimal if E

[ ∫ T
0 Ut(ct)�

∘(dt)
]

= u(x0).
Finally, we introduce the following sets; they are of minor importance

and used only in the case p < 0:

Af :=
{

(�, c) ∈ A :
∫ T

0 Ut(ct)�
∘(dt) > −∞

}
,

AfE :=
{

(�, c) ∈ A : E
[∫ T

0 Ut(ct)�
∘(dt)

]
> −∞

}
.

Anticipating that (2.2) will be in force, the indices stand for ��nite� and
��nite expectation�. Clearly AfE ⊆ Af ⊆ A, and equality holds if p ∈ (0, 1).
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III.2.2 Opportunity Process

We recall the opportunity process. We assume (2.2) in this section, which
ensures that the following process is �nite. By Proposition II.3.1 and Re-
mark II.3.7 there exists a unique càdlàg semimartingale L, called opportunity

process, such that

Lt
1
p

(
Xt(�, c)

)p
= ess sup

c̃∈A(�,c,t)
E
[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt] (2.3)

for any (�, c) ∈ A, where A(�, c, t) :=
{

(�̃, c̃) ∈ A : (�̃, c̃) = (�, c) on [0, t]
}
.

We note that LT = DT and that u(x0) = L0
1
px

p
0 is the value function

from (2.2). The following is contained in Lemma II.3.5.

Lemma 2.1. L is a special semimartingale for all p. If p ∈ (0, 1), then
L,L− > 0. If p < 0, the same holds provided that an optimal strategy exists.

Proposition 2.2 (Proposition II.3.4). Let (�, c) ∈ AfE. Then the process

Lt
1
p

(
Xt(�, c)

)p
+

∫ t

0
Us(cs)�(ds), t ∈ [0, T ]

is a supermartingale; it is a martingale if and only if (�, c) is optimal.

This is the �martingale optimality principle�. The expected terminal
value of this process equals E[

∫ T
0 Ut(ct)�

∘(dt)], hence the assertion fails for
(�, c) ∈ A ∖ AfE .

III.2.3 Semimartingale Characteristics

In the remainder of this section we introduce tools which are necessary to
describe the optimization problem locally. The use of semimartingale char-
acteristics and set-valued processes follows [25] and [41], which consider log-
arithmic utility and convex constraints. That problem di�ers from ours in
that it is �myopic�, i.e., the characteristics of R are su�cient to describe the
local problem and so there is no opportunity process.

We refer to [34] for background regarding semimartingale characteristics
and random measures. Let �R be the integer-valued random measure associ-
ated with the jumps of R and let ℎ : ℝd → ℝd be a cut-o� function, i.e., ℎ is
bounded and ℎ(x) = x in a neighborhood of x = 0. Let (BR, CR, �R) be the
predictable characteristics of R relative to ℎ. The canonical representation

of R (cf. [34, II.2.35]) is

R = BR +Rc + ℎ(x) ∗ (�R − �R) + (x− ℎ(x)) ∗ �R. (2.4)

The �nite variation process (x − ℎ(x)) ∗ �R contains essentially the �large�
jumps of R. The rest is the canonical decomposition of the semimartingale
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R̄ = R − (x − ℎ(x)) ∗ �R, which has bounded jumps: BR = BR(ℎ) is
predictable of �nite variation, Rc is a continuous local martingale, and �nally
ℎ(x) ∗ (�R − �R) is a purely discontinuous local martingale.

As L is a special semimartingale (Lemma 2.1), it has a canonical de-
composition L = L0 + AL + ML. Here L0 is constant, AL is predictable
of �nite variation and also called the drift of L, ML is a local martingale,
and AL0 = ML

0 = 0. Analogous notation will be used for other special semi-
martingales. It is then possible to consider the characteristics (AL, CL, �L)
of L with respect to the identity instead of a cut-o� function. Writing x′ for
the identity on ℝ, the canonical representation is

L = L0 +AL + Lc + x′ ∗ (�L − �L);

see [34, II.2.38]. It will be convenient to use the joint characteristics of the
ℝd×ℝ-valued process (R,L). We denote a generic point in ℝd×ℝ by (x, x′)
and let (BR,L, CR,L, �R,L) be the characteristics of (R,L) with respect to the
function (x, x′) 7→ (ℎ(x), x′). More precisely, we choose �good� versions of
the characteristics so that they satisfy the properties given in [34, II.2.9]. For
the (d+ 1)-dimensional process (R,L) we have the canonical representation(
R
L

)
=

(
0
L0

)
+

(
BR

AL

)
+

(
Rc

Lc

)
+

(
ℎ(x)
x′

)
∗(�R,L−�R,L)+

(
x− ℎ(x)

0

)
∗�R,L.

We denote by (bR,L, cR,L, FR,L;A) the di�erential characteristics with
respect to a predictable locally integrable increasing process A, e.g.,

At := t+
∑
i

Var(BRL,i)t +
∑
i,j

Var(CRL,ij)t +
(
∣(x, x′)∣2 ∧ 1

)
∗ �R,Lt .

Then bR,L ∙ A = BR,L, cR,L ∙ A = CR,L, and FR,L ∙ A = �R,L. We write
bR,L = (bR, aL)⊤ and cR,L =

(
cR cRL

(cRL)⊤ cL

)
, i.e., cRL is a d-vector satisfying

(cRL) ∙ A = ⟨Rc, Lc⟩. We will often use that∫
ℝd×ℝ

(∣x∣2 + ∣x′∣2) ∧ (1 + ∣x′∣) FR,L(d(x, x′)) <∞ (2.5)

because L is a special semimartingale (cf. [34, II.2.29]). Let Y be any scalar
semimartingale with di�erential characteristics (bY , cY , F Y ) relative to A
and a cut-o� function ℎ̄. We call

aY := bY +

∫ (
x− ℎ̄(x)

)
F Y (dx)

the drift rate of Y whenever the integral is well de�ned with values in
[−∞,∞], even if it is not �nite. Note that aY does not depend on the
choice of ℎ̄. If Y is special, the drift rate is �nite and even A-integrable (and
vice versa). As an example, aL is the drift rate of L and aL ∙ A = AL yields
the drift.
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Remark 2.3. Assume Y is a nonpositive scalar semimartingale. Then its
drift rate aY is well de�ned with values in [−∞,∞). Indeed, the fact that
Y = Y− + ΔY ≤ 0 implies that x ≤ −Y− F Y (dx)-a.e.

If Y is a scalar semimartingale with drift rate aY ∈ [−∞, 0], we call Y a
semimartingale with nonpositive drift rate. Here aY need not be �nite, as in
the case of a compound Poisson process with negative, non-integrable jumps.
We refer to Kallsen [39] for the concept of �-localization. Recalling that ℱ0

is trivial, we conclude the following, e.g., from [41, Appendix 3].

Lemma 2.4. Let Y be a semimartingale with nonpositive drift rate.

(i) Y is a �-supermartingale ⇔ aY is �nite ⇔ Y is �-locally of class (D).

(ii) Y is a local supermartingale ⇔ aY ∈ L(A) ⇔ Y is locally of class (D).

(iii) If Y is uniformly bounded from below, it is a supermartingale.

III.2.4 Constraints and Degeneracies

We introduce some set-valued processes that will be used in the sequel, that
is, for each (!, t) they describe a subset of ℝd. We refer to Rockafellar [64]
and Aliprantis and Border [1, �18] for background.

We start by expressing the budget constraint in this fashion. The process

C 0
t (!) :=

{
y ∈ ℝd : FRt (!)

{
x ∈ ℝd : y⊤x < −1

}
= 0
}

was called the natural constraints in [41]. Clearly C 0 is closed, convex,
and contains the origin. Moreover, one can check (see [41, �3.3]) that it is
predictable in the sense that for each closed G ⊆ ℝd, the lower inverse image
(C 0)−1(G) = {(!, t) : Ct(!) ∩G ∕= ∅} is predictable. (Here one can replace
closed by compact or by open; see [64, 1A].) A statement such as �C 0 is
closed� means that C 0

t (!) is closed for all (!, t); moreover, we will often
omit the arguments (!, t). We also consider the slightly smaller set-valued
process

C 0,∗ :=
{
y ∈ ℝd : FR

{
x ∈ ℝd : y⊤x ≤ −1

}
= 0
}
.

These processes relate to the budget constraint as follows.

Lemma 2.5. A process � ∈ L(R) satis�es ℰ(� ∙ R) ≥ 0 (> 0) up to evanes-

cence if and only if � ∈ C 0 (C 0,∗) P ⊗A-a.e.

Proof. Recall that ℰ(� ∙ R) > 0 if and only if 1 + �⊤ΔR > 0 ([34, II.8a]).
Writing V (x) = 1{x: 1+�⊤x≤0}(x), we have that (P ⊗ A){� /∈ C 0,∗} =

E[V (x) ∗ �RT ] = E[V (x) ∗ �RT ] = E
[∑

s≤T 1{x: 1+�⊤s ΔRs≤0}
]
. For the equiva-

lence with C 0, interchange strict and non-strict inequality signs.
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The process C 0,∗ is not closed in general (nor relatively open). Clearly
C 0,∗ ⊆ C 0, and in fact C 0 is the closure of C 0,∗: for y ∈ C 0

t (!), the sequence
{(1 + n−1)y}n≥1 is in C 0,∗

t (!) and converges to y. This implies that C 0,∗

is predictable; cf. [1, 18.3]. We will not be able to work directly with C 0,∗

because closedness is essential for the measurable selection arguments that
will be used.

We turn to the exogenous portfolio constraints, i.e., the set-valued process
C containing the origin. We consider the following conditions:

(C1) C is predictable.

(C2) C is closed.

(C3) If p ∈ (0, 1): There exists a (0, 1)-valued process � such that
y ∈ (C ∩ C 0) ∖ C 0,∗ =⇒ �y ∈ C for all � ∈ (�, 1), P ⊗A-a.e.

Condition (C3) is clearly satis�ed if C ∩ C 0 ⊆ C 0,∗, which includes the
case of a continuous process R, and it is always satis�ed if C is star-shaped
with respect to the origin or even convex. If p < 0, (C3) should be read as
always being satis�ed. We motivate (C3) by

Example 2.6. We assume that there is no intermediate consumption and
x0 = 1. Consider the one-period binomial model of a �nancial market, i.e.,
S = ℰ(R) is a scalar process which is constant up to time T , where it has
a single jump, say, P [ΔRT = −1] = p0 and P [ΔRT = K] = 1 − p0, where
K > 0 is a constant and p0 ∈ (0, 1). The �ltration is generated by R and
we consider C ≡ {0} ∪ {1}. Then E[U(XT (�))] = U(1) if �T = 0 and
E[U(XT (�))] = p0U(0) + (1− p0)U(1 +K) if �T = 1. If U(0) > −∞, and if
K is large enough, �T = 1 performs better and its terminal wealth vanishes

with probability p0 > 0. Of course, this cannot happen if U(0) = −∞,
i.e., p < 0. The constants can also be chosen such that both strategies are
optimal, so there is no uniqueness.

We have included only positive wealth processes in our de�nition of A;
only these match our multiplicative setting. Under (C3), the Inada condition
U ′(0) =∞ ensures that vanishing wealth is not optimal.

The �nal set-valued process is related to linear dependencies of the assets.
As in [41], the predictable process of null-investments is

N :=
{
y ∈ ℝd : y⊤bR = 0, y⊤cR = 0, FR{x : y⊤x ∕= 0} = 0

}
.

Its values are linear subspaces of ℝd, hence closed, and provide the pointwise
description of the null-space of H 7→ H ∙ R. That is, H ∈ L(R) satis�es
H ∙ R ≡ 0 if and only if H ∈ N P ⊗ A-a.e. An investment with values in
N has no e�ect on the wealth process.
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III.3 The Bellman Equation

We have now introduced the necessary notation to formulate our �rst main
result. Two special cases of our Bellman equation can be found in the pio-
neering work of Mania and Tevzadze [54] and Hu et al. [33]. These articles
consider models with continuous asset prices and we shall indicate the con-
nections as we specialize to that case in Section III.3.3. A related equation
also arises in the study of mean-variance hedging by �erný and Kallsen [11]
in the context of locally square-integrable semimartingales, although they do
not use dynamic programming explicitly. Due to the quadratic setting, that
equation is more explicit than ours and the mathematical treatment is quite
di�erent. Czichowsky and Schweizer [13] study a cone-constrained version of
the related Markowitz problem and there the equation is no longer explicit.

The Bellman equation highlights the local structure of our utility max-
imization problem. In addition, it has two main bene�ts. First, it can be
used as an abstract tool to derive properties of the optimal strategies and
the opportunity process. Second, one can try to solve the equation directly
in a given model and to deduce the optimal strategies. This is the point of
view taken in Section III.5 and obviously requires the precise form of the
equation.

The following assumptions are in force for the entire Section III.3.

Assumptions 3.1. The utility maximization problem is �nite, there exists
an optimal strategy (�̂, ĉ) ∈ A, and C satis�es (C1)-(C3).

III.3.1 Bellman Equation in Joint Characteristics

Our �rst main result is the Bellman equation stated as a description of
the drift rate of the opportunity process. We recall the conjugate function
U∗t (y) = −1

qy
qD�

t .

Theorem 3.2. The drift rate aL of the opportunity process satis�es

−p−1aL = U∗(L−) d�
dA + max

y∈C∩C 0
g(y), (3.1)

where g is the predictable random function

g(y) := L−y
⊤
(
bR + cRL

L−
+ (p−1)

2 cRy
)

+

∫
ℝd×ℝ

x′y⊤ℎ(x)FR,L(d(x, x′))

+

∫
ℝd×ℝ

(L− + x′)
{
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
FR,L(d(x, x′)).

(3.2)

The unique (P ⊗ �∘-a.e.) optimal propensity to consume is

�̂ =
(D
L

) 1
1−p

. (3.3)
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Any optimal trading strategy �∗ satis�es

�∗ ∈ arg max
C∩C 0

g (3.4)

and the corresponding optimal wealth process and consumption are given by

X∗ = x0ℰ
(
�∗ ∙ R− �̂ ∙ �

)
; c∗ = X∗�̂.

Note that the maximization in (3.1) can be understood as a local version
of the optimization problem. Indeed, recalling (2.1), the right hand side
of (3.1) is the maximum of a single function over certain points (k, y) ∈
ℝ+×ℝd that correspond to the admissible controls (�, �). Moreover, optimal
controls are related to maximizers of this function, a characteristic feature
of any dynamic programming equation. The maximum of g is not explicit
due to the jumps of R; this simpli�es in the continuous case considered in
Section III.3.3 below. Some mathematical comments are also in order.

Remark 3.3. (i) The random function g is well de�ned on C 0 in the
extended sense (see Lemma 6.2) and it does not depend on the choice
of the cut-o� function ℎ by [34, II.2.25].

(ii) For p < 0 we have a more precise statement: Given �∗ ∈ L(R) and �̂
as in (3.3), (�∗, �̂) is optimal if and only if �∗ takes values in C ∩ C 0

and maximizes g. This will follow from Corollary 5.4 applied to the
triplet (L, �∗, �̂).

(iii) For p ∈ (0, 1), partial results in this direction follow from Section III.5.
The question is trivial for convex C by the next item.

(iv) If C is convex, arg maxC∩C 0 g is unique in the sense that the di�erence
of any two elements lies in N (see Lemma 6.3).

We split the proof of Theorem 3.2 into several steps; the plan is as follows.
Let (�, �) ∈ AfE and denote X = X(�, �). We recall from Proposition 2.2
that

Z(�, �) := L1
pX

p +

∫
Us(�sXs)�(ds)

is a supermartingale, and a martingale if and only if (�, �) is optimal. Hence
we shall calculate its drift rate and then maximize over (�, �); the maximum
will be attained at any optimal strategy. This is fairly straightforward and
essentially the content of Lemma 3.7 below. In the Bellman equation, we
maximize over a subset of ℝd for each (!, t) and not over a set of strategies.
This �nal step is a measurable selection problem and its solution will be the
second part of the proof.

Lemma 3.4. Let (�, �) ∈ Af . The drift rate of Z(�, �) is

aZ(�,�) = X(�, �)p−
(
p−1aL + f(�) d�dA + g(�)

)
∈ [−∞,∞),

where ft(k) := Ut(k)− Lt−k and g is given by (3.2). Moreover, aZ(�̂,�̂) = 0,
and aZ(�,�) ∈ (−∞, 0] for (�, �) ∈ AfE.
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Proof. We can assume that the initial capital is x0 = 1. Let (�, �) ∈ Af ,
then in particular Z := Z(�, �) is �nite. We also set X := X(�, �). By Itô's
formula, we have Xp = ℰ(� ∙ R− � ∙ �)p = ℰ(Y ) with

Y = p(� ∙ R− � ∙ �) + p(p−1)
2 �⊤cR� ∙ A+

{
(1 + �⊤x)p − 1− p�⊤x

}
∗ �R.

Integrating by parts in the de�nition of Z and using Xs = Xs− �(ds)-a.e.
(path-by-path), we have X−p− ∙ Z = p−1(L−L0+L− ∙ Y +[L, Y ])+U(�) ∙ �.
Here

[L, Y ] = [Lc, Y c] +
∑

ΔLΔY

= p�⊤cRL ∙ A+ px′�⊤x ∗ �R,L + x′
{

(1 + �⊤x)p − 1− p�⊤x
}
∗ �R,L.

Thus X−p− ∙ Z equals

p−1(L− L0) + L−� ∙ R+ f(�) ∙ �+ L−
(p−1)

2 �⊤cR� ∙ A+ �⊤cRL ∙ A

+ x′�⊤x ∗ �R,L + (L− + x′)
{
p−1(1 + �⊤x)p − p−1 − �⊤x

}
∗ �R,L.

Writing x = ℎ(x) + x− ℎ(x) and R̄ = R− (x− ℎ(x)) ∗ �R as in (2.4),

X−p− ∙ Z = (3.5)

p−1(L− L0) + L−� ∙ R̄+ f(�) ∙ �+ L−�
⊤( cRL

L−
+ (p−1)

2 cR�
)
∙ A

+ x′�⊤ℎ(x) ∗ �R,L + (L− + x′)
{
p−1(1 + �⊤x)p − p−1 − �⊤ℎ(x)

}
∗ �R,L.

Since � need not be locally bounded, we use from now on a predictable cut-
o� function ℎ such that �⊤ℎ(x) is bounded, e.g., ℎ(x) = x1{∣x∣≤1}∩{∣�⊤x∣≤1}.
Then the compensator of x′�⊤ℎ(x) ∗ �R,L exists, since L is special.

Let (�, �) ∈ AfE . Then the compensator of the last integral in the
right hand side of (3.5) also exists; indeed, all other terms in that equality
are special, since Z is a supermartingale. The drift rate can now be read
from (3.5) and (2.4), and it is nonpositive by the supermartingale property.
The drift rate vanishes for the optimal (�̂, �̂) by the martingale condition
from Proposition 2.2.

Now consider (�, �) ∈ Af ∖ AfE . Note that necessarily p < 0 (otherwise
Af = AfE). Thus Z ≤ 0, so by Remark 2.3 the drift rate aZ is well
de�ned with values in [−∞,∞)�alternatively, this can also be read from
the integrals in (3.5) via (2.5). Using directly the de�nition of aZ , we �nd
the same formula for aZ is as above.

We do not have the supermartingale property for (�, �) ∈ Af ∖AfE , so it
is not evident that aZ(�,�) ≤ 0 in that case. However, we have the following

Lemma 3.5. Let (�, �) ∈ Af . Then aZ(�, �) ∈ [0,∞] implies aZ(�, �) = 0.
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Proof. Denote Z = Z(�, �). For p > 0 we have Af = AfE and the
claim is immediate from Lemma 3.4. Let p < 0. Then Z ≤ 0 and by
Lemma 2.4(iii), aZ ∈ [0,∞] implies that Z is a submartingale . Hence
E[ZT ] = E

[ ∫ T
0 Ut(�tXt(�, �))�∘(dt)

]
> −∞, that is, (�, �) ∈ AfE . Now

Lemma 3.4 yields aZ(�, �) ≤ 0.

We observe in Lemma 3.4 that the drift rate splits into separate functions
involving � and �, respectively. For this reason, we can single out the

Proof of the consumption formula (3.3). Let (�, �) ∈ A. Note the follow-
ing feature of our parametrization: we have (�, �∗) ∈ A for any nonnega-
tive optional process �∗ such that

∫ T
0 �∗s �(ds) < ∞ and �∗T = 1. Indeed,

X(�, �) = x0ℰ(� ∙ R− � ∙ �) is positive by assumption. As � is continuous,
X(�, �∗) = x0ℰ(� ∙ R− �∗ ∙ �) is also positive.

In particular, let (�̂, �̂) be optimal, � = (1−p)−1 and �∗ = (D/L)� ; then
(�̂, �∗) ∈ A. In fact the paths of U(�∗X(�̂, �∗)) = p−1D�p+1X(�̂, �∗)pL−�p

are bounded P -a.s. (because the processes are càdlàg; L,L− > 0 and �p+1 =
� > 0) so that (�̂, �∗) ∈ Af .

Note that P ⊗ �-a.e., we have �∗ = (D/L−)� = arg maxk≥0 f(k), hence
f(�∗) ≥ f(�̂). Suppose (P ⊗ �){f(�∗) > f(�̂)} > 0, then the formula from
Lemma 3.4 and aZ(�̂,�̂) = 0 imply aZ(�̂,�∗) ≥ 0 and (P⊗A){aZ(�̂,�∗) > 0} > 0,
a contradiction to Lemma 3.5. It follows that �̂ = �∗ P ⊗ �-a.e. since f has
a unique maximum.

Remark 3.6. The previous proof does not use the assumptions (C1)-(C3).

Lemma 3.7. Let � be a predictable process with values in C ∩ C 0,∗. Then

(P ⊗A)
{
g(�̂) < g(�)

}
= 0.

Proof. We argue by contradiction and assume (P ⊗ A){g(�̂) < g(�)} > 0.
By rede�ning �, we may assume that � = �̂ on the complement of this
predictable set. Then

g(�̂) ≤ g(�) and (P ⊗A){g(�̂) < g(�)} > 0. (3.6)

As � is �-bounded, we can �nd a constant C > 0 such that the process
�̃ := �1∣�∣≤C + �̂1∣�∣>C again satis�es (3.6); that is, we may assume that �
is R-integrable. Since � ∈ C ∩ C 0,∗, this implies (�, �̂) ∈ A (as observed
above, the consumption �̂ plays no role here). The contradiction follows as
in the previous proof.

In view of Lemma 3.7, the main task will be to construct a measurable

maximizing sequence for g.
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Lemma 3.8. Under Assumptions 3.1, there exists a sequence (�n) of pre-

dictable C ∩ C 0,∗-valued processes such that

lim sup
n

g(�n) = sup
C∩C 0

g P ⊗A-a.e.

We defer the proof of this lemma to Appendix III.6, together with the
study of the properties of g. The theorem can then be proved as follows.

Proof of Theorem 3.2. Let �n be as in Lemma 3.8. Then Lemma 3.7 with
� = �n yields g(�̂) = supC∩C 0 g, which is (3.4). By Lemma 3.4 we have
0 = aZ(�̂,�̂) = p−1aL + f(�̂) d�dA + g(�̂). This is (3.1) as f(�̂) = U∗(L−)
P ⊗ �-a.e. due to (3.3).

III.3.2 Bellman Equation as BSDE

In this section we express the Bellman equation as a BSDE. The unique
orthogonal decomposition of the local martingale ML with respect to R
(cf. [34, III.4.24]) leads to the representation

L = L0 +AL + 'L ∙ Rc +WL ∗ (�R − �R) +NL, (3.7)

where, using the notation of [34], 'L ∈ L2
loc(R

c), WL ∈ Gloc(�R), and NL is
a local martingale such that ⟨(NL)c, Rc⟩ = 0 and MP

�R
(ΔNL∣P̃) = 0. The

last statement means that E[(VΔNL)∗�RT ] = 0 for any su�ciently integrable
predictable function V = V (!, t, x). We also introduce

ŴL
t :=

∫
ℝd
WL(t, x) �R({t} × dx),

then Δ
(
WL ∗ (�R − �R)

)
= WL(ΔR)1{ΔR ∕=0} − ŴL by de�nition of the

purely discontinuous local martingale WL ∗ (�R − �R) and we can write

ΔL = ΔAL +WL(ΔR)1{ΔR ∕=0} − ŴL + ΔNL.

We recall that Assumptions 3.1 are in force. Now (3.1) can be restated as
follows, the random function g being the same as before but in new notation.

Corollary 3.9. The opportunity process L and the processes de�ned by (3.7)
satisfy the BSDE

L = L0− pU∗(L−) ∙ �− p max
y∈C∩C 0

g(y) ∙ A+'L ∙ Rc +WL ∗ (�R− �R) +NL

(3.8)
with terminal condition LT = DT , where g is given by

g(y) :=

L−y
⊤
(
bR + cR

( 'L
L−

+ (p−1)
2 y

))
+

∫
ℝd

(
ΔAL +WL(x)− ŴL

)
y⊤ℎ(x)FR(dx)

+

∫
ℝd

(
L− + ΔAL +WL(x)− ŴL

){
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
FR(dx).
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We observe that the orthogonal part NL plays a minor role here. In a
suitable setting, it is linked to the �dual problem�; see Remark 5.18.

It is possible (but notationally more cumbersome) to prove a version of
Lemma 3.4 using g as in Corollary 3.9 and the decomposition (3.7), thus
involving only the characteristics of R instead of the joint characteristics
of (R,L). Using this approach, we see that the increasing process A in the
BSDE can be chosen based on R and without reference to L. This is desirable
if we want to consider other solutions of the equation, as in Section III.4.
One consequence is that A can be chosen to be continuous if and only if R is
quasi left continuous (cf. [34, II.2.9]). Since p−1AL = −f(�̂) ∙ �− g(�̂) ∙ A,
Var(AL) is absolutely continuous with respect to A+ �, and we conclude:

Remark 3.10. If R is quasi left continuous, AL is continuous.

If R is quasi left continuous, �R({t} × ℝd) = 0 for all t by [34, II.1.19],
hence ŴL = 0 and we have the simpler formula

g(y) = L−y
⊤
(
bR + cR

( 'L
L−

+ (p−1)
2 y

))
+

∫
ℝd
WL(x)y⊤ℎ(x)FR(dx)

+

∫
ℝd

(
L− +WL(x)

){
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
FR(dx).

III.3.3 The Case of Continuous Prices

In this section we specialize the previous results to the case where R is a
continuous semimartingale and mild additional conditions are satis�ed. As
usual in this setting, the martingale part of R will be denoted by M rather
than Rc. In addition to Assumptions 3.1, the following conditions are in
force for the present Section III.3.3.

Assumptions 3.11.

(i) R is continuous,

(ii) R = M +
∫
d⟨M⟩� for some � ∈ L2

loc(M) (structure condition),

(iii) the orthogonal projection of C onto N ⊥ is closed.

Note that C 0,∗ = ℝd due to (i), in particular (C3) is void. When R is
continuous, it necessarily satis�es (ii) when a no-arbitrage property holds;
see Schweizer [71]. By (i) and (ii) we can write the di�erential characteristics
of R with respect to, e.g., At := t +

∑d
i=1⟨M i⟩t. It will be convenient to

factorize cR = ��⊤, where � is a predictable matrix-valued process; hence
��⊤ dA = d⟨M⟩. Then (ii) implies N = ker�⊤ because ��⊤y = 0 implies
(�⊤y)⊤(�⊤y) = 0. Since �⊤ : ker(�⊤)⊥ → �⊤ℝd is a homeomorphism, we
see that (iii) is equivalent to

�⊤C is closed.
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This condition depends on the semimartingale R. It is equivalent to the
closedness of C itself if � has full rank. For certain constraint sets (e.g.,
closed polyhedral or compact) the condition is satis�ed for all matrices �,
but not so, e.g., for non-polyhedral cone constraints. We mention that vio-
lation of (iii) leads to nonexistence of optimal strategies in simple examples
(cf. Example IV.3.5) and we refer to Czichowsky and Schweizer [14] for back-
ground.

Under (i), (3.7) is the more usual Kunita-Watanabe decomposition

L = L0 +AL + 'L ∙M +NL,

where 'L ∈ L2
loc(M) and NL is a local martingale such that [M,NL] = 0;

see Ansel and Stricker [2, cas 3]. If ∅ ∕= K ⊆ ℝd is a closed set, we denote
the Euclidean distance to K by dK(x) = min{∣x − y∣ : y ∈ K}, and d2

K is
the squared distance. We also de�ne the (set-valued) projection ΠK which
maps x ∈ ℝd to the points in K with minimal distance to x,

ΠK(x) =
{
y ∈ K : ∣x− y∣ = dK(x)

}
∕= ∅.

If K is convex, ΠK is the usual (single-valued) Euclidean projection. In the
present continuous setting, the random function g simpli�es considerably:

g(y) = L−y
⊤ ��⊤

(
�+

'L

L−
+ p−1

2 y
)

(3.9)

and so the Bellman BSDE becomes more explicit.

Corollary 3.12. Any optimal trading strategy �∗ satis�es

�⊤�∗ ∈ Π�⊤C
{
�⊤(1− p)−1

(
�+

'L

L−

)}
.

The opportunity process satis�es the BSDE

L = L0 − pU∗(L−) ∙ �+ F (L−, '
L) ∙ A+ 'L ∙M +NL; LT = DT ,

where

F (L−, '
L) =

1

2
L−

{
p(1− p)d2

�⊤C

(
�⊤(1− p)−1

(
�+

'L

L−

))
+ p

p−1

∣∣∣�⊤(�+
'L

L−

)∣∣∣2}.
If C is a convex cone, F (L−, '

L) = p
2(p−1)L−

∣∣Π�⊤C
{
�⊤
(
� + 'L

L−

)}∣∣2. If

C = ℝd, then F (L−, '
L) ∙ A = p

2(p−1)

∫
L−
(
� + 'L

L−

)⊤
d⟨M⟩

(
� + 'L

L−

)
and

the unique (mod. N ) optimal trading strategy is �∗ = (1− p)−1
(
�+ 'L

L−

)
.
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Proof. Let � = (1−p)−1. We obtain �⊤(arg maxC g) = Π�⊤C
{
�⊤�

(
�+ 'L

L−

)}
by completing the square in (3.9), moreover, for any �∗ ∈ arg maxC g,

g(�∗) = 1
2L−

{
�
(
�+

'L

L−

)⊤
��⊤

(
�+

'L

L−

)
− �−1d2

�⊤C

(
�⊤�

(
�+

'L

L−

))}
.

In the case where C , and hence �⊤C , is a convex cone, Π := Π�⊤C is single-
valued, positively homogeneous, and Πx is orthogonal to x − Πx for any
x ∈ ℝd. Writing Ψ := �⊤

(
�+ 'L

L−

)
we get g(�∗) = L−�(ΠΨ)⊤(Ψ− 1

2ΠΨ) =

L−
1
2�
(
ΠΨ)⊤

(
ΠΨ). Finally, ΠΨ = Ψ if C = ℝd. The result follows from

Corollary 3.9.

Of course the consumption formula (3.3) and Remark 3.3 still apply.
We remark that the BSDE for the unconstrained case C = ℝd (and with
� = 0, D = 1) was previously obtained in [54] in a similar spirit. A variant
of the constrained BSDE for an Itô process model (and � = 0, D = 1)
appears in [33], where a converse approach is taken: the equation is derived
only formally and then existence results for BSDEs are employed together
with a veri�cation argument. We shall extend that result in Section III.5
(Example 5.8) when we study veri�cation.

If L is continuous, the BSDE of Corollary 3.12 simpli�es if it is stated
for log(L) rather than L, but in general the given form is more convenient
as the jumps are �hidden� in NL.

Remark 3.13. (i) Continuity of R does not imply that L is continuous. For
instance, in the Itô process model of Barndor�-Nielsen and Shephard [3] with
Lévy driven coe�cients, the opportunity process is not continuous. See, e.g.,
Theorem 3.3 and the subsequent remark in Kallsen and Muhle-Karbe [40]. If
R satis�es the structure condition and the �ltration F is continuous, it clearly
follows that L is continuous. Here F is called continuous if all F-martingales
are continuous, as, e.g., for the Brownian �ltration. In general, L is related
to the predictable characteristics of the asset returns rather than their levels.
As an example, Lévy models have jumps but constant characteristics; here
L turns out to be a smooth function (see Chapter IV).

(ii) In the present setting we see that F has quadratic growth in 'L,
so that the Bellman equation is a �quadratic BSDE� (see also Example 5.8).
In general, F does not satisfy the bounds which are usually assumed in
the theory of such BSDEs. Together with existence results for the utility
maximization problem (see the citations from the introduction), the Bellman
equation yields various examples of BSDEs with the opportunity process as
a solution. This includes terminal conditions DT which are integrable and
unbounded (see also Remark II.2.4).
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III.4 Minimality of the Opportunity Process

This section considers the Bellman equation as such, having possibly many
solutions, and we characterize the opportunity process as the minimal solu-
tion. As mentioned above, it seems more natural to use the BSDE formula-
tion for this purpose (but see Remark 4.4). We �rst have to clarify what we
mean by a solution of the BSDE. We consider R and A as given. Since the
�nite variation part in the BSDE is predictable, a solution will certainly be
a special semimartingale. If ℓ is any special semimartingale, there exists a
unique orthogonal decomposition [34, III.4.24]

ℓ = ℓ0 +Aℓ + 'ℓ ∙ Rc +W ℓ ∗ (�R − �R) +N ℓ, (4.1)

using the same notation as in (3.7). These processes are unique in the sense
that the integrals are uniquely determined, and so it su�ces to consider the
left hand side of the BSDE for the notion of a solution. (In BSDE theory, a
solution would be, at least, a quadruple.) We de�ne the random function gℓ

as in Corollary 3.9, with L replaced by ℓ. Since ℓ is special, we have∫
ℝd×ℝ

(∣x∣2 + ∣x′∣2) ∧ (1 + ∣x′∣) FR,ℓ(d(x, x′)) <∞ (4.2)

and the arguments from Lemma 6.2 show that gℓ is well de�ned on C 0 with
values in ℝ ∪ {sign(p)∞}. Hence we can consider (formally at �rst) the
BSDE (3.8) with L replaced by ℓ, i.e.,

ℓ = ℓ0−pU∗(ℓ−) ∙ �−p max
y∈C∩C 0

gℓ(y) ∙ A+'ℓ ∙ Rc+W ℓ∗(�R−�R)+N ℓ (4.3)

with terminal condition ℓT = DT .

De�nition 4.1. A càdlàg special semimartingale ℓ is called a solution of the

Bellman equation (4.3) if

∙ ℓ, ℓ− > 0,

∙ there exists a C ∩ C 0,∗-valued process �̌ ∈ L(R) such that gℓ(�̌) =
supC∩C 0 gℓ <∞,

∙ ℓ and the processes from (4.1) satisfy (4.3) with ℓT = DT .

Moreover, we de�ne �̌ := (D/ℓ)� , where � = (1 − p)−1. We call (�̌, �̌) the
strategy associated with ℓ, and for brevity, we also call (ℓ, �̌, �̌) a solution.

If the process �̌ is not unique, we choose and �x one. The assumption
ℓ > 0 excludes pathological cases where ℓ jumps to zero and becomes posi-
tive immediately afterwards and thereby ensures that �̌ is admissible. More
precisely, the following holds.
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Remark 4.2. Let (ℓ, �̌, �̌) be a solution of the Bellman equation.

(i) (�̌, �̌) ∈ AfE .
(ii) supC∩C 0 gℓ is a predictable, A-integrable process.

(iii) If p ∈ (0, 1), gℓ is �nite on C ∩ C 0.

(iv) The condition ℓ > 0 is automatically satis�ed if (a) p ∈ (0, 1) or if (b)
p < 0 and there is no intermediate consumption and Assumptions 3.1
are satis�ed.

Proof. (i) We have
∫ T

0 �̌s �(ds) <∞ P -a.s. since the paths of ℓ are bounded
away from zero. Moreover,

∫ T
0 Ut(�̌tXt(�̌, �̌))�(dt) < ∞ as in the proof

of (3.3) (stated after Lemma 3.5). This shows (�̌, �̌) ∈ Af . The fact that
(�̌, �̌) ∈ AfE is contained in the proof of Lemma 4.9 below.

(ii) We have 0 = gℓ(0) ≤ supC∩C 0 gℓ = gℓ(�̌). Hence supC∩C 0 gℓ ∙ A is
well de�ned, and it is �nite because otherwise (4.3) could not hold.

(iii) Note that p > 0 implies gℓ > −∞ by its de�nition and (4.2), while
gℓ <∞ by assumption.

(iv) If p > 0, (4.3) states that Aℓ is decreasing. As ℓ− > 0 implies ℓ ≥ 0,
ℓ is a supermartingale by Lemma 2.4. Since ℓT = DT > 0, the minimum
principle for nonnegative supermartingales shows ℓ > 0. Under (b) the
assertion is a consequence of Theorem 4.5 below (which shows ℓ ≥ L > 0)
upon noting that the condition ℓ > 0 is not used in its proof when there is
no intermediate consumption.

It may seem debatable to make existence of the maximizer �̌ part of the
de�nition of a solution. However, associating a control with the solution is
crucial for the following theory. Some justi�cation is given by the following
result for the continuous case (where C 0,∗ = ℝd).

Proposition 4.3. Let ℓ be any càdlàg special semimartingale such that

ℓ, ℓ− > 0. Under Assumptions 3.11, (C1) and (C2), there exists a C ∩C 0,∗-
valued predictable process �̌ such that gℓ(�̌) = supC∩C 0 gℓ < ∞, and any

such process is R-integrable.

Proof. As gℓ is analogous to (3.9), it is continuous and its supremum over
ℝd is �nite. By continuity of R and the structure condition, � ∈ L(R) if and
only if

∫ T
0 �⊤ d⟨M⟩� =

∫ T
0 ∣�

⊤�∣2 dA <∞ P -a.s.
Assume �rst that C is compact, then Lemma 6.4 yields a measurable

selector � for arg maxC g. As in the proof of Corollary 3.12, �
⊤� ∈ Π�⊤C�⊤ 

for  := �
(
�+ 'ℓ

ℓ−

)
, which satis�es

∫ T
0 ∣�

⊤ ∣2 dA <∞ by de�nition of � and
'ℓ. We note that ∣�⊤�∣ ≤ ∣�⊤ ∣+∣�⊤�−�⊤ ∣ ≤ 2∣�⊤ ∣ due to the de�nition
of the projection and 0 ∈ C .

In the general case we approximate C by a sequence of compact con-
straints C n := C ∩ {x ∈ ℝd : ∣x∣ ≤ n}, each of which yields a selector �n

for arg maxCn g. By the above, ∣�⊤�n∣ ≤ 2∣�⊤ ∣, so the sequence (�⊤�n)n
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is bounded for �xed (!, t). A random index argument as in the proof of
Lemma 6.4 yields a selector # for a cluster point of this sequence. We have
# ∈ �⊤C by closedness of this set and we �nd a selector �̌ for the preimage
((�⊤)−1#)∩C using [64, 1Q]. We have �̌ ∈ arg maxC g as the sets C n increase
to C , and

∫ T
0 ∣�

⊤�̌∣2 dA ≤ 2
∫ T

0 ∣�
⊤ ∣2 dA <∞ shows �̌ ∈ L(R).

Another example for the construction of �̌ is given in Chapter IV. In
general, two ingredients are needed: Existence of a maximizer for �xed (!, t)
will typically require a compactness condition in the form of a no-arbitrage
assumption (in the previous proof, this is the structure condition). Moreover,
a measurable selection is required; here the techniques from the appendices
may be useful.

Remark 4.4. The BSDE formulation of the Bellman equation has the ad-
vantage that we can choose A based on R and speak about the class of
all solutions. However, we do not want to write proofs in this cumber-
some notation. Once we �x a solution ℓ (and maybe L, and �nitely many
other semimartingales), we can choose a new reference process Ã = A + A′

(where A′ is increasing), with respect to which our semimartingales admit
di�erential characteristics; in particular we can use the joint characteristics
(bR,ℓ, cR,ℓ, FR,ℓ; Ã). As we change A, all drift rates change in that they
are multiplied by dÃ/dA, so any (in)equalities between them are preserved.
With this in mind, we shall use the joint characteristics of (R, ℓ) in the se-
quel without further comment and treat the two formulations of the Bellman
equation as equivalent.

Our de�nition of a solution of the Bellman equation is loose in terms of
integrability assumptions. Even in the continuous case, it is unclear �how
many� solutions exist. The next result shows that we can always identify L
by taking the smallest one, i.e., L ≤ ℓ for any solution ℓ.

Theorem 4.5. Under Assumptions 3.1, the opportunity process L is char-

acterized as the minimal solution of the Bellman equation.

Remark 4.6. As a consequence, the Bellman equation has a bounded so-
lution if and only if the opportunity process is bounded (and similarly for
other integrability properties). In conjunction with Section II.4.2 this yields
examples of quadratic BSDEs which have bounded terminal value (for DT

bounded), but no bounded solution.

The proof of Theorem 4.5 is based on the following result; it is the fun-
damental property of any Bellman equation.

Proposition 4.7. Let (ℓ, �̌, �̌) be a solution of the Bellman equation. For

any (�, �) ∈ Af ,

Z(�, �) := ℓ1
p

(
X(�, �)

)p
+

∫
Us
(
�sXs(�, �)

)
�(ds) (4.4)



46 III Bellman Equation

is a semimartingale with nonpositive drift rate. Moreover, Z(�̌, �̌) is a local

martingale.

Proof. Let (�, �) ∈ Af . Note that Z := Z(�, �) satis�es sign(p)Z ≥ 0,
hence has a well de�ned drift rate aZ by Remark 2.3. The drift rate can be
calculated as in Lemma 3.4: If f ℓ is de�ned similarly to the function f in
that lemma but with L replaced by ℓ, then

aZ = X(�, �)p−
{
p−1aℓ + f ℓ(�) d�

dA + gℓ(�)
}

= X(�, �)p−
{(
f ℓ(�)− f ℓ(�̌)

) d�
dA + gℓ(�)− gℓ(�̌)

}
.

This is nonpositive because �̌ and �̌ maximize f ℓ and gℓ. For the special
case (�, �) := (�̌, �̌) we have aZ = 0 and so Z is a �-martingale, thus a local
martingale as sign(p)Z ≥ 0.

Remark 4.8. In Proposition 4.7, �semimartingale with nonpositive drift
rate� can be replaced by ��-supermartingale� if gℓ is �nite on C ∩ C 0.

Theorem 4.5 follows from the next lemma (which is actually stronger).
We recall that for p < 0 the opportunity process L can be de�ned without
further assumptions.

Lemma 4.9. Let ℓ be a solution of the Bellman equation. If p < 0, then
L ≤ ℓ. For p ∈ (0, 1), the same holds if (2.2) is satis�ed and there exists an

optimal strategy.

Proof. Let (ℓ, �̌, �̌) be a solution and de�ne Z(�, �) as in (4.4).
Case p < 0: We choose (�, �) := (�̌, �̌). As Z(�̌, �̌) is a negative lo-

cal martingale by Proposition 4.7, it is a submartingale. In particular,
E[ZT (�̌, �̌)] > −∞, and using LT = DT , this is the statement that the
expected utility is �nite, i.e., (�̌, �̌) ∈ AfE�this completes the proof of Re-
mark 4.2(i). Recall that �∘ = � + �{T}. With X̌ := X(�̌, �̌) and č := �̌X̌,
and using ℓT = DT = LT , we deduce

ℓt
1
pX̌

p
t +

∫ t

0
Us(čs)�(ds) = Zt(�̌, �̌) ≤ E

[
ZT (�̌, �̌)

∣∣ℱt]
≤ ess supc̃∈A(�̌,č,t)E

[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt]+

∫ t

0
Us(čs)�(ds)

= Lt
1
pX̌

p
t +

∫ t

0
Us(čs)�(ds),

where the last equality holds by (2.3). As 1
pX̌

p
t < 0, we have ℓt ≥ Lt.

Case p ∈ (0, 1): We choose (�, �) := (�̂, �̂) to be an optimal strategy.
Then Z(�̂, �̂) ≥ 0 is a supermartingale by Proposition 4.7 and Lemma 2.4(iii),
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and we obtain

ℓt
1
pX̂

p
t +

∫ t

0
Us(ĉs)�(ds) = Zt(�̂, �̂) ≥ E

[
ZT (�̂, �̂)

∣∣ℱt]
= E

[ ∫ T

0
Us(ĉs)�

∘(ds)
∣∣∣ℱt] = Lt

1
pX̂

p
t +

∫ t

0
Us(ĉs)�(ds)

by the optimality of (�̂, �̂) and (2.3). More precisely, we have used the fact
that (�̂, �̂) is also conditionally optimal (see Remark II.3.3). As 1

pX̂
p
t > 0,

we conclude ℓt ≥ Lt.

III.5 Veri�cation

Suppose that we have found a solution of the Bellman equation; then we want
to know whether it is the opportunity process and whether the associated
strategy is optimal. In applications, it might not be clear a priori that an op-
timal strategy exists or even that the utility maximization problem is �nite.
Therefore, we stress that in this section these properties are not assumed.
Also, we do not need the assumptions on C made in Section III.2.4�they
are not necessary because we start with a given solution.

Generally speaking, veri�cation involves the candidate for an optimal
control, (�̌, �̌) in our case, and all the competing ones. It is often very
di�cult to check a condition involving all these controls, so it is desirable to
have a veri�cation theorem whose assumptions involve only (�̌, �̌).

We present two veri�cation approaches. The �rst one is via the value pro-
cess and is classical for general dynamic programming: it uses little structure
of the given problem. For p ∈ (0, 1), it yields the desired result. However,
in a general setting, this is not the case for p < 0. The second approach
uses the concavity of the utility function. To fully exploit this and make the
veri�cation conditions necessary, we will assume that C is convex. In this
case, we shall obtain the desired veri�cation theorem for all values of p.

III.5.1 Veri�cation via the Value Process

The basis of this approach is the following simple result; we state it separately
for better comparison with Lemma 5.10 below. In the entire section, Z(�, �)
is de�ned by (4.4) whenever ℓ is given.

Lemma 5.1. Let ℓ be any positive càdlàg semimartingale with ℓT = DT and

let (�̌, �̌) ∈ A. Assume that for all (�, �) ∈ AfE, the process Z(�, �) is a

supermartingale. Then Z(�̌, �̌) is a martingale if and only if (2.2) holds and
(�̌, �̌) is optimal and ℓ = L.

Proof. �⇒�: Recall that Z0(�, �) = ℓ0
1
px

p
0 does not depend on (�, �) and

that E[ZT (�, �)] = E[
∫ T

0 Ut(�t(Xt(�, �)))�∘(dt)] is the expected utility cor-
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responding to (�, �). With X̌ := X(�̌, �̌), the (super)martingale condi-
tion implies that E[

∫ T
0 Ut(�̌tX̌t)�

∘(dt)] ≥ E[
∫ T

0 Ut(�tXt(�, �))�∘(dt)] for
all (�, �) ∈ AfE . Since for (�, �) ∈ A∖AfE the expected utility is −∞, this
shows that (�̌, �̌) is optimal with E[ZT (�̌, �̌)] = Z0(�̌, �̌) = ℓ0

1
px

p
0 < ∞. In

particular, the opportunity process L is well de�ned. By Proposition 2.2,
L1
pX̌

p +
∫
Us(čs)�(ds) is a martingale, and as its terminal value equals

ZT (�̌, �̌), we deduce ℓ = L by comparison with (4.4), using X̌ > 0.
The converse is contained in Proposition 2.2.

We can now state our �rst veri�cation theorem.

Theorem 5.2. Let (ℓ, �̌, �̌) be a solution of the Bellman equation.

(i) If p ∈ (0, 1), the following are equivalent:

(a) Z(�̌, �̌) is of class (D),

(b) Z(�̌, �̌) is a martingale,

(c) (2.2) holds and (�̌, �̌) is optimal and ℓ = L.

(ii) If p < 0, the following are equivalent:

(a) Z(�, �) is of class (D) for all (�, �) ∈ AfE,
(b) Z(�, �) is a supermartingale for all (�, �) ∈ AfE,
(c) (�̌, �̌) is optimal and ℓ = L.

Proof. When p > 0 and (�, �) ∈ Af , Z(�, �) is positive and aZ(�,�) ≤ 0 by
Proposition 4.7, hence Z(�, �) is a supermartingale according to Lemma 2.4.
By Proposition 4.7, Z(�̌, �̌) is a local martingale, so it is a martingale if and
only if it is of class (D). Lemma 5.1 implies the result.

If p < 0, Z(�, �) is negative. Thus the local martingale Z(�̌, �̌) is a
submartingale, and a martingale if and only if it is also a supermartingale.
Note that a class (D) semimartingale with nonpositive drift rate is a super-
martingale. Conversely, any negative supermartingale Z is of class (D) due
to the bounds 0 ≥ Z ≥ E[ZT ∣F]. Lemma 5.1 implies the result after noting
that if ℓ = L, then Proposition 2.2 yields (b).

Theorem 5.2 is �as good as it gets� for p > 0, but as announced, the result
for p < 0 is not satisfactory. In particular settings, this can be improved.

Remark 5.3 (p < 0). (i) Assume we know a priori that if there is an
optimal strategy (�̂, �̂) ∈ A, then

(�̂, �̂) ∈ A(D) :=
{

(�, �) ∈ A : X(�, �)p is of class (D)
}
.

In this case we can reduce our optimization problem to the class A(D). If
furthermore ℓ is bounded (which is not a strong assumption when p < 0),
the class (D) condition in Theorem 5.2(ii) is automatically satis�ed for any
(�, �) ∈ A(D). The veri�cation then reduces to checking that (�̌, �̌) ∈ A(D).



III.5 Veri�cation 49

(ii) How can we establish the condition needed for (i)? One possibility
is to show that L is uniformly bounded away from zero; then the condition
follows (see the argument in the next proof). Of course, L is not known
when we try to apply this. However, Section II.4.2 gives veri�able conditions
for L to be (bounded and) bounded away from zero. They are stated for
the unconstrained case C = ℝd, but can be used nevertheless: if Lℝd is the
opportunity process corresponding to C = ℝd, the actual L satis�es L ≥ Lℝd

because the supremum in (2.3) is taken over a smaller set in the constrained
case.

In the situation where ℓ and L−1 are bounded, we can also use the fol-
lowing result. Note also its use in Remark 3.3(ii) and recall that 1/0 :=∞.

Corollary 5.4. Let p < 0 and let (ℓ, �̌, �̌) be a solution of the Bellman

equation. Let L be the opportunity process and assume that ℓ/L is uniformly

bounded. Then (�̌, �̌) is optimal and ℓ = L.

Proof. Fix arbitrary (�, �) ∈ AfE and let X = X(�, �). The process
L1
p

(
X(�, �)

)p
+
∫
Us(�sXs)�(ds) is a negative supermartingale by Propo-

sition 2.2, hence of class (D). Since
∫
Us(�sXs)�(ds) is decreasing and its

terminal value is integrable (de�nition of AfE), L1
pX

p is also of class (D).
The assumption yields that ℓ1

pX
p is of class (D), and then so is Z(�, �).

As bounded solutions are of special interest in BSDE theory, let us note
the following consequence.

Corollary 5.5. Let p < 0. Under Assumptions 3.1 the following are equiv-

alent:

(i) L is bounded and bounded away from zero.

(ii) There exists a unique bounded solution of the Bellman equation, and

this solution is bounded away from zero.

One can note that in the setting of Section II.4.2, these conditions are
further equivalent to a reverse Hölder inequality for the market model.

We give an illustration of Theorem 5.2 also for the case p ∈ (0, 1). Thus
far, we have considered only the given exponent p and assumed (2.2). In
many situations, there will exist some p0 ∈ (p, 1) such that, if we consider
the exponent p0 instead of p, the utility maximization problem is still �nite.
Note that by Jensen's inequality this is a stronger assumption. We de�ne
for q0 ≥ 1 the class of semimartingales ℓ bounded in Lq0(P ),

B(q0) := {ℓ : sup�∥ℓ�∥Lq0 (P ) <∞},

where the supremum ranges over all stopping times � .
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Corollary 5.6. Let p ∈ (0, 1) and let there be a constant k1 > 0 such that

D ≥ k1. Assume that the utility maximization problem is �nite for some

p0 ∈ (p, 1) and let q0 ≥ 1 be such that q0 > p0/(p0 − p). If (ℓ, �̌, �̌) is a

solution of the Bellman equation (for p) with ℓ ∈ B(q0), then ℓ = L and

(�̌, �̌) is optimal.

Proof. Let ℓ ∈ B(q0) be a solution, (�̌, �̌) the associated strategy, and X̌ =
X(�̌, �̌). By Theorem 5.2 and an argument as in the previous proof, it su�ces
to show that ℓX̌p is of class (D). Let � > 1 be such that �/q0 + �p/p0 = 1.
For every stopping time � , Hölder's inequality yields

E[(ℓ� X̌
p
� )�] = E[(ℓq0� )�/q0(X̌p0

� )�p/p0 ] ≤ E[ℓq0� ]�/q0E[X̌p0
� ]�p/p0 .

We show that this is bounded uniformly in � ; then {ℓ� X̌p
� : � stopping time}

is bounded in L�(P ) and hence uniformly integrable. Indeed, E[ℓq0� ] is
bounded by assumption. The set of wealth processes corresponding to admis-
sible strategies is stable under stopping. Therefore E[DT

1
p0
X̌p0
� ] ≤ u(p0)(x0),

the value function for the utility maximization problem with exponent p0.
The result follows as DT ≥ k1.

Remark 5.7. In Example II.4.6 we give a condition which implies that the
utility maximization problem is �nite for all p0 ∈ (0, 1). Conversely, given
such a p0 ∈ (p, 1), one can show that L ∈ B(p0/p) if D is uniformly bounded
from above (see Corollary V.4.2).

Example 5.8. We apply our results in an Itô model with bounded mean
variance tradeo� process together with an existence result for BSDEs. For
the case of utility from terminal wealth only, we retrieve (a minor general-
ization of) the pioneering result of [33, �3]; the case with intermediate con-
sumption is new. Let W be an m-dimensional standard Brownian motion
(m ≥ d) and assume that F is generated by W . We consider

dRt = bt dt+ �t dWt,

where b is predictable ℝd-valued and � is predictable ℝd×m-valued with
everywhere full rank; moreover, we consider constraints C satisfying (C1)
and (C2). We are in the situation of Assumptions III.3.3 with dM = � dW
and � = (��⊤)−1b. The process � := �⊤� is called market price of risk. We
assume that there are constants ki > 0 such that

0 < k1 ≤ D ≤ k2 and
∫ T

0
∣�s∣2 ds ≤ k3.

The latter condition is called bounded mean-variance tradeo�. Note that
dQ/dP = ℰ(−� ∙ M)T = ℰ(−� ∙ W )T de�nes a local martingale measure
for ℰ(R). By Section II.4.2 the utility maximization problem is �nite for all
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p and the opportunity process L is bounded and bounded away from zero.
It is continuous due to Remark 3.13(i).

As suggested above, we write the Bellman BSDE for Y := log(L) rather
than L in this setting. If Y = AY + 'Y ∙M +NY is the Kunita-Watanabe
decomposition, we write Z := �⊤'Y and choose Z⊥ such that Z⊥ ∙W = NY

by Brownian representation. The orthogonality of the decomposition implies
�⊤Z⊥ = 0 and that Z⊤Z⊥ = 0. We write � = 1 if there is intermediate
consumption and � = 0 otherwise. Then Itô's formula and Corollary 3.12
(with At := t) yield the BSDE

dY = f(Y,Z, Z⊥) dt+ (Z + Z⊥) dW ; YT = log(DT ) (5.1)

with

f(Y,Z, Z⊥) = 1
2p(1− p) d

2
�⊤C

(
�(� + Z)

)
+ q

2 ∣� + Z∣2

+ �(p− 1)D� exp
(
(q − 1)Y

)
− 1

2(∣Z∣2 + ∣Z⊥∣2).

Here � = (1−p)−1 and q = p/(p−1); the dependence on (!, t) is suppressed
in the notation. Using the orthogonality relations and p(1− p)�2 = −q, one
can check that f(Y, Z, Z⊥) = f(Y, Z+Z⊥, 0) =: f(Y, Z̃), where Z̃ := Z+Z⊥.
As 0 ∈ C , we have d2

�⊤C
(x) ≤ ∣x∣2. Hence there exist a constant C > 0 and

an increasing continuous function � such that

∣f(y, z̃)∣ ≤ C
(
∣�∣2 + �(y) + ∣z̃∣2

)
.

The following monotonicity property handles the exponential nonlinearity
caused by the consumption: As p− 1 < 0 and q − 1 < 0,

−y
[
f(y, z̃)− f(0, z̃)

]
≤ 0.

Thus we have Briand and Hu's [9, Condition (A.1)] after noting that they
call −f what we call f , and [9, Lemma 2] states the existence of a bounded
solution Y to the BSDE (5.1). Let us check that ℓ := exp(Y ) is the op-
portunity process. We de�ne an associated strategy (�̌, �̌) by �̌ := (D/ℓ)�

and Proposition 4.3; then we have a solution (ℓ, �̌, �̌) of the Bellman equa-
tion in the sense of De�nition 4.1. For p < 0 (p ∈ (0, 1)), Corollary 5.4
(Corollary 5.6) yields ℓ = L and the optimality of (�̌, �̌). In fact, the same
veri�cation argument applies if we replace �̌ by any other predictable C -
valued �∗ such that �⊤�∗ ∈ Π�⊤C {�(� + Z)}; recall from Proposition 4.3
that �∗ ∈ L(R) automatically. To conclude: we have that

L = exp(Y ) is the opportunity process

and the set of optimal strategies equals the set of all (�∗, �̂) such that

∙ �̂ = (D/L)� �∘-a.e.

∙ �∗ is predictable, C -valued and �⊤�∗ ∈ Π�⊤C {�(� + Z)} P ⊗ dt-a.e.
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One can remark that the previous arguments show Y ′ = log(L) whenever
Y ′ is a solution of the BSDE (5.1) which is uniformly bounded from above.
Hence we have proved uniqueness for (5.1) in this class of solutions, which
is not immediate from BSDE theory. One can also note that, in contrast
to [33], we did not use the theory of BMO martingales in this example.

We close this section with a formula intended for future applications.

Remark 5.9. Let (ℓ, �̌, �̌) be a solution of the Bellman equation. Sometimes
exponential formulas can be used to verify that Z(�̌, �̌) is of class (D).

Let ℎ be a predictable cut-o� function such that �̌⊤ℎ(x) is bounded, e.g.,
ℎ(x) = x1{∣x∣≤1}∩{∣�̌⊤x∣≤1}, and de�ne Ψ to be the local martingale

ℓ−1
− ∙M ℓ + p�̌ ∙ Rc + p�̌⊤ℎ(x) ∗ (�R − �R) + p(x′/ℓ−)�̌⊤ℎ(x) ∗ (�R,ℓ − �R,ℓ)
+ (1 + x′/ℓ−)

{
(1 + �̌⊤x)p − 1− p�̌⊤ℎ(x)

}
∗ (�R,ℓ − �R,ℓ).

Then ℰ(Ψ) > 0, and if ℰ(Ψ) is of class (D), then Z(�̌, �̌) is also of class (D).

Proof. Let Z = Z(�̌, �̌). By a calculation as in the proof of Lemma 3.4 and
the local martingale condition from Proposition 4.7, (1

pX̌
p
−)−1 ∙ Z = ℓ− ∙ Ψ.

Hence Z = Z0ℰ(Ψ) in the case without intermediate consumption. For
the general case, we have seen in the proof of Corollary 5.4 that Z is of
class (D) whenever ℓ1

pX̌
p is. Writing the de�nition of �̌ as �̌p−1 = ℓ−/D

�-a.e., we have ℓ1
pX̌

p = Z −
∫
�̌ℓ−

1
pX̌

p d� = (ℓ−
1
pX̌

p
−) ∙ (Ψ − �̌ ∙ �), hence

ℓ1
pX̌

p = Z0ℰ(Ψ − �̌ ∙ �) = Z0ℰ(Ψ) exp(−�̌ ∙ �). It remains to note that
exp(−�̌ ∙ �) ≤ 1.

III.5.2 Veri�cation via De�ator

The goal of this section is a veri�cation theorem which involves only the can-
didate for the optimal strategy and holds for general semimartingale models.
Our plan is as follows. Let (ℓ, �̌, �̌) be a solution of the Bellman equation
and assume for the moment that C is convex. As the concave function gℓ

has a maximum at �̌, the directional derivatives at �̌ in all directions should
be nonpositive (if they can be de�ned). A calculation will show that, at the
level of processes, this yields a supermartingale property which is well known
from duality theory and allows for veri�cation. In the case of non-convex
constraints, the directional derivatives need not be de�ned in any sense. Nev-
ertheless, the formally corresponding quantities yield the expected result. To
make the �rst order conditions necessary, we later specialize to convex C . As
in the previous section, we �rst state a basic result; it is essentially classical.

Lemma 5.10. Let ℓ be any positive càdlàg semimartingale with ℓT = DT .

Suppose there exists (�̌, �̌) ∈ A with �̌ = (D/ℓ)� and let X̌ := X(�̌, �̌).
Assume Y := ℓX̌p−1 has the property that for all (�, �) ∈ A,

Γ(�, �) := X(�, �)Y +

∫
�sXs(�, �)Ys �(ds)
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is a supermartingale. Then Γ(�̌, �̌) is a martingale if and only if (2.2) holds
and (�̌, �̌) is optimal and ℓ = L.

Proof. �⇒�: Let (�, �) ∈ A and denote c = �X(�, �) and č = �̌X̌. Note
the partial derivative ∂U(č) = D�̌p−1X̌p−1 = ℓX̌p−1 = Y . Concavity of U
implies U(c)− U(č) ≤ ∂U(č)(c− č) = Y (c− č), hence

E
[ ∫ T

0
Us(cs)�

∘(ds)
]
− E

[ ∫ T

0
Us(čs)�

∘(ds)
]
≤ E

[ ∫ T

0
Ys(cs − čs)�∘(ds)

]
= E[ΓT (�, �)]− E[ΓT (�̌, �̌)].

Let Γ(�̌, �̌) be a martingale; then Γ0(�, �) = Γ0(�̌, �̌) and the supermartin-
gale property imply that the last line is nonpositive. As (�, �) was arbitrary,
(�̌, �̌) is optimal with expected utilityE

[ ∫ T
0 Us(čs)�

∘(ds)
]

= E[1
pΓT (�̌, �̌)] =

1
pΓ0(�̌, �̌) = 1

px
p
0ℓ0 <∞. The rest is as in the proof of Lemma 5.1.

The process Y is a supermartingale de�ator in the language of [41]. We
refer to Chapter II for the connection of the opportunity process with convex
duality, which in fact suggests Lemma 5.10. Note that unlike Z(�, �) from
the previous section, Γ(�, �) is positive for all values of p.

Our next goal is to link the supermartingale property to local �rst order
conditions. Let y, y̌ ∈ C ∩C 0 (we will plug in �̌ for y̌). The formal directional
derivative of gℓ at y̌ in the direction of y is (y− y̌)⊤∇gℓ(y̌) = Gℓ(y, y̌), where,
by formal di�erentiation under the integral sign (cf. (3.2)),

Gℓ(y, y̌) := (5.2)

ℓ−(y − y̌)⊤
(
bR + cRℓ

ℓ−
+ (p− 1)cRy̌

)
+

∫
ℝd×ℝ

(y − y̌)⊤x′ℎ(x)FR,ℓ(d(x, x′))

+

∫
ℝd×ℝ

(ℓ− + x′)
{

(1 + y̌⊤x)p−1(y − y̌)⊤x− (y − y̌)⊤ℎ(x)
}
FR,ℓ(d(x, x′)).

We take this expression as the de�nition ofGℓ(y, y̌) whenever the last integral
is well de�ned (the �rst one is �nite by (4.2)). The di�erentiation cannot be
justi�ed in general, but see the subsequent section.

Lemma 5.11. Let y ∈ C 0 and y̌ ∈ C 0,∗∩{gℓ > −∞}. Then Gℓ(y, y̌) is well
de�ned with values in (−∞,∞] and Gℓ(⋅, y̌) is lower semicontinuous on C 0.

Proof. Writing (y− y̌)⊤x = 1 + y⊤x− (1 + y̌⊤x), we can express Gℓ(y, y̌) as

ℓ−(y − y̌)⊤
(
bR + cRℓ

ℓ−
+ (p− 1)cRy̌

)
+

∫
ℝd×ℝ

(y − y̌)⊤x′ℎ(x)FR,ℓ(d(x, x′))

+

∫
ℝd×ℝ

(ℓ− + x′)
{ 1 + y⊤x

(1 + y̌⊤x)1−p − 1− (y + (p− 1)y̌)⊤ℎ(x)
}
FR,ℓ(d(x, x′))

−
∫
ℝd×ℝ

(ℓ− + x′)
{

(1 + y̌⊤x)p − 1− py̌⊤ℎ(x)
}
FR,ℓ(d(x, x′)).
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The �rst integral is �nite and continuous in y by (4.2). The last integral
above occurs in the de�nition of gℓ(y̌), cf. (3.2), and it is �nite if gℓ(y̌) > −∞
and equals +∞ otherwise. Finally, consider the second integral above and
call its integrand  =  (y, y̌, x, x′). The Taylor expansion 1+y⊤x

(1+y̌⊤x)1−p
=

1 + (y + (p − 1)y̌)⊤x + (p−1)
2

(
2y + (p − 2)y̌

)⊤
x x⊤y̌ + o(∣x∣3) shows that∫

{∣x∣+∣x′∣≤1}  dF
R,ℓ is well de�ned and �nite. It also shows that given a

compact K ⊂ ℝd, there is " > 0 such that
∫
{∣x∣+∣x′∣≤"}  dF

R,ℓ is continuous
in y ∈ K (and also in y̌ ∈ K). The details are as in Lemma 6.2. Moreover,
for y ∈ C 0 we have the lower bound  ≥ (ℓ−+x′){−1−(y+(p−1)y̌)⊤ℎ(x)},
which is FR,ℓ-integrable on {∣x∣ + ∣x′∣ > "} for any " > 0, again by (4.2).
The result now follows by Fatou's lemma.

We can now connect the local �rst order conditions for gℓ and the global
supermartingale property: it turns out that the formal derivative Gℓ deter-
mines the sign of the drift rate of Γ (cf. (5.3) below), which leads to the
following proposition. Here and in the sequel, we denote X̌ = X(�̌, �̌).

Proposition 5.12. Let (ℓ, �̌, �̌) be a solution of the Bellman equation and

(�, �) ∈ A. Then Γ(�, �) := ℓX̌p−1X(�, �) +
∫
�sℓsX̌

p−1
s Xs(�, �)�(ds) is a

supermartingale (local martingale) if and only if Gℓ(�, �̌) ≤ 0 (= 0).

Proof. De�ne R̄ = R − (x − ℎ(x)) ∗ �R as in (2.4). We abbreviate �̄ :=
(p − 1)�̌ + � and similarly �̄ := (p − 1)�̌ + �. We defer to Lemma 8.1 a
calculation showing that

(
X̌p−1
− X−(�, �)

)−1 ∙
(
ℓX̌p−1X(�, �)

)
equals

ℓ− ℓ0 + ℓ−�̄ ∙ R̄− ℓ−�̄ ∙ �+ ℓ−(p− 1)
(p−2

2 �̌ + �
)⊤
cR�̌ ∙ A+ �̄⊤cRℓ ∙ A

+ �̄⊤x′ℎ(x) ∗ �R,ℓ+ (ℓ− + x′)
{

(1 + �̌⊤x)p−1(1 + �⊤x)− 1− �̄⊤ℎ(x)
}
∗ �R,ℓ.

Here we use a predictable cut-o� function ℎ such that �̄⊤ℎ(x) is bounded,
e.g., ℎ(x) = x1{∣x∣≤1}∩{∣�̄⊤x∣≤1}. Since (ℓ, �̌, �̌) is a solution, the drift of ℓ is

Aℓ = −pU∗(ℓ−) ∙ �− pgℓ(�̌) ∙ A = (p− 1)ℓ−�̌ ∙ �− pgℓ(�̌) ∙ A.

By Remark 2.3, Γ := Γ(�, �) has a well de�ned drift rate aΓ with values in
(−∞,∞]. From the two formulas above and (2.4) we deduce

aΓ = X̌p−1
− X(�, �)−G

ℓ(�, �̌). (5.3)

Here X̌p−1
− X(�, �)− > 0 by admissibility. If Γ is a supermartingale, then

aΓ ≤ 0, and the converse holds by Lemma 2.4 in view of Γ ≥ 0.

We obtain our second veri�cation theorem from Proposition 5.12 and
Lemma 5.10.
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Theorem 5.13. Let (ℓ, �̌, �̌) be a solution of the Bellman equation. Assume

that P ⊗A-a.e., Gℓ(y, �̌) ∈ [−∞, 0] for all y ∈ C ∩ C 0,∗. Then

Γ(�̌, �̌) := ℓX̌p +

∫
�̌sℓsX̌

p
s �(ds)

is a local martingale. It is a martingale if and only if (2.2) holds and (�̌, �̌)
is optimal and ℓ = L is the opportunity process.

If C is not convex, one can imagine situations where the directional
derivative of gℓ at the maximum is positive�i.e., the assumption on Gℓ(y, �̌)
is su�cient but not necessary. This changes in the subsequent section.

The Convex-Constrained Case

We assume in this section that C is convex; then C ∩C 0 is also convex. Our
aim is to show that the nonnegativity condition on Gℓ in Theorem 5.13 is
automatically satis�ed in this case. We start with an elementary but crucial
observation about �di�erentiation under the integral sign�.

Lemma 5.14. Consider two distinct points y0 and y̌ in ℝd and let C =
{�y0 + (1 − �)y̌ : 0 ≤ � ≤ 1}. Let � be a function on Σ × C, where Σ is

some Borel space with measure �, such that x 7→ �(x, y) is �-measurable,∫
�+(x, ⋅) �(dx) < ∞ on C, and y 7→ �(x, y) is concave. In particular, the

directional derivative

Dy̌,y�(x, ⋅) := lim
"→0+

�
(
x, y̌ + "(y − y̌)

)
− �(x, y̌)

"

exists in (−∞,∞] for all y ∈ C. Let � be another concave function on C.
De�ne (y) := �(y) +

∫
�(x, y) �(dx) and assume that (y0) > −∞ and

that (y̌) = maxC  <∞. Then for all y ∈ C,

Dy̌,y = Dy̌,y�+

∫
Dy̌,y�(x, ⋅) �(dx) ∈ (−∞, 0] (5.4)

and in particular Dy̌,y�(x, ⋅) <∞ �(dx)-a.e.

Proof. Note that  is concave, hence we also have  > −∞ on C. Let v =
(y− y̌) and " > 0, then (y̌+"v)−(y̌)

" = �(y̌+"v)−�(y̌)
" +

∫ �(x,y̌+"v)−�(x,y̌)
" �(dx).

By concavity, these quotients increase monotonically as " ↓ 0, in particular
their limits exist. The left hand side is nonpositive as y̌ is a maximum and
monotone convergence yields (5.4).

For completeness, let us mention that if (y0) = −∞, there are examples
where the left hand side of (5.4) is −∞ but the right hand side is �nite;
we shall deal with this case separately. We deduce the following version of
Theorem 5.13; as discussed, it involves only the control (�̌, �̌).
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Theorem 5.15. Let (ℓ, �̌, �̌) be a solution of the Bellman equation and as-

sume that C is convex. Then Γ(�̌, �̌) := ℓX̌p +
∫
�̌sℓsX̌

p
s �(ds) is a local

martingale. It is a martingale if and only if (2.2) holds and (�̌, �̌) is optimal

and ℓ = L.

Proof. To apply Theorem 5.13, we have to check that Gℓ(y, �̌) ∈ [−∞, 0] for
y ∈ C ∩ C 0,∗. Recall that �̌ is a maximizer for gℓ and that Gℓ was de�ned
by di�erentiation under the integral sign. Lemma 5.14 yields Gℓ(y, �̌) ≤ 0
whenever y ∈ {gℓ > −∞}. This ends the proof for p ∈ (0, 1) as gℓ is then
�nite. If p < 0, the de�nition of gℓ and Remark 6.7 show that the set
{gℓ > −∞} contains the set

∪
�∈[0,1) �(C ∩ C 0) which, in turn, is clearly

dense in C ∩ C 0,∗. Hence {gℓ > −∞} is dense in C ∩ C 0,∗ and we obtain
Gℓ(y, �̌) ∈ [−∞, 0] for all y ∈ C ∩ C 0,∗ using the lower semicontinuity from
Lemma 5.11.

Remark 5.16. (i) We note that Γ(�̌, �̌) = pZ(�̌, �̌) if Z is de�ned as
in (4.4). In particular, Remark 5.9 can be used also for Γ(�̌, �̌).

(ii) Muhle-Karbe [58] considers certain one-dimensional (unconstrained)
a�ne models and introduces a su�cient optimality condition in the form of
an algebraic inequality (see [58, Theorem 4.20(3)]). This condition can be
seen as a special case of the statement that GL(y, �̌) ∈ [−∞, 0] for y ∈ C 0,∗;
in particular, we have shown its necessity.

Of course, all our veri�cation results can be seen as a uniqueness result
for the Bellman equation. As an example, Theorem 5.15 yields:

Corollary 5.17. If C is convex, there is at most one solution of the Bellman

equation in the class of solutions (ℓ, �̌, �̌) such that Γ(�̌, �̌) is of class (D).

Similarly, one can give corollaries for the other results. We close with a
comment concerning convex duality.

Remark 5.18. (i) A major insight in [49] was that the �dual domain� for
utility maximization (here with C = ℝd) should be a set of supermartin-
gales rather than (local) martingales when the price process has jumps. A
one-period example for log-utility [49, Example 5.1'] showed that the su-
permartingale solving the dual problem can indeed have nonvanishing drift.
In that example it is clear that this arises when the budget constraint be-
comes binding. For general models and log-utility, [25] comments on this
phenomenon. The calculations of this section yield an instructive �local�
picture also for power utility.

Under Assumptions 3.1, the opportunity process L and the optimal strat-
egy (�̂, �̂) solve the Bellman equation. Assume that C is convex and let
X̂ = X(�̂, �̂). Consider Ŷ = LX̂p−1, which was the solution to the dual
problem in Chapter II. We have shown that Ŷ ℰ(� ∙ R) is a supermartingale
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for every � ∈ A, i.e., Ŷ is a supermartingale de�ator. Choosing � = 0, we
see that Ŷ is itself a supermartingale, and by (5.3) its drift rate satis�es

aŶ = X̂p−1
− GL(0, �̂) = −X̂p−1

− �̂⊤∇g(�̂).

Hence Ŷ is a local martingale if and only if �̂⊤∇g(�̂) = 0. One can say
that −�̂⊤∇g(�̂) < 0 means that the constraints are binding, whereas in an
�unconstrained� case the gradient of g would vanish; i.e., Ŷ has nonvanish-
ing drift rate at a given (!, t) whenever the constraints are binding. Even
if C = ℝd, we still have the budget constraint C 0 in the maximization of
g. If in addition R is continuous, C 0 = ℝd and we are truly in an uncon-
strained situation. Then Ŷ is a local martingale; indeed, in the setting of
Corollary 3.12 we calculate

Ŷ = y0ℰ
(
− � ∙M +

1

L−
∙ NL

)
, y0 := L0x

p−1
0 .

Note how NL, the martingale part of L orthogonal to R, yields the solution
to the dual problem.

(ii) From the proof of Proposition 5.12 we have that the general formula
for the local martingale part of Ŷ is

M Ŷ = X̂p−1
− ∙

(
ML + L−(p− 1)�̂ ∙M R̄ + (p− 1)�̂⊤x′ℎ(x) ∗ (�R,L − �R,L)

+ (L− + x′)
{

(1 + �̂⊤x)p−1 − 1− (p− 1)�̂⊤ℎ(x)
}
∗ (�R,L − �R,L)

)
.

This is relevant in the problem of q-optimal equivalent martingale measures;
cf. Goll and Rüschendorf [26] for a general perspective. Let u(x0) <∞, D ≡
1, � = 0, C = ℝd, and assume that the set M of equivalent local martingale
measures for S = ℰ(R) is nonempty. Given q = p/(p− 1) ∈ (−∞, 0) ∪ (0, 1)
conjugate to p, Q ∈M is called q-optimal if E[−q−1(dQ/dP )q] is �nite and
minimal over M . If q < 0, i.e., p ∈ (0, 1), then u(x0) < ∞ is equivalent to
the existence of some Q ∈M such that E[−q−1(dQ/dP )q] <∞; moreover,
Assumptions 3.1 are satis�ed (see Kramkov and Schachermayer [49, 50]).
Using [49, Theorem 2.2(iv)] we conclude that

(a) the q-optimal martingale measure exists if and only if aŶ ≡ 0 and M Ŷ

is a true martingale;

(b) in that case, 1 + y−1
0 M Ŷ is its P -density process.

This generalizes earlier results of [26] as well as of Grandits [28], Jeanblanc
et al. [35] and Choulli and Stricker [12].

III.6 Appendix A: Proof of Lemma 3.8

This main goal of this appendix is to construct a measurable maximizing
sequence for the random function g (cf. Lemma 3.8). The entire section is
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under Assumptions 3.1. Before beginning the proof, we discuss the properties
of g; recall that

g(y) := L−y
⊤
(
bR + cRL

L−
+ (p−1)

2 cRy
)

+

∫
ℝd×ℝ

x′y⊤ℎ(x)FR,L(d(x, x′))

+

∫
ℝd×ℝ

(L− + x′)
{
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
FR,L(d(x, x′)).

(6.1)

Lemma 6.1. L− + x′ is strictly positive FL(dx′)-a.e.

Proof. (P ⊗ �L){L−+x′ ≤ 0} = E[1{L−+x′≤0} ∗ �LT ] = E[1{L−+x′≤0} ∗�LT ] =
E
[∑

s≤T 1{Ls≤0}1{ΔLs ∕=0}
]

= 0 as L > 0 by Lemma 2.1.

Fix (!, t) and let l := Lt−(!). Furthermore, let F be any Lévy measure
on ℝd+1 which is equivalent to FR,Lt (!) and satis�es (2.5). Equivalence
implies that C 0

t (!),C 0,∗
t (!), and Nt(!) are the same if de�ned with respect

to F instead of FR. Given " > 0, let

IF" (y) :=

∫
{∣x∣+∣x′∣≤"}

(l + x′)
{
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
F (d(x, x′)),

IF>"(y) :=

∫
{∣x∣+∣x′∣>"}

(l + x′)
{
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
F (d(x, x′)),

so that
IF (y) := IF" (y) + IF>"(y)

is the last integral in (6.1) when F = FR,Lt (!). We know from the proof
of Lemma 3.4 that IF

R,L
(�) is well de�ned and �nite for any � ∈ AfE (of

course, when p > 0, this is essentially due to the assumption (2.2)). For
general F , IF has the following properties.

Lemma 6.2. Consider a sequence yn → y∞ in C 0.

(i) For any y ∈ C 0, the integral IF (y) is well de�ned in ℝ ∪ {sign(p)∞}.
(ii) For " ≤ (2 supn ∣yn∣)−1 we have IF" (yn)→ IF" (y∞).

(iii) If p ∈ (0, 1), IF is l.s.c., that is, lim infn I
F (yn) ≥ IF (y∞).

(iv) If p < 0, IF is u.s.c., that is, lim supn I
F (yn) ≤ IF (y∞). Moreover,

y ∈ C 0 ∖ C 0,∗ implies IF (y) = −∞.

Proof. The �rst item follows from the subsequent considerations.
(ii) We may assume that ℎ is the identity on {∣x∣ ≤ "}; then on this set

p−1(1+y⊤x)p−p−1−y⊤ℎ(x) =:  (z)∣z=y⊤x, where the function  is smooth
on {∣z∣ ≤ 1/2} ⊆ ℝ satisfying

 (z) = p−1(1 + z)p − p−1 − z = p−1
2 z2 + o(∣z∣3)
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because 1 + z is bounded away from 0. Thus  (z) = z2 ̃(z) with a function
 ̃ that is continuous and in particular bounded on {∣z∣ ≤ 1/2}.

As a Lévy measure, F integrates (∣x′∣2 + ∣x∣2) on compacts; in particular,
G(d(x, x′)) := ∣x∣2 F (d(x, x′)) de�nes a �nite measure on {∣x∣ + ∣x′∣ ≤ "}.
Hence IF" (y) is well de�ned and �nite for ∣y∣ ≤ (2")−1, and dominated conver-
gence shows that IF" (y) =

∫
{∣x∣+∣x′∣≤"}(l+x

′) ̃(y⊤x)G(d(x, x′)) is continuous
in y on {∣y∣ ≤ (2")−1}.

(iii) For ∣y∣ bounded by a constant C, the integrand in IF is bounded
from below by C ′ + ∣x′∣ for some constant C ′ depending on y only through
C. We choose " as before. As C ′ + ∣x′∣ is F -integrable on {∣x∣ + ∣x′∣ > "}
by (2.5), IF (y) is well de�ned in ℝ ∪ {∞} and l.s.c. by Fatou's lemma.

(iv) The �rst part follows as in (iii), now the integrand is bounded from
above by C ′ + ∣x′∣. If y ∈ C 0 ∖ C 0,∗, Lemma 6.1 shows that the integrand
equals −∞ on a set of positive F -measure.

Lemma 6.3. The function g is concave. If C is convex, g has at most one

maximum on C ∩ C 0, modulo N .

Proof. We �rst remark that the assertion is not trivial because g need not
be strictly concave on N ⊥, for example, the process Rt = t(1, . . . , 1)⊤ was
not excluded.

Note that g is of the form g(y) = Hy + J(y), where Hy = L−y
⊤bR +

y⊤cRL +
∫
x′y⊤ℎ(x)FR,L is linear and J(y) = (p−1)

2 L−y
⊤cRy + IF

R,L
(y) is

concave. We may assume that ℎ(x) = x1{∣x∣≤1}.
Let y1, y2 ∈ C ∩ C 0 be such that g(y1) = g(y2) = sup g =: g∗ < ∞,

our aim is to show y1 − y2 ∈ N . By concavity, g∗ = g((y1 + y2)/2)) =
[g(y1) + g(y2)]/2, which implies J((y1 + y2)/2)) = [J(y1) + J(y2)]/2 due to
the linearity of H. Using the de�nition of J , this shows that J is constant
on the line segment connecting y1 and y2. A �rst consequence is that y1−y2

lies in the set {y : y⊤cR = 0, FR{x : y⊤x ∕= 0} = 0
}
and a second is that

Hy1 = Hy2. It remains to show (y1 − y2)⊤bR = 0 to have y1 − y2 ∈ N .
Note that FR{x : y⊤x ∕= 0} = 0 implies FR,L{x : y⊤ℎ(x) ∕= 0} = 0.

Moreover, y⊤cR = 0 implies y⊤cRL = 0 due to the absolute continuity
⟨Rc,i, Lc⟩ ≪ ⟨Rc,i⟩ which follows from the Kunita-Watanabe inequality.
Therefore, the �rst consequence above implies

∫
x′(y1 − y2)⊤ℎ(x)FR,L = 0

and (y1 − y2)⊤cRL = 0, and now the second consequence and the de�nition
of H yield 0 = H(y1 − y2) = L−(y1 − y2)⊤bR. Thus (y1 − y2)⊤bR = 0 as
L− > 0 and this ends the proof.

We can now move toward the main goal of this section. Clearly we need
some variant of the �Measurable Maximum Theorem� (see, e.g., [1, 18.19],
[41, Theorem 9.5], [64, 2K]). We state a version that is tailored to our needs
and has a simple proof; the technique is used also in Proposition 4.3.
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Lemma 6.4. Let D be a predictable set-valued process with nonempty com-

pact values in 2ℝ
d
. Let f(y) = f(!, t, y) be a proper function on D with

values in ℝ ∪ {−∞} such that

(i) f(') is predictable whenever ' is a D-valued predictable process,

(ii) y 7→ f(y) is upper semicontinuous on D for �xed (!, t).

Then there exists a D-valued predictable process � such that f(�) = maxD f .

Proof. We start with the Castaing representation [64, 1B] of D : there exist
D-valued predictable processes ('n)n≥1 such that {'n : n ≥ 1} = D for each
(!, t). By (i), f∗ := maxn f('n) is predictable, and f∗ = maxD f by (ii).
Fix k ≥ 1 and let Λn := {f∗ − f('n) ≤ 1/k}, Λn := Λn ∖ (Λ1 ∪ ⋅ ⋅ ⋅ ∪ Λn−1).
De�ne �k :=

∑
n 'n1Λn , then f∗ − f(�k) ≤ 1/k and �k ∈ D .

It remains to select a cluster point: By compactness, (�k)k≥1 is bounded
for each (!, t), so there is a convergent subsequence along �random indices�
�k. More precisely, there exists a strictly increasing sequence of integer-
valued predictable processes �k = {�k(!, t)} and a predictable process �∗

such that limk �
�k(!,t)
t (!) = �∗t (!) for all (!, t). See, e.g., the proof of Föllmer

and Schied [22, Lemma 1.63]. We have f∗ = f(�∗) by (ii).

Our random function g satis�es property (i) of Lemma 6.4 because the
characteristics are predictable (recall the de�nition [34, II.1.6]). We also note
that the intersection of closed predictable processes is predictable [64, 1M].
The sign of p is important as it switches the semicontinuity of g; we start
with the immediate case p < 0 and denote Br(ℝd) = {x ∈ ℝd : ∣x∣ ≤ r}.

Proof of Lemma 3.8 for p < 0. In this case g is u.s.c. on C∩C 0 (Lemma 6.2).
Let D(n) := C ∩ C 0 ∩ Bn(ℝd). Lemma 6.4 yields a predictable process
�n ∈ arg maxD(n) g for each n ≥ 1, and clearly limn g(�n) = supC∩C 0 g. As
g(�n) ≥ g(0) = 0, we have �n ∈ C 0,∗ by Lemma 6.2.

III.6.1 Measurable Maximizing Sequence for p ∈ (0, 1)

Fix p ∈ (0, 1). Since the continuity properties of g are not clear, we will use an
approximating sequence of continuous functions. (See also Appendix III.7,
where an alternative approach is discussed and the continuity is clari�ed
under an additional assumption on C .) We will approximate g using Lévy
measures with enhanced integrability, a method suggested by [41] in a similar
problem. This preserves monotonicity properties that will be useful to pass
to the limit.

All this is not necessary if R is locally bounded, or more generally if FR,L

satis�es the following condition. We start with �xed (!, t).
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De�nition 6.5. Let F be a Lévy measure on ℝd+1 which is equivalent to
FR,L and satis�es (2.5). (i) We say that F is p-suitable if∫

(1 + ∣x′∣)(1 + ∣x∣)p1{∣x∣>1} F (d(x, x′)) <∞.

(ii) The p-suitable approximating sequence for F is the sequence (Fn)n≥1 of
Lévy measures de�ned by dFn/dF = fn, where

fn(x) = 1{∣x∣≤1} + e−∣x∣/n1{∣x∣>1}.

It is easy to see that each Fn in (ii) shares the properties of F , while in
addition being p-suitable because (1 + ∣x∣)pe−∣x∣/n is bounded. As the se-
quence fn is increasing, monotone convergence shows that

∫
V dFn ↑

∫
V dF

for any measurable function V ≥ 0 on ℝd+1. We denote by gF the function
which is de�ned as in (6.1) but with FR,L replaced by F .

Lemma 6.6. If F is p-suitable, gF is real-valued and continuous on C 0.

Proof. Pick yn → y in C 0. The only term in (6.1) for which continuity is not
evident, is the integral IF = IF" +IF>", where we choose " as in Lemma 6.2. We
have IF" (yn) → IF" (y) by that lemma. When F is p-suitable, the continuity
of IF>" follows from the dominated convergence theorem.

Remark 6.7. De�ne the set

(C ∩ C 0)⋄ :=
∪

�∈[0,1)

�(C ∩ C 0).

Its elements y have the property that 1 + y⊤x is FR(dx)-essentially bounded

away from zero. Indeed, y = �y0 with � ∈ [0, 1) and FR{y⊤0 x ≥ −1} = 0,
hence 1 + y⊤x ≥ 1 − �, FR-a.e. In particular, (C ∩ C 0)⋄ ⊆ C 0,∗. If C is
star-shaped with respect to the origin, we also have (C ∩ C 0)⋄ ⊆ C .

We introduce the compact-valued process D(r) := C ∩ C 0 ∩Br(ℝd).

Lemma 6.8. Let F be p-suitable. Under (C3), arg maxD(r) g
F ⊆ C 0,∗.

More generally, this holds whenever F is a Lévy measure equivalent to

FR,L satisfying (2.5) and gF is �nite-valued.

Proof. Assume that y̌ ∈ C 0 ∖ C 0,∗ is a maximum of gF . Let � ∈ (�, 1) be
as in the de�nition of (C3) and y0 := �y̌. By Lemma 5.14, the directional
derivative Dy̌,y0g can be calculated by di�erentiating under the integral sign.
For the integrand of IF we have

Dy̌,y0

{
p−1(1+y⊤x)p−p−1−y⊤ℎ(x)

}
= (1−�)

{
(1+ y̌⊤x)p−1y̌⊤x− y̌⊤ℎ(x)

}
.

But this is in�nite on a set of positive measure as y̌ ∈ C 0 ∖ C 0,∗ means that
F{y̌⊤x = −1} > 0, contradicting the last assertion of Lemma 5.14.
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Let F be a Lévy measure on ℝd+1 which is equivalent to FR,L and sat-
is�es (2.5). The crucial step is

Lemma 6.9. Let (Fn) be the p-suitable approximating sequence for F and

�x r > 0. For each n, arg maxD(r) g
Fn ∕= ∅, and for any y∗n ∈ arg maxD(r) g

Fn

it holds that lim supn g
F (y∗n) = supD(r) g

F .

Proof. We �rst show that

IFn(y)→ IF (y) for any y ∈ C 0. (6.2)

Recall that IFn(y) =
∫

(l+x′)
{
p−1(1+y⊤x)p−p−1−y⊤ℎ(x)

}
fn(x)F (d(x, x′)),

where fn is nonnegative and increasing in n. As fn = 1 in a neighbor-
hood of the origin, we need to consider only IFn>" (for " = 1, say). Its
integrand is bounded below, simultaneously for all n, by a negative con-
stant times (1 + ∣x′∣), which is F -integrable on the relevant domain. As
(fn) is increasing, we can apply monotone convergence on the set

{
(x, x′) :

p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x) ≥ 0
}
and dominated convergence on the

complement to deduce (6.2).
Existence of y∗n ∈ arg maxD(r) g

Fn is clear by compactness of D(r) and
continuity of gFn (Lemma 6.6). Let y ∈ D(r) be arbitrary. By de�nition of
y∗n and (6.2),

lim sup
n

gFn(y∗n) ≥ lim sup
n

gFn(y) = gF (y).

We show lim supn g
F (y∗n) ≥ lim supn g

Fn(y∗n). We can split the integral
IFn(y) into a sum of three terms: The integral over {∣x∣ ≤ 1} is the same as
for IF , since fn = 1 on this set. We can assume that the cut-o� ℎ vanishes
outside {∣x∣ ≤ 1}. The second term is then∫

{∣x∣>1}
(l + x′)p−1(1 + y⊤x)pfn dF,

here the integrand is nonnegative and hence increasing in n, for all y; and
the third term is ∫

{∣x∣>1}
(l + x′)(−p−1)fn dF,

which is decreasing in n but converges to
∫
{∣x∣>1}(l + x′)(−p−1) dF . Thus

gF (y∗n) ≥ gFn(y∗n)− "n

with the sequence "n :=
∫
{∣x∣>1}(l+ x′)(−p−1)(fn − 1) dF ↓ 0. Together, we

conclude supD(r) g
F ≥ lim supn g

F (y∗n) ≥ lim supn g
Fn(y∗n) ≥ supD(r) g

F .
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Proof of Lemma 3.8 for p ∈ (0, 1). Fix r > 0. By Lemma 6.4 we can �nd
measurable selectors �n,r for arg maxD(r) g

Fn , i.e., �n,rt (!) plays the role
of y∗n in Lemma 6.9. Taking �n := �n,n and noting D(n) ↑ C ∩ C 0,
Lemma 6.9 shows that �n are C ∩ C 0-valued predictable processes such
that lim supn g(�n) = supC∩C 0 g P ⊗A-a.e. Lemma 6.8 shows that �n takes
values in C 0,∗.

III.7 Appendix B: Parametrization by Representa-

tive Portfolios

This appendix introduces an equivalent transformation of the model (R,C )
with speci�c properties (Theorem 7.3); the main idea is to substitute the
given assets by wealth processes that represent the investment opportunities
of the model. While the result is of independent interest, the main conclusion
in our context is that the approximation technique from Appendix III.6.1 for
the case p ∈ (0, 1) can be avoided, at least under slightly stronger assump-
tions on C : If the utility maximization problem is �nite, the corresponding
Lévy measure in the transformed model is p-suitable (cf. De�nition 6.5) and
hence the corresponding function g is continuous. This is not only an al-
ternative argument to prove Lemma 3.8. In applications, continuity can be
useful to construct a maximizer for g (rather than a maximizing sequence)
if one does not know a priori that there exists an optimal strategy. A static
version of our construction is carried out in Chapter IV.

In this appendix we use the following assumptions on the set-valued
process C of constraints:

(C1) C is predictable.

(C2) C is closed.

(C4) C is star-shaped with respect to the origin: �C ⊆ C for all � ∈ [0, 1].

Since we already obtained a proof of Lemma 3.8, we do not strive for
minimal conditions here. Clearly (C4) implies condition (C3) from Sec-
tion III.2.4, but its main implication is that we can select a bounded (hence
R-integrable) process in the subsequent lemma. The following result is the
construction of the jth representative portfolio, a portfolio with the property
that it invests in the jth asset whenever this is feasible.

Lemma 7.1. Fix 1 ≤ j ≤ d and let Hj = {x ∈ ℝd : xj ∕= 0}. There exists

a bounded predictable C ∩ C 0,∗-valued process � satisfying

{�j = 0} =
{
C ∩ C 0,∗ ∩Hj = ∅

}
.

Proof. Let B1 = B1(ℝd) be the closed unit ball and H := Hj . Condition
(C4) implies

{
C ∩C 0,∗ ∩H = ∅

}
=
{
C ∩B1 ∩C 0,∗ ∩H = ∅

}
, hence we may

substitute C by C ∩B1. De�ne the closed sets Hk = {x ∈ ℝd : ∣xj ∣ ≥ k−1}
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for k ≥ 1, then
∪
kHk = H. Moreover, let Dk = C ∩ C 0 ∩ Hk. This is a

compact-valued predictable process, so there exists a predictable process �k
such that �k ∈ Dk (hence �

j
k ∕= 0) on the set Λk := {Dk ∕= ∅} and �k = 0 on

the complement. De�ne Λk := Λk ∖ (Λ1 ∪ ⋅ ⋅ ⋅ ∪ Λk−1) and �′ :=
∑

k �k1Λk .
Then ∣�′∣ ≤ 1 and {�′j = 0} =

{
C ∩C 0∩H = ∅

}
=
{
C ∩C 0,∗∩H = ∅

}
; the

second equality uses (C4) and Remark 6.7. These two facts also show that
� := 1

2�
′ has the same property while in addition being C ∩C 0,∗-valued.

Remark 7.2. The previous proof also applies if instead of (C4), e.g., the
diameter of C is uniformly bounded and C 0 = C 0,∗.

If Φ is a d×d-matrix with columns �1, . . . , �d ∈ L(R), the matrix stochas-
tic integral R̃ = Φ ∙ R is the ℝd-valued process given by R̃j = �j ∙ R. If
 ∈ L(Φ ∙ R) is ℝd-valued, then Φ ∈ L(R) and

 ∙ (Φ ∙ R) = (Φ ) ∙ R. (7.1)

If D is a set-valued process which is predictable, closed and contains the ori-
gin, then the preimage Φ−1D shares these properties (cf. [64, 1Q]). Convexity
and star-shape are also preserved.

We obtain the following model if we sequentially replace the given assets
by representative portfolios; here ej denotes the jth unit vector in ℝd for
1 ≤ j ≤ d (i.e., eij = �ij).

Theorem 7.3. There exists a predictable ℝd×d-valued uniformly bounded

process Φ such that the �nancial market model with returns

R̃ := Φ ∙ R

and constraints C̃ := Φ−1C has the following properties: for all 1 ≤ j ≤ d,
(i) ΔR̃j > −1 (positive prices),

(ii) ej ∈ C̃ ∩ C̃ 0,∗, where C̃ 0,∗ = Φ−1C 0,∗ (entire wealth can be invested in

each asset),

(iii) the model (R̃, C̃ ) admits the same wealth processes as (R,C ).

Proof. We treat the components one by one. Let j = 1 and let � = �(1)
be as in Lemma 7.1. We replace the �rst asset R1 by the process � ∙ R, or
equivalently, we replace R by Φ ∙ R, where Φ = Φ(1) is the d× d-matrix

Φ =

⎛⎜⎜⎜⎝
�1

�2 1
...

. . .
�d 1

⎞⎟⎟⎟⎠ .

The new natural constraints are Φ−1C 0 and we replace C by Φ−1C . Note
that e1 ∈ Φ−1(C ∩ C 0,∗) because Φe1 = � ∈ C ∩ C 0,∗ by construction.
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We show that for every C ∩ C 0,∗-valued process � ∈ L(R) there exists
 predictable such that Φ = �. In view of (7.1), this will imply that the
new model admits the same wealth processes as the old one. On the set
{�1 ∕= 0} = {Φ is invertible} we take  = Φ−1� and on the complement we
choose  1 ≡ 0 and  j = �j for j ≥ 2; this is the same as inverting Φ on its
image. Note that {�1 = 0} ⊆ {�1 = 0} by the choice of �.

We proceed with the second component of the new model in the same
way, and then continue until the last one. We obtain matrices Φ(j) for
1 ≤ j ≤ d and set Φ̂ = Φ(1) ⋅ ⋅ ⋅Φ(d). Then Φ̂ has the required properties.
Indeed, the construction and Φ(i)ej = ej for i ∕= j imply ej ∈ Φ̂−1(C ∩C 0,∗).
This is (ii), and (i) is a consequence of (ii).

Coming back to the utility maximization problem, note that property
(iii) implies that the value functions and the opportunity processes for the
models (R,C ) and (R̃, C̃ ) coincide up to evanescence; we identify them in
the sequel. Furthermore, if g̃ denotes the analogue of g in the model (R̃, C̃ ),
cf. (6.1), we have the relation

g̃(y) = g(Φy), y ∈ C̃ 0.

Finding a maximizer for g̃ is equivalent to �nding one for g and if (�̃, �) is
an optimal strategy for (R̃, C̃ ) then (Φ�̃, �) is optimal for (R,C ). In fact,
most properties of interest carry over from (R,C ) to (R̃, C̃ ), in particular
any no-arbitrage property that is de�ned via the set of admissible (positive)
wealth processes.

Remark 7.4. A classical no-arbitrage condition de�ned in a slightly di�erent
way is that there exist a probability measure Q ≈ P under which ℰ(R) is a
�-martingale; cf. Delbaen and Schachermayer [17]. In this case, ℰ(R̃) is even
a local martingale under Q, as it is a �-martingale with positive components.

Property (ii) from Theorem 7.3 is useful to apply the following result.

Lemma 7.5. Let p ∈ (0, 1) and assume ej ∈ C ∩ C 0,∗ for 1 ≤ j ≤ d. Then
u(x0) < ∞ implies that FR,L is p-suitable. If, in addition, there exists a

constant k1 such that D ≥ k1 > 0, it follows that
∫
{∣x∣>1} ∣x∣

p FR(dx) <∞.

Proof. As p > 0 and u(x0) < ∞, L is well de�ned and L,L− > 0 by
Section III.2.2. No further properties were used to establish Lemma 3.4,
whose formula shows that g(�) is �nite P ⊗ A-a.e. for all � ∈ A = AfE . In
particular, from the de�nition of g, it follows that

∫
(L−+x′)

{
p−1(1+�⊤x)p−

p−1 − �⊤ℎ(x)
}
FR,L(d(x, x′)) is �nite. If D ≥ k1, Lemma II.3.5 shows that

L ≥ k1, hence L− + x′ ≥ k1 F
L(dx′)-a.e. and

∫ {
p−1(1 + �⊤x)p − p−1 −

�⊤ℎ(x)
}
FR(dx) <∞. We choose � = ej (and � arbitrary) for 1 ≤ j ≤ d to

deduce the result.
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In general, the condition u(x0) <∞ does not imply any properties of R;
for instance, in the trivial cases C = {0} or C 0,∗ = {0}. The transformation
changes the geometry of C and C 0,∗ such that Theorem 7.3(ii) holds, and
then the situation is di�erent.

Corollary 7.6. Let p ∈ (0, 1) and u(x0) < ∞. In the model (R̃, C̃ ) of

Theorem 7.3, F R̃,L is p-suitable and hence g̃ is continuous.

Therefore, to prove Lemma 3.8 under (C4), we may substitute (R,C )
by (R̃, C̃ ) and avoid the use of p-suitable approximating sequences. In some
cases, Lemma 7.5 applies directly in (R,C ). In particular, if the asset prices
are strictly positive (ΔRj > −1 for 1 ≤ j ≤ d), then the positive orthant of
ℝd is contained in C 0,∗ and the condition of Lemma 7.5 is satis�ed as soon
as ej ∈ C for 1 ≤ j ≤ d.

III.8 Appendix C: Omitted Calculation

This appendix contains a calculation which was omitted in the proof of
Proposition 5.12.

Lemma 8.1. Let (ℓ, �̌, �̌) be a solution of the Bellman equation, (�, �) ∈ A,
X := X(�, �) and X̌ := X(�̌, �̌). De�ne R̄ = R− (x− ℎ(x)) ∗ �R as well as

�̄ := (p− 1)�̌ + � and �̄ := (p− 1)�̌+ �. Then � := ℓX̌p−1X satis�es(
X̌p−1
− X−

)−1 ∙ � =

ℓ− ℓ0 + ℓ−�̄ ∙ R̄− ℓ−�̄ ∙ �+ ℓ−(p− 1)
(p−2

2 �̌ + �
)⊤
cR�̌ ∙ A+ �̄⊤cRℓ ∙ A

+ �̄⊤x′ℎ(x) ∗ �R,ℓ+ (ℓ− + x′)
{

(1 + �̌⊤x)p−1(1 + �⊤x)− 1− �̄⊤ℎ(x)
}
∗ �R,ℓ.

Proof. We may assume x0 = 1. This calculation is similar to the one in the
proof of Lemma 3.4 and therefore we shall be brief. By Itô's formula we have
X̌p−1 = ℰ(�) for

� = (p− 1)(�̌ ∙ R− �̌ ∙ �) + (p−1)(p−2)
2 �̌⊤cR�̌ ∙ A

+
{

(1 + �̌⊤x)p−1 − 1− (p− 1)�̌⊤x
}
∗ �R.

Thus X̌p−1X = ℰ
(
� + � ∙ R− � ∙ �+ [�, � ∙ R]

)
=: ℰ(Ψ) with

[R, �] = [Rc, �c] +
∑

ΔRΔ�

= (p− 1)cR�̌ ∙ A+ (p− 1)�̌⊤xx ∗ �R

+ x
{

(1 + �̌⊤x)p−1 − 1− �̌⊤x
}
∗ �R

and recombining the terms yields

Ψ = �̄ ∙ R− �̄ ∙ �+ (p− 1)
(p−2

2 �̌ + �
)⊤
cR�̌ ∙ A

+
{

(1 + �̌⊤x)p−1(1 + �⊤x)− 1− �̄⊤x
}
∗ �R.
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Then
(
X̌p−1
− X−

)−1 ∙ � = ℓ− ℓ0 + ℓ− ∙ Ψ + [ℓ,Ψ], where

[ℓ,Ψ] = [ℓc,Ψc] +
∑

ΔℓΔΨ

= �̄⊤cRℓ ∙ A+ �̄⊤x′x ∗ �R,ℓ

+ x′
{

(1 + �̌⊤x)p−1(1 + �⊤x)− 1− �̄⊤x
}
∗ �R,ℓ.

We arrive at(
X̌p−1
− X−

)−1 ∙ � =

ℓ− ℓ0 + ℓ−�̄ ∙ R− ℓ−�̄ ∙ �+ ℓ−(p− 1)
(p−2

2 �̌ + �
)⊤
cR�̌ ∙ A+ �̄⊤cRℓ ∙ A

+ �̄⊤x′x ∗ �R,ℓ + (ℓ− + x′)
{

(1 + �̌⊤x)p−1(1 + �⊤x)− 1− �̄⊤x
}
∗ �R,ℓ.

The result follows by writing x = ℎ(x) + x− ℎ(x).
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Chapter IV

Lévy Models

In this chapter, which corresponds to the article [60], we study power utility
maximization for exponential Lévy models with portfolio constraints and
construct an explicit solution in terms of the Lévy triplet.

IV.1 Introduction

We consider the case when the asset prices follow an exponential Lévy pro-

cess and the investor's preferences are given by a power utility function. This
problem was �rst studied by Merton [55] for drifted geometric Brownian mo-
tion and by Mossin [57] and Samuelson [65] for the discrete-time analogues.
A consistent observation was that when the asset returns are i.i.d., the opti-
mal portfolio and consumption are given by a constant and a deterministic
function, respectively. This result was subsequently extended to various
classes of Lévy models and its general validity was readily conjectured�we
note that the existence of an optimal strategy is known also for much more
general models (see Karatzas and �itkovi¢ [43]), but a priori that strategy
is some stochastic process without a constructive description.

We prove this conjecture for general Lévy models under minimal assump-
tions; in addition, we consider the case where the choice of the portfolio is
constrained to a convex set. The optimal investment portfolio is character-
ized as the maximizer of a deterministic concave function g de�ned in terms
of the Lévy triplet; and the maximum of g yields the optimal consumption.
Moreover, the Lévy triplet characterizes the �niteness of the value function,
i.e., the maximal expected utility. We also draw the conclusions for the
q-optimal equivalent martingale measures that are linked to utility maxi-
mization by convex duality (q ∈ (−∞, 1) ∖ {0}); this results in an explicit
existence characterization and a formula for the density process. Finally,
some generalizations to non-convex constraints are studied.

Our method consists in solving the Bellman equation, which was intro-
duced for general semimartingale models in Chapter III. In the Lévy setting,
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this equation reduces to a Bernoulli ordinary di�erential equation. There are
two main mathematical di�culties. The �rst one is to construct the maxi-
mizer for g, i.e., the optimal portfolio. The necessary compactness is obtained
from a minimal no-free-lunch condition (�no unbounded increasing pro�t�)
via scaling arguments which were developed by Kardaras [44] for log-utility.
In our setting these arguments require certain integrability properties of the
asset returns. Without compromising the generality, integrability is achieved
by a linear transformation of the model which replaces the given assets by
certain portfolios. We construct the maximizer for g in the transformed
model and then revert to the original one.

The second di�culty is to verify the optimality of the constructed con-
sumption and investment portfolio. Here we use the general veri�cation
theory of Chapter III and exploit a well-known property of Lévy processes,
namely that any Lévy local martingale is a true martingale.

This chapter is organized as follows. The next section speci�es the op-
timization problem and the notation related to the Lévy triplet. We also
recall the no-free-lunch condition NUIPC and the opportunity process. Sec-
tion IV.3 states the main result for utility maximization under convex con-
straints and relates the triplet to the �niteness of the value function. The
transformation of the model is described in Section IV.4 and the main theo-
rem is proved in Section IV.5. Section IV.6 gives the application to q-optimal
measures while non-convex constraints are studied in Section IV.7. Related
literature is discussed in the concluding Section IV.8 as this necessitates
technical terminology introduced in the body of the chapter.

IV.2 Preliminaries

The following notation is used. If x, y ∈ ℝ are reals, x+ = max{x, 0} and
x ∧ y = min{x, y}. We set 1/0 := ∞ where necessary. If z ∈ ℝd is a
d-dimensional vector, zi is its ith coordinate and z⊤ its transpose. Given
A ⊆ ℝd, A⊥ denotes the Euclidean orthogonal complement and A is said
to be star-shaped (with respect to the origin) if �A ⊆ A for all � ∈ [0, 1].
If X is an ℝd-valued semimartingale and � ∈ L(X) is an ℝd-valued pre-
dictable integrand, the vector stochastic integral is a scalar semimartingale
with initial value zero and denoted by

∫
� dX or by � ∙ X. Relations between

measurable functions hold almost everywhere unless otherwise stated. Our
reference for any unexplained notion or notation from stochastic calculus is
Jacod and Shiryaev [34].

IV.2.1 The Optimization Problem

We �x the time horizon T ∈ (0,∞) and a probability space (Ω,ℱ , P ) with a
�ltration (ℱt)t∈[0,T ] satisfying the usual assumptions of right-continuity and
completeness, as well as ℱ0 = {∅,Ω} P -a.s. We consider an ℝd-valued Lévy
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process R = (R1, . . . , Rd) with R0 = 0. That is, R is a càdlàg semimartingale
with stationary independent increments as de�ned in [34, II.4.1(b)]. It is not
relevant for us whether R generates the �ltration. The stochastic exponential
S = ℰ(R) = (ℰ(R1), . . . , ℰ(Rd)) represents the discounted price processes of
d risky assets, while R stands for their returns. If one wants to model only
positive prices, one can equivalently use the ordinary exponential (see, e.g.,
Kallsen [38, Lemma 4.2]). Our agent also has a bank account paying zero
interest at his disposal.

The agent is endowed with a deterministic initial capital x0 > 0. A
trading strategy is a predictable R-integrable ℝd-valued process �, where
the ith component is interpreted as the fraction of wealth (or the portfolio
proportion) invested in the ith risky asset.

We want to consider two cases. Either consumption occurs only at the
terminal time T (utility from �terminal wealth� only); or there is intermediate
consumption plus a bulk consumption at the time horizon. To unify the
notation, we de�ne1

� :=

{
1 in the case with intermediate consumption,

0 otherwise.

It will be convenient to parametrize the consumption strategies as a fraction
of the current wealth. A propensity to consume is a nonnegative optional
process � satisfying

∫ T
0 �s ds < ∞ P -a.s. The wealth process X(�, �) corre-

sponding to a pair (�, �) is de�ned by the stochastic exponential

X(�, �) = x0ℰ
(
� ∙ R− �

∫
�s ds

)
.

Let C ⊆ ℝd be a (constant) set containing the origin; we refer to C as �the
constraints�. The set of (constrained) admissible strategies is

A(x0) :=
{

(�, �) : X(�, �) > 0 and �t(!) ∈ C for all (!, t) ∈ Ω× [0, T ]
}
.

We �x the initial capital x0 and usually write A for A(x0). Given (�, �) ∈ A,
c := �X(�, �) is the corresponding consumption rate and X = X(�, �)
satis�es the self-�nancing condition Xt = x0 +

∫ t
0 Xs−�s dRs − �

∫ t
0 cs ds as

well as X− > 0.
Let p ∈ (−∞, 0) ∪ (0, 1). We use the power utility function

U(x) := 1
px

p, x ∈ (0,∞)

to model the preferences of the agent. Note that we exclude the well-studied
logarithmic utility (see [44]) which corresponds to p = 0. The constant
� := (1− p)−1 > 0 is the relative risk tolerance of U .

1In this chapter, it is more convenient to use the notation � dt instead of �(dt) as in
the other chapters.
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Let (�, �) ∈ A and X = X(�, �), c = �X. The corresponding expected

utility is E
[
�
∫ T

0 U(ct) dt+ U(XT )
]
. The value function is given by

u(x0) := sup
A(x0)

E
[
�

∫ T

0
U(ct) dt+ U(XT )

]
,

where the supremum is taken over all (c,X) which correspond to some
(�, �) ∈ A(x0). We say that the utility maximization problem is �nite if
u(x0) <∞. This always holds if p < 0 as then U < 0. If u(x0) <∞, (�, �) is
optimal if the corresponding (c,X) satisfy E

[
�
∫ T

0 U(ct) dt+U(XT )
]

= u(x0).

IV.2.2 Lévy Triplet, Constraints, No-Free-Lunch Condition

Let (bR, cR, FR) be the Lévy triplet of R with respect to some �xed cut-o�
function ℎ : ℝd → ℝd (i.e., ℎ is bounded and ℎ(x) = x in a neighborhood
of x = 0). This means that bR ∈ ℝd, cR ∈ ℝd×d is a nonnegative de�nite
matrix, and FR is a Lévy measure on ℝd, i.e., FR{0} = 0 and∫

ℝd
1 ∧ ∣x∣2 FR(dx) <∞. (2.1)

The process R can be represented as

Rt = bRt+Rct + ℎ(x) ∗ (�Rt − �Rt ) + (x− ℎ(x)) ∗ �Rt .

Here �R is the integer-valued random measure associated with the jumps
of R and �Rt = tFR is its compensator. Moreover, Rc is the continuous
martingale part, in fact, Rct = �Wt, where � ∈ ℝd×d satis�es ��⊤ = cR and
W is a d-dimensional standard Brownian motion. We refer to [34, II.4] or
Sato [68] for background material concerning Lévy processes.

We introduce some subsets of ℝd to be used in the sequel; the terminology
follows [44]. The �rst two are related to the �budget constraint� X(�, �) > 0.
The natural constraints are given by

C 0 :=
{
y ∈ ℝd : FR

[
x ∈ ℝd : y⊤x < −1

]
= 0
}

;

clearly C 0 is closed, convex, and contains the origin. We also consider the
slightly smaller set

C 0,∗ :=
{
y ∈ ℝd : FR

[
x ∈ ℝd : y⊤x ≤ −1

]
= 0
}
.

It is convex, contains the origin, and its closure equals C 0, but it is a proper
subset in general. The meaning of these sets is explained by

Lemma 2.1. A process � ∈ L(R) satis�es ℰ(� ∙ R) ≥ 0 (> 0) if and only if

� takes values in C 0 (C 0,∗) P ⊗ dt-a.e.
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See, e.g., Lemma III.2.5 for the proof. The linear space of null-investments

is de�ned by

N :=
{
y ∈ ℝd : y⊤bR = 0, y⊤cR = 0, FR[x : y⊤x ∕= 0] = 0

}
.

Then H ∈ L(R) satis�es H ∙ R ≡ 0 if and only if H takes values in N
P ⊗ dt-a.e. In particular, two portfolios � and �′ generate the same wealth
process (for given �) if and only if � − �′ is N -valued.

We recall the set 0 ∈ C ⊆ ℝd of portfolio constraints. The set J ⊆ ℝd
of immediate arbitrage opportunities is de�ned by

J =
{
y : y⊤cR = 0, FR[y⊤x < 0] = 0, y⊤bR−

∫
y⊤ℎ(x)FR(dx) ≥ 0

}
∖N .

Note that for y ∈ J , the process y⊤R is increasing and nonconstant. For
a subset G of ℝd, its recession cone is given by Ǧ :=

∩
a≥0 aG. Now the

condition NUIPC (no unbounded increasing pro�t) can be de�ned by

NUIPC ⇐⇒ J ∩ Č = ∅

(cf. [44, Theorem 4.5]). This is equivalent to J ∩ (C ∩ C 0)̌ = ∅ because
J ⊆ Č 0, and it means that if a strategy leads to an increasing nonconstant
wealth process, then that strategy cannot be scaled arbitrarily. This is a very
weak no-free-lunch condition; we refer to [44] for more information about free
lunches in exponential Lévy models. We give a simple example to illustrate
the objects.

Example 2.2. Assume there is only one asset (d = 1), that its price is
strictly positive, and that it can jump arbitrarily close to zero and arbitrarily
high. In formulas, FR(−∞,−1] = 0 and for all " > 0, FR(−1,−1 + "] > 0
and FR["−1,∞) > 0.

Then C 0 = C 0,∗ = [0, 1] and N = {0}. In this situation NUIPC is
satis�ed for any set C , both because J = ∅ and because Č 0 = {0}. If the
price process is merely nonnegative and FR{−1} > 0, then C 0,∗ = [0, 1)
while the rest stays the same.

In fact, most of the scalar models presented in Schoutens [70] correspond
to the �rst part of Example 2.2 for nondegenerate choices of the parameters.

IV.2.3 Opportunity Process

Assume u(x0) < ∞ and let (�, �) ∈ A. For �xed t ∈ [0, T ], the set of
�compatible� controls is A(�, �, t) :=

{
(�̃, �̃) ∈ A : (�̃, �̃) = (�, �) on [0, t]

}
.

By Proposition II.3.1 and Remark II.3.7 there exists a unique càdlàg semi-
martingale L, called opportunity process, such that

Lt
1
p

(
Xt(�, �)

)p
= ess sup
A(�,�,t)

E
[
�

∫ T

t
U(c̃s) ds+ U(X̃T )

∣∣∣ℱt],
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where the supremum is taken over all consumption and wealth pairs (c̃, X̃)
corresponding to some (�̃, �̃) ∈ A(�, �, t). We shall see that in the present
Lévy setting, the opportunity process is simply a deterministic function. The
right hand side above is known as the value process of our control problem;
in particular the �dynamic value function� at time t is ut(x) = Lt

1
px

p.

IV.3 Main Result

We can now formulate the main theorem for the convex-constrained case; the
proofs are given in the two subsequent sections. We consider the following
conditions.

Assumptions 3.1.

(i) C is convex.

(ii) The orthogonal projection of C ∩ C 0 onto N ⊥ is closed.

(iii) NUIPC holds.

(iv) u(x0) <∞, i.e., the utility maximization problem is �nite.

To state the result, we de�ne for y ∈ C 0 the deterministic function

g(y) := y⊤bR + (p−1)
2 y⊤cRy +

∫
ℝd

{
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
FR(dx).

(3.1)
As we will see later, this concave function is well de�ned with values in
ℝ ∪ {sign(p)∞}.

Theorem 3.2. Under Assumptions 3.1, there exists an optimal strategy

(�̂, �̂) such that �̂ is a constant vector and �̂ is deterministic. Here �̂ is

characterized by

�̂ ∈ arg maxC∩C 0 g

and, in the case with intermediate consumption,

�̂t = a
(
(1 + a)ea(T−t) − 1

)−1
,

where a := p
1−p maxC∩C 0 g. The opportunity process is given by

Lt =

{
exp

(
a(1− p)(T − t)

)
without intermediate consumption,

ap−1
[
(1 + a)ea(T−t) − 1

]1−p
with intermediate consumption.

Concerning the question of uniqueness, we recall the following from Re-
mark III.3.3.

Remark 3.3. The propensity to consume �̂ is unique. The optimal portfolio
and arg maxC∩C 0 g are unique modulo N ; i.e., if �∗ is another optimal
portfolio (or maximizer), then �̂ − �∗ takes values in N . Equivalently, the
wealth processes coincide.
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We comment on Assumptions 3.1.

Remark 3.4. (a) Convexity of C is of course not necessary to have a
solution. We give some generalizations in Section IV.7.

(b) Without the closedness in (ii), there are examples with non-existence
of an optimal strategy even for drifted Brownian motion and closed convex
cone constraints; see Example 3.5 below. One can note that closedness of
C implies (ii) if N ⊆ C and C is convex (as this implies C = C + N , see
[44, Remark 2.4]). Similarly, (ii) holds whenever the projection of C to N ⊥

is closed: if Π denotes the projector, C 0 = C 0 + N yields Π(C ∩ C 0) =
(ΠC ) ∩ C 0 and C 0 is closed. This includes the cases where C is closed and
polyhedral, or compact.

(c) Suppose that NUIPC does not hold. If p ∈ (0, 1), it is obvious that
u(x0) = ∞. If p < 0, there exists no optimal strategy, essentially because
adding a suitable arbitrage strategy would always yield a higher expected
utility. See Karatzas and Kardaras [41, Proposition 4.19] for a proof.

(d) If u(x0) = ∞, either there is no optimal strategy, or there are in-
�nitely many strategies yielding in�nite expected utility. It would be incon-
venient to call the latter optimal. Indeed, using that u(x0/2) =∞, one can
typically construct such strategies which also exhibit intuitively suboptimal
behavior (such as throwing away money by a �suicide strategy�; see Harrison
and Pliska [32, �6.1]). Hence we require (iv) to have a meaningful solution
to our problem�the relevant question is how to characterize this condition
in terms of the model.

The following example is based on Czichowsky et al. [15, �2.2] and illus-
trates how non-existence of an optimal portfolio may occur when Assump-
tion 3.1(ii) is violated. We denote by ej , 1 ≤ j ≤ d the unit vectors in ℝd,
i.e., eij = �ij .

Example 3.5 (� = 0). Let W be a standard Brownian motion in ℝ3 and

� =

⎛⎝1 0 0
0 1 −1
0 −1 1

⎞⎠ ; C =
{
y ∈ ℝ3 :

∣∣y1
∣∣2 +

∣∣y2
∣∣2 ≤ ∣∣y3

∣∣2, y3 ≥ 0
}
.

Let Rt = bt + �Wt, where b := e1 is orthogonal to ker�⊤ = ℝ(0, 1, 1)⊤.
Thus N = ker�⊤ and N ⊥ is spanned by e1 and e2− e3. The closed convex
cone C is �leaning� against the plane N ⊥ and the orthogonal projection of
C onto N ⊥ is an open half-plane plus the origin. The vectors �e1 with
� ∈ ℝ ∖ {0} are not contained in this half-plane but in its closure.

The optimal portfolio �̂ for the unconstrained problem lies on this bound-
ary. Indeed, NUIPℝ3 holds and Theorem 3.2 yields �̂ = �(��⊤)−1e1 = �e1,
where � = (1 − p)−1. This is simply Merton's optimal portfolio in the
market consisting only of the �rst asset. By construction we �nd vectors
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�n ∈ C whose projections to N ⊥ converge to �̂ and it is easy to see that
E[U(XT (�n))] → E[U(XT (�̂))]. Hence the value functions for the con-
strained and the unconstrained problem are identical. Since the solution �̂
of the unconstrained problem is unique modulo N , this implies that if the
constrained problem has a solution, it has to agree with �̂, modulo N . But
({�̂}+ N ) ∩ C = ∅, so there is no solution.

The rest of the section is devoted to the characterization of Assump-
tion 3.1(iv) by the jump characteristic FR and the set C ; this is intimately
related to the moment condition∫

{∣x∣>1}
∣x∣p FR(dx) <∞. (3.2)

We start with a partial result; again ej , 1 ≤ j ≤ d denote the unit vectors.

Proposition 3.6. Let p ∈ (0, 1).

(i) Under Assumptions 3.1(i)-(iii), (3.2) implies u(x0) <∞.

(ii) If ej ∈ C ∩ C 0,∗ for all 1 ≤ j ≤ d, then u(x0) <∞ implies (3.2).

By Lemma 2.1 the jth asset has a positive price if and only if ej ∈ C 0,∗.
Hence we have the following consequence of Proposition 3.6.

Corollary 3.7. In an unconstrained exponential Lévy model with positive

asset prices satisfying NUIPℝd , u(x0) <∞ is equivalent to (3.2).

The implication u(x0) <∞⇒ (3.2) is essentially true also in the general
case; more precisely, it holds in an equivalent model. As a motivation, con-
sider the case where either C = {0} or C 0 = {0}. The latter occurs, e.g., if
d = 1 and the asset has jumps which are unbounded in both directions. Then
the statement u(x0) < ∞ carries no information about R because � ≡ 0 is
the only admissible portfolio. On the other hand, we are not interested in
assets that cannot be traded, and may as well remove them from the model.
This is part of the following result.

Proposition 3.8. There exists a linear transformation (R̃, C̃ ) of the model

(R,C ), which is equivalent in that it admits the same wealth processes, and

has the following properties:

(i) the prices are strictly positive,

(ii) the wealth can be invested in each asset (i.e., � ≡ ej is admissible),

(iii) if u(x0) < ∞ holds for (R,C ), it holds also in the model (R̃, C̃ ) and∫
{∣x∣>1} ∣x∣

p F R̃(dx) <∞.

The details of the construction are given in the next section, where we
also show that Assumptions 3.1 carry over to (R̃, C̃ ).
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IV.4 Transformation of the Model

This section contains the announced linear transformation of the market
model. Assumptions 3.1 are not used. We �rst describe how any linear
transformation a�ects our objects.

Lemma 4.1. Let Λ be a d×d-matrix and de�ne R̃ := ΛR. Then R̃ is a Lévy

process with triplet bR̃ = ΛbR, cR̃ = ΛcRΛ⊤ and F R̃(⋅) = FR(Λ−1⋅). More-

over, the corresponding natural constraints and null-investments are given

by C̃ 0 := (ΛT )−1C 0 and Ñ := (ΛT )−1N and the corresponding function g̃
satis�es g̃(z) = g(Λ⊤z).

The proof is straightforward and omitted. Of course, Λ−1 refers to
the preimage if Λ is not invertible. Given Λ, we keep the notation from
Lemma 4.1 and introduce also C̃ := (ΛT )−1C as well as C̃ 0,∗ := (ΛT )−1C 0,∗

(which is consistent with Section IV.2.2).

Theorem 4.2. There exists a matrix Λ ∈ ℝd×d such that for 1 ≤ j ≤ d,
(i) ΔR̃j > −1 up to evanescence,

(ii) ej ∈ C̃ ∩ C̃ 0,∗,

(iii) the model (R̃, C̃ ) admits the same wealth processes as (R,C ).

Proof. We treat the components one by one. Pick any vector y1 ∈ C ∩ C 0,∗

such that y1
1 ∕= 0, if there is no such vector, set y1 = 0. We replace the �rst

asset R1 by the process y⊤1 R. In other words, we replace R by Λ1R, where
Λ1 is the matrix

Λ1 =

⎛⎜⎜⎜⎝
y1

1 y2
1 ⋅ ⋅ ⋅ yd1
1

. . .
1

⎞⎟⎟⎟⎠ .

The new natural constraints are (Λ⊤1 )−1C 0 and we replace C by (Λ⊤1 )−1C .
Note that e1 ∈ (Λ⊤1 )−1(C ∩C 0,∗) because Λ⊤1 e1 = y1 ∈ C ∩C 0,∗ by construc-
tion. Similarly, (Λ⊤1  ) ∙ R =  ∙ (Λ1R) whenever Λ⊤1  ∈ L(R). Therefore,
to show that the new model admits the same wealth processes as the old
one, we have to show that for every C ∩C 0,∗-valued process � ∈ L(R) there
exists a predictable  such that Λ⊤1  = �; note that this already implies
 ∈ L(Λ1R) and that  takes values in (Λ⊤1 )−1(C ∩ C 0,∗). If Λ⊤1 is in-
vertible, we take  := (Λ⊤1 )−1�. Otherwise �1 ≡ 0 by construction and we
choose  1 ≡ 0 and  j = �j for j ≥ 2; this is the same as inverting Λ⊤1 on its
image.

We proceed with the second component of the new model in the same
way, and then continue until the last one. We obtain matrices Λj , 1 ≤ j ≤ d
and set Λ = Λd ⋅ ⋅ ⋅Λ1. The construction and Λ⊤i ej = ej for i ∕= j imply
ej ∈ (Λ⊤)−1(C ∩ C 0,∗), which is (ii), and (i) is a consequence of (ii).
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From now on let Λ and R̃ be as in Theorem 4.2.

Corollary 4.3. (i) The value functions for (R,C ) and (R̃, C̃ ) coincide.

(ii) The opportunity processes for (R,C ) and (R̃, C̃ ) coincide.

(iii) sup
C̃∩C̃ 0,∗ g̃ = supC∩C 0,∗ g.

(iv) z ∈ arg max
C̃∩C̃ 0,∗ g̃ if and only if Λ⊤z ∈ arg maxC∩C 0,∗ g.

(v) (�, �) is an optimal strategy for (R̃, C̃ ) if and only if (Λ⊤�, �) is optimal

for (R,C ).

(vi) NUIP
C̃
holds for R̃ if and only if NUIPC holds for R.

Proof. This follows from Theorem 4.2(iii) and Lemma 4.1.

The transformation also preserves certain properties of the constraints.

Remark 4.4. (a) If C is closed (star-shaped, convex), then C̃ is also closed
(star-shaped, convex).

(b) Let C be compact, then C̃ is compact only if Λ is invertible. However,
the relevant properties for Theorem 4.2 are that Λ⊤C̃ = C ∩ (Λ⊤ℝd) and
that ej ∈ C̃ for 1 ≤ j ≤ d; we can equivalently substitute C̃ by a compact set
having these properties. If Λ⊤ is considered as a mapping ℝd → Λ⊤ℝd , it
admits a continuous right-inverse f , and (Λ⊤)−1C = f(C ∩Λ⊤ℝd)+ker(Λ⊤).
Here f(C ∩ Λ⊤ℝd) is compact and contained in Br = {x ∈ ℝd : ∣x∣ ≤ r}
for some r ≥ 1. The set Ĉ :=

[
f(C ∩ Λ⊤ℝd) + ker(Λ⊤)

]
∩ Br has the two

desired properties.

Next, we deal with the projection of C̃ ∩ C̃ 0 onto Ñ ⊥. We begin with
a �coordinate-free� description for its closedness; it can be seen as a simple
static version of Czichowsky and Schweizer [14].

Lemma 4.5. Let D ⊆ ℝd be a nonempty set and let D ′ be its orthogonal

projection onto N ⊥. Then D ′ is closed in ℝd if and only if {y⊤RT : y ∈ D}
is closed for convergence in probability.

Proof. Recalling the de�nition of N , we may assume that D = D ′. If (yn)
is a sequence in D with some limit y∗, clearly y⊤nRT → y⊤∗ RT in probability.
If {y⊤RT : y ∈ D} is closed, it follows that y∗ ∈ D because D ∩N = {0};
hence D is closed.

Conversely, let yn ∈ D and assume y⊤nRT → Y in probability for some
Y ∈ L0(ℱ). With D ∩N = {0} it follows that (yn) is bounded, therefore, it
has a subsequence which converges to some y∗. If D is closed, then y∗ ∈ D
and we conclude that Y = y⊤∗ RT , showing closedness in probability.

Lemma 4.6. Assume that C ∩C 0,∗ is dense in C ∩C 0. Then the orthogonal

projection of C ∩ C 0 onto N ⊥ is closed if and only if this holds for C̃ ∩ C̃ 0

and Ñ ⊥.



IV.4 Transformation of the Model 79

Proof. (i) Recall the construction of Λ = Λd ⋅ ⋅ ⋅Λ1 from the proof of The-
orem 4.2. Assume �rst that Λ = Λi for some 1 ≤ i ≤ d. In a �rst step, we
show

Λ⊤(C̃ ∩ C̃ 0) = C ∩ C 0. (4.1)

By construction, either Λ is invertible, in which case the claim is clear,
or otherwise Λ⊤ is the orthogonal projection of ℝd onto the hyperplane
Hi = {y ∈ ℝd : yi = 0} and C ∩ C 0,∗ ⊆ Hi. By the density assumption it
follows that C ∩ C 0 ⊆ Hi. Thus (Λ⊤)−1(C ∩ C 0) = C̃ ∩ C̃ 0 +H⊥i , the sum
being orthogonal, and Λ⊤[(Λ⊤)−1(C ∩ C 0)] = C ∩ C 0 as claimed. We also
note that

(Λ⊤)−1(C ∩ C 0,∗) ⊆ (Λ⊤)−1(C ∩ C 0) is dense. (4.2)

Using (4.1) we have {y⊤RT : y ∈ C ∩C 0} = {ỹ⊤R̃T : ỹ ∈ C̃ ∩ C̃ 0} and now
the result follows from Lemma 4.5, for the special case Λ = Λi.

(ii) In the general case, we have C̃ ∩ C̃ 0 = (Λ⊤d )−1 ∘⋅ ⋅ ⋅∘(Λ⊤1 )−1(C ∩C 0).
We apply part (i) successively to Λ1, . . . ,Λd to obtain the result, here (4.2)
ensures that the density assumption is satis�ed in each step.

Lemma 4.7. Let p ∈ (0, 1) and assume ej ∈ C ∩ C 0,∗. Then u(x0) < ∞
implies

∫
{∣x∣>1} ∣x

j ∣p FR(dx) <∞.

Proof. Note that ej ∈ C 0,∗ implies ΔRj > −1, i.e.,
∫
{∣x∣>1} ∣x

j ∣p FR(dx) =∫
{∣x∣>1}((x

j)+)p FR(dx). Moreover, we have E
[
xp0ℰ(Rj)pT

]
≤ u(x0). There

exists a Lévy process Z such that ℰ(Rj)p = eZ , hence E
[
ℰ(Rj)pT

]
<∞ im-

plies that ℰ(Rj)p is of class (D) (cf. [38, Lemma 4.4]). In particular, ℰ(Rj)p

has a Doob-Meyer decomposition with a well de�ned drift (predictable �-
nite variation part). The stochastic logarithm Y of ℰ(Rj)p is given by
Y = ℰ(Rj)−p− ∙ ℰ(Rj)p and the drift of Y is again well de�ned because
the integrand ℰ(Rj)−p− is locally bounded. Itô's formula shows that Y is a
Lévy process with drift

AYt = t

(
p(bR)j + p(p−1)

2 (cR)jj +

∫
ℝd

{
(1 + xj)p − 1− pe⊤j ℎ(x)

}
FR(dx)

)
.

In particular,
∫
{∣x∣>1}((x

j)+)p FR(dx) <∞.

Note that the previous lemma shows Proposition 3.6(ii); moreover, in the
general case, we obtain the desired integrability in the transformed model.

Corollary 4.8. u(x0) <∞ implies
∫
{∣x∣>1} ∣x∣

p F R̃(dx) <∞.

Proof. By Theorem 4.2(ii) and Corollary 4.3(i) we can apply Lemma 4.7 in
the model (R̃, C̃ ).
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Remark 4.9. The transformation in Theorem 4.2 preserves the Lévy struc-
ture. Theorem 4.2 and Lemma 4.7 were generalized to semimartingale mod-
els in Appendix B of Chapter III. There, additional assumptions are required
for measurable selections and particular structures of the model are not pre-
served in general.

IV.5 Proof of Theorem 3.2

Our aim is to prove Theorem 3.2 and Proposition 3.6(i). We shall see that
we may replace Assumption 3.1(iv) by the integrability condition (3.2). Un-
der (3.2), we will obtain the fact that u(x0) <∞ as we construct the optimal
strategies, and that will yield the proof for both results.

IV.5.1 Solution of the Bellman Equation

We start with informal considerations to construct a candidate solution,
which we then verify. If there is an optimal strategy, Theorem III.3.2 states
that the drift rate aL of the opportunity process L (a special semimartingale
in general) satis�es the Bellman equation

aL dt = �(p− 1)L
p/(p−1)
− dt− p max

y∈C∩C 0
g(y) dt; LT = 1, (5.1)

where g is the following function, stated in terms of the joint di�erential
semimartingale characteristics of (R,L):

g(y) = L−y
⊤
(
bR + cRL

L−
+ (p−1)

2 cRy
)

+

∫
ℝd×ℝ

x′y⊤ℎ(x)FR,L(d(x, x′))

+

∫
ℝd×ℝ

(L− + x′)
{
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
FR,L(d(x, x′)).

In this equation one should see the characteristics of R as the driving terms
and L as the solution. In the present Lévy case, the di�erential characteris-
tics of R are given by the Lévy triplet, in particular, they are deterministic.
To wit, there is no exogenous stochasticity in (5.1). Therefore we can expect
that the opportunity process is deterministic. We make a smooth Ansatz

ℓ for L. As ℓ has no jumps and vanishing martingale part, g reduces to
g(y) = ℓg(y), where g is as (3.1). We show later that this deterministic func-
tion is well de�ned. For the maximization in (5.1), we have the following
result.

Lemma 5.1. Suppose that Assumptions 3.1(i)-(iv) hold, or alternatively

that Assumptions 3.1(i)-(iii) and (3.2) hold. Then g∗ := supC∩C 0 g < ∞
and there exists a nonrandom vector �̌ ∈ C ∩ C 0,∗ such that g(�̌) = g∗.
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The proof is given in the subsequent section. As ℓ is a smooth function,
its drift rate is simply the time derivative, hence we deduce from (5.1)

dℓt = �(p− 1)ℓ
p/(p−1)
t dt− pg∗ℓt dt; ℓT = 1.

This is a Bernoulli ODE. If we denote � := 1/(1 − p), the transformation
f(t) := ℓ�T−t produces the forward linear equation

d
dtf(t) = � +

( p
1−pg

∗)f(t); f(0) = 1,

which has, with a = p
1−pg

∗, the unique solution f(t) = −�/a+ (1 + �/a)eat.
Therefore,

ℓt =

{
e(a/�)(T−t) = epg

∗(T−t) if � = 0,

a−1/�
(
(1 + a)ea(T−t) − 1

)1/� if � = 1.

If we de�ne �̌t := ℓ−�t = a
(
(1 + a)ea(T−t) − 1

)−1, then (ℓ, �̌, �̌) is a solution
of the Bellman equation in the sense of De�nition III.4.1; note that the mar-
tingale part vanishes. Let also X̌ = X(�̌, �̌) be the corresponding wealth
process. We want to verify this solution, i.e., to show that ℓ is the opportu-
nity process and that (�̌, �̌) is optimal. We shall use the following result; it
is a special case of Proposition III.4.7 and Theorem III.5.15.

Lemma 5.2. The process

Γ := ℓX̌p + �

∫
�̌sℓsX̌

p
s ds (5.2)

is a local martingale. If C is convex, then Γ is a martingale if and only if

u(x0) <∞ and (�̌, �̌) is optimal and ℓ is the opportunity process.

To check that Γ is a martingale, it is convenient to consider the closely
related process

Ψ := p�̌⊤Rc +
{

(1 + �̌⊤x)p − 1
}
∗ (�R − �R).

Remark III.5.9 shows that ℰ(Ψ) is a positive local martingale and that Γ
is a martingale as soon as ℰ(Ψ) is. Now Ψ has an advantageous structure:
as �̌ is constant, Ψ is a semimartingale with constant characteristics. In
other words, ℰ(Ψ) is an exponential Lévy local martingale, therefore auto-
matically a true martingale (e.g., [38, Lemmata 4.2, 4.4]). Hence we can
apply Lemma 5.2 to �nish the proofs of Theorem 3.2 and Proposition 3.6(i),
modulo Lemma 5.1.
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IV.5.2 Proof of Lemma 5.1: Construction of the Maximizer

Our goal is to show Lemma 5.1. In this section we will use that C is star-
shaped, but not its convexity. For convenience, we state again the de�nition

g(y) = y⊤bR + (p−1)
2 y⊤cRy +

∫
ℝd

{
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
FR(dx).

(5.3)
The following lemma is a direct consequence of this formula and does not
depend on Assumptions 3.1; it is a simpli�ed version of Lemma III.6.2.

Lemma 5.3. (i) If p ∈ (0, 1), g is well de�ned with values in (−∞,∞]
and lower semicontinuous on C 0. If (3.2) holds, g is �nite and con-

tinuous on C 0.

(ii) If p < 0, g is well de�ned with values in [−∞,∞) and upper semi-

continuous on C 0. Moreover, g is �nite on Č and g(y) = −∞ for

y ∈ C 0 ∖ C 0,∗.

Proof. Fix a sequence yn → y in C 0. A Taylor expansion and (2.1) show
that

∫
∣x∣≤"

{
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
FR(dx) is �nite and continuous

along (yn) for " small enough, e.g., " = (2 supn ∣yn∣)−1.
If p < 0, we have p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x) ≤ −p−1 − y⊤ℎ(x) and

Fatou's lemma shows that
∫
∣x∣>"

{
p−1(1 + y⊤x)p − p−1 − y⊤ℎ(x)

}
FR(dx)

is upper semicontinuous of with respect to y. For p > 0 we have the con-
verse inequality and the same argument yields lower semicontinuity. If p > 0
and (3.2) holds, the integral is �nite and dominated convergence yields con-
tinuity.

Let p < 0. For �niteness on Č we note that g is even �nite on �C 0 for
any � ∈ [0, 1). Indeed, y ∈ �C 0 implies y⊤x ≥ −� > −1 FR(dx)-a.e., hence
the integrand in (5.3) is bounded FR-a.e. and we conclude by (2.1). The last
claim is immediate from the de�nitions of C 0 and C 0,∗ as well as (5.3).

Assume the alternative version of Lemma 5.1 under Assumptions 3.1(i)-
(iii) and (3.2) has already been proved; we argue that the complete claim
of that lemma then follows. Indeed, suppose that Assumptions 3.1(i)-(iv)
hold. We �rst observe that C ∩ C 0,∗ is dense in C ∩ C 0. To see this, note
that for y ∈ C ∩ C 0 ∖ C 0,∗ and n ∈ ℕ we have yn := (1 − n−1)y → y and
yn is in C 0,∗ (by the de�nition) and also in C , due to the star-shape. Using
Section IV.4 and its notation, Assumptions 3.1(i)-(iv) now imply that the
transformed model (R̃, C̃ ) satis�es Assumptions 3.1(i)-(iii) and (3.2). We
apply the above alternative version of Lemma 5.1 in that model to obtain
g̃∗ := sup

C̃∩C̃ 0 g̃ < ∞ and a vector �̃ ∈ C̃ ∩ C̃ 0,∗ such that g̃(�̃) = g̃∗. The
density of C ∩C 0,∗ observed above and the semicontinuity from Lemma 5.3(i)
imply that g∗ := supC∩C 0 g = supC∩C 0,∗ g. Using this argument also for
(R̃, C̃ ), Corollary 4.3(iii) yields g∗ = g̃∗ < ∞. Moreover, Corollary 4.3(iv)
states that �̌ := Λ⊤�̃ ∈ C ∩ C 0,∗ is a maximizer for g.
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Summarizing this discussion, it su�ces to prove Lemma 5.1 under As-
sumptions 3.1(i)-(iii) and (3.2); hence these will be our assumptions for the
rest of the section.

Formally, by di�erentiation under the integral, the directional derivatives
of g are given by (ỹ − y)⊤∇g(y) = G(ỹ, y), with

G(ỹ, y) := (ỹ − y)⊤
(
bR + (p− 1)cRy

)
(5.4)

+

∫
ℝd

{ (ỹ − y)⊤x

(1 + y⊤x)1−p − (ỹ − y)⊤ℎ(x)
}
FR(dx).

We take this as the de�nition of G(ỹ, y) whenever the integral makes sense.

Remark 5.4. Formally setting p = 0, we see that G corresponds to the rela-
tive rate of return of two portfolios in the theory of log-utility [41, Eq. (3.2)].

Lemma 5.5. Let ỹ ∈ C 0. On the set C 0 ∩ {g > −∞}, G(ỹ, ⋅) is well

de�ned with values in (−∞,∞]. Moreover, G(0, ⋅) is lower semicontinuous

on C 0 ∩ {g > −∞}.

Proof. The �rst part follows by rewriting G(ỹ, y) as

(ỹ − y)⊤
(
bR + (p− 1)cRy

)
−
∫ {

(1 + y⊤x)p − 1− py⊤ℎ(x)
}
FR(dx)

+

∫ { 1 + ỹ⊤x

(1 + y⊤x)1−p − 1− (ỹ + (p− 1)y)⊤ℎ(x)
}
FR(dx)

because the �rst integral occurs in (5.3) and 1+ỹ⊤x ≥ 0 FR-a.e. by de�nition
of C 0. Let p ∈ (0, 1) and ỹ = 0 in the de�nition of G. Using

−y⊤x
(1 + y⊤x)1−p ≥ −

1 + y⊤x

(1 + y⊤x)1−p = −(1 + y⊤x)p

and (3.2), Fatou's lemma yields that G(0, ⋅) is l.s.c. on C 0. If p < 0, then
z/(1 + z)1−p ≤ 1 for z ≥ 0 implies −y⊤x

(1+y⊤x)1−p
≥ −1. Again, Fatou's lemma

yields the claim.

As our goal is to prove Lemma 5.1, we may assume in the following that

C ∩ C 0 ⊆ N ⊥.

Indeed, noting that g(y) = g(y + y′) for y′ ∈ N , we may substitute C ∩ C 0

by its projection to N ⊥. The remainder of the section parallels the case
of log-utility as treated in [44, Lemmata 5.2,5.1]. By Lemmata 5.3 and 5.5,
G(0, y) is well de�ned with values in (−∞,∞] for y ∈ Č , so the following
statement makes sense.

Lemma 5.6. Let y ∈ (C ∩ C 0)̌, then y ∈J if and only if G(0, ay) ≤ 0 for

all a ≥ 0.
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Proof. If y ∈J , then G(0, ay) ≤ 0 by the de�nitions of J and G; we prove
the converse. As y ∈ (C ∩ C 0)̌ implies FR[ay⊤x < −1] = 0 for all a, we
have FR[y⊤x < 0] = 0. Since y⊤x ≥ 0 entails ∣ y⊤x

(1+y⊤x)1−p
∣ ≤ 1, dominated

convergence yields

lim
a→∞

∫ { y⊤x

(1 + ay⊤x)1−p − y
⊤ℎ(x)

}
FR(dx) = −

∫
y⊤ℎ(x)FR(dx).

By assumption, −a−1G(0, ay) ≥ 0, i.e,

y⊤bR + a(p− 1)y⊤cRy +

∫ { y⊤x

(1 + ay⊤x)1−p − y
⊤ℎ(x)

}
FR(dx) ≥ 0.

As (p − 1)y⊤cRy ≤ 0, taking a → ∞ shows y⊤cR = 0 and then we also see
y⊤bR −

∫
y⊤ℎ(x)F (dx) ≥ 0.

Proof of Lemma 5.1. Let (yn) ⊂ C ∩ C 0 be such that g(yn)→ g∗. We may
assume g(yn) > −∞ and yn ∈ C 0,∗ by Lemma 5.3, since C 0,∗ ⊆ C 0 is dense.

We claim that (yn) has a bounded subsequence. By way of contradiction,
suppose that (yn) is unbounded. Without loss of generality, �n := yn/∣yn∣
converges to some �. Moreover, we may assume by rede�ning yn that
g(yn) = max�∈[0,1] g(�yn), because g is continuous on each of the compact
sets Cn = {�yn : � ∈ [0, 1]}. Indeed, if p < 0, continuity follows by domi-
nated convergence using 1 + �y⊤x ≥ 1 + y⊤x on {x : y⊤x ≤ 0}; while for
p ∈ (0, 1), g is continuous by Lemma 5.3.

Using concavity one can check that G(0, a�n) is indeed the directional
derivative of the function g at a�n (cf. Lemma III.5.14). In particular,
g(yn) = max�∈[0,1] g(�yn) implies that G(0, a�n) ≤ 0 for a > 0 and all n
such that ∣yn∣ ≥ a (and hence a�n ∈ Cn). By the star-shape and closedness
of C ∩ C 0 we have that � ∈ (C ∩ C 0)̌. Lemmata 5.3 and 5.5 yield the semi-
continuity to pass from G(0, a�n) ≤ 0 to G(0, a�) ≤ 0 and now Lemma 5.6
shows � ∈J , contradicting the NUIPC condition that J ∩ (C ∩ C 0)̌ = ∅.

We have shown that after passing to a subsequence, there exists a limit
y∗ = limn yn. Lemma 5.3 shows g∗ = limn g(yn) = g(y∗) <∞; and y∗ ∈ C 0,∗

for p < 0. For p ∈ (0, 1), y∗ ∈ C 0,∗ follows as in Lemma III.6.8.

IV.6 q-Optimal Martingale Measures

In this section we consider � = 0 (no consumption) and C = ℝd. Then
Assumptions 3.1 are equivalent to

NUIPℝd holds and u(x0) <∞ (6.1)

and these conditions are in force for the following discussion. Let M be the
set of all equivalent local martingale measures for S = ℰ(R). Then NUIPℝd
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is equivalent to M ∕= ∅, more precisely, there exists Q ∈ M under which
R is a Lévy martingale (see [44, Remark 3.8]). In particular, we are in the
setting of Kramkov and Schachermayer [49].

Let q = p/(p − 1) ∈ (−∞, 0) ∪ (0, 1) be the exponent conjugate to p,
then Q ∈ M is called q-optimal if E[−q−1(dQ/dP )q] is �nite and minimal
over M . If q < 0, i.e., p ∈ (0, 1), then u(x0) < ∞ is equivalent to the
existence of some Q ∈ M such that E[−q−1(dQ/dP )q] < ∞ (cf. Kramkov
and Schachermayer [50]).

This minimization problem over M is linked to power utility maximiza-
tion by convex duality in the sense of [49]. More precisely, that article con-
siders a �dual problem� over an enlarged domain of certain supermartingales.
We recall from Proposition II.4.2 that the solution to that dual problem is
given by the positive supermartingale Ŷ = LX̂p−1, where L is the opportu-
nity process and X̂ = x0ℰ(�̂ ∙ R) is the optimal wealth process corresponding
to �̂ as in Theorem 3.2. It follows from [49, Theorem 2.2(iv)] that the q-
optimal martingale measure Q̂ exists if and only if Ŷ is a martingale, and in
that case Ŷ /Ŷ0 is the P -density process of Q̂. Recall the functions g and G
from (3.1) and (5.4). A direct calculation (or Remark III.5.18) shows

Ŷ /Ŷ0 = ℰ
(
G(0, �̂)t+ (p− 1)�̂⊤Rc +

{
(1 + �̂⊤x)p−1 − 1} ∗ (�R − �R)

)
.

Here absence of drift is equivalent to G(0, �̂) = 0, or more explicitly,

�̂⊤bR + (p− 1)�̂⊤cR�̂ +

∫
ℝd

{ �̂⊤x

(1 + �̂⊤x)1−p − �̂
⊤ℎ(x)

}
FR(dx) = 0, (6.2)

and in that case

Ŷ /Ŷ0 = ℰ
(

(p− 1)�̂⊤Rc +
{

(1 + �̂⊤x)p−1 − 1
}
∗ (�R − �R)

)
. (6.3)

This is an exponential Lévy martingale because �̂ is a constant vector; in
particular, it is indeed a true martingale.

Theorem 6.1. Let q ∈ (−∞, 0) ∪ (0, 1). The following are equivalent:

(i) The q-optimal martingale measure Q̂ exists,

(ii) (6.1) and (6.2) hold,

(iii) there exists �̂ ∈ C 0 such that g(�̂) = maxC 0 g <∞ and (6.2) holds.

Under these equivalent conditions, (6.3) is the P -density process of Q̂.

Proof. We have just argued the equivalence of (i) and (ii). Under (6.1), there
exists �̂ satisfying (iii) by Theorem 3.2. Conversely, given (iii) we construct
the solution to the utility maximization problem as before and (6.1) follows;
recall Remark 3.4(c).
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Remark 6.2. (i) If Q̂ exists, (6.3) shows that the change of measure from
P to Q̂ has constant (deterministic and time-independent) Girsanov param-
eters

(
(p− 1)�̂, (1 + �̂⊤x)p−1

)
; compare [34, III.3.24] or Jeanblanc et al. [35,

�A.1, �A.2]. Therefore, R is again a Lévy process under Q̂. This result was
previously obtained in [35] by an abstract argument (cf. Section IV.8 below).

(ii) Existence of Q̂ is a fairly delicate question compared to the existence
of the supermartingale Ŷ . Recalling the de�nition of G, (6.2) essentially ex-
presses that the budget constraint C 0 in the maximization of g is �not bind-
ing�. Theorem 6.1 gives an explicit and sharp description for the existence
of Q̂; this appears to be missing in the previous literature.

IV.7 Extensions to Non-Convex Constraints

In this section we consider the utility maximization problem for some cases
where the constraints 0 ∈ C ⊆ ℝd are not convex. Let us �rst recapitulate
where the convexity assumption was used above. The proof of Lemma 5.1
used the star-shape of C , but not convexity. In the rest of Section IV.5.1,
the shape of C was irrelevant except in Lemma 5.2.

We denote by co (C ) the closed convex hull of C .

Corollary 7.1. Let p < 0 and suppose that either (i) or (ii) below hold:

(i) (a) C is star-shaped,

(b) the orthogonal projection of co (C ) ∩ C 0 onto N ⊥ is closed,

(c) NUIPco (C ) holds.

(ii) C ∩ C 0 is compact.

Then the assertion of Theorem 3.2 remains valid.

Proof. (i) The construction of (ℓ, �̌, �̌) is as above; we have to substitute the
veri�cation step which used Lemma 5.2. The model (R, co (C )) satis�es the
assumptions of Theorem 3.2. Hence the corresponding opportunity process
Lco (C ) is deterministic and bounded away from zero. The de�nition of the
opportunity process and the inclusion C ⊆ co (C ) imply that the opportunity
process L = LC for (R,C ) is also bounded away from zero. Hence ℓ/L is
bounded and we can verify (ℓ, �̌, �̌) by Corollary III.5.4, which makes no
assumptions about the shape of C .

(ii) We may assume without loss of generality that C = C ∩ C 0. In (i),
the star-shape was used only to construct a maximizer for g. When C ∩C 0 is
compact, its existence is clear by the upper semicontinuity from Lemma 5.3,
which also shows that any maximizer is necessarily in C 0,∗. To proceed as
in (i), it remains to note that the projection of the compact set co (C ) ∩ C 0

onto N ⊥ is compact, and NUIPco (C ) holds because (co (C ))̌ = {0} since
co (C ) is bounded.
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When the constraints are not star-shaped and p > 0, an additional con-
dition is necessary to ensure that the maximum of g is not attained on
C 0 ∖ C 0,∗, or equivalently, to obtain a positive optimal wealth process. In
Section III.2.4 we introduced the following condition:

(C3) There exists � ∈ (0, 1) such that y ∈ (C ∩ C 0) ∖ C 0,∗ implies �y ∈ C
for all � ∈ (�, 1).

This is clearly satis�ed if C is star-shaped or if C 0,∗ = C 0.

Corollary 7.2. Let p ∈ (0, 1) and suppose that either (i) or (ii) below hold:

(i) Assumptions 3.1 hold except that C is star-shaped instead of being con-

vex.

(ii) C ∩ C 0 is compact and satis�es (C3) and u(x0) <∞.

Then the assertion of Theorem 3.2 remains valid.

Proof. (i) The assumptions carry over to the transformed model as before,
hence again we only need to substitute the veri�cation argument. In view
of p ∈ (0, 1), we can use Theorem III.5.2, which makes no assumptions
about the shape of C . Note that we have already checked its condition (cf.
Remark III.5.16).

(ii) We may again assume C = C ∩C 0 and Remark 4.4 shows that we can
choose C̃ ∩C̃ 0 to be compact in the transformed model satisfying (3.2). That
is, we can again assume (3.2) without loss of generality. Then g is continuous
and hence existence of a maximizer on C ∩ C 0 is clear. Under (C3), any
maximizer is in C 0,∗ by the same argument as in the proof of Lemma 5.1.

The following result covers all closed constraints and applies to most of
the standard models (cf. Example 2.2).

Corollary 7.3. Let C be closed and assume that C 0 is compact and that

u(x0) <∞. Then the assertion of Theorem 3.2 remains valid.

Proof. Note that (C3) holds for all sets C when C 0,∗ is closed (and hence
equal to C 0). It remains to apply part (ii) of the two previous corollaries.

Remark 7.4. (i) For p ∈ (0, 1) we also have the analogue of Proposi-
tion 3.6(i): under the assumptions of Corollary 7.2 excluding u(x0) < ∞,
(3.2) implies u(x0) <∞.

(ii) The optimal propensity to consume �̂ remains unique even when
the constraints are not convex (cf. Theorem III.3.2). However, there is no
uniqueness for the optimal portfolio. In fact, in the setting of the above
corollaries, any constant vector � ∈ arg maxC∩C 0 g is an optimal portfolio
(by the same proofs); and when C is not convex, the di�erence of two such
� need not be in N . See also Remark III.3.3 for statements about dynamic
portfolios. Conversely, by Theorem III.3.2 any optimal portfolio, possibly
dynamic, takes values in arg maxC∩C 0 g.
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IV.8 Related Literature

We discuss some related literature in a highly selective manner; an exhaustive
overview is beyond our scope. For the unconstrained utility maximization
problem with general Lévy processes, Kallsen [38] gave a result of veri�ca-
tion type: If there exists a vector � satisfying a certain equation, � is the
optimal portfolio. This equation is essentially our (6.2) and therefore holds
only if the corresponding dual element Ŷ is the density process of a mea-
sure. Muhle-Karbe [58, Example 4.24] showed that this condition fails in
a particular model, in other words, the supermartingale Ŷ is not a martin-
gale in that example. In the one-dimensional case, he introduced a weaker
inequality condition [58, Corollary 4.21], but again existence of � was not dis-
cussed. (In fact, our proofs show the necessity of that inequality condition;
cf. Remark III.5.16.)

Numerous variants of our utility maximization problem were also studied
along more traditional lines of dynamic programming. E.g., Benth et al. [6]
solve a similar problem with in�nite time horizon when the Lévy process
satis�es additional integrability properties and the portfolios are chosen in
[0, 1]. This part of the literature generally requires technical conditions,
which we sought to avoid.

Jeanblanc et al. [35] study the q-optimal measure Q̂ for Lévy processes
when q < 0 or q > 1 (note that the considered parameter range does not
coincide with ours). They show that the Lévy structure is preserved under Q̂,
if the latter exists; a result we recovered in Remark 6.2 above for our values
of q. In [35] this is established by showing that starting from any equivalent
change of measure, a suitable choice of constant Girsanov parameters reduces
the q-divergence of the density. This argument does not seem to extend
to our general dual problem which involves supermartingales rather than
measures; in particular, it cannot be used to show that the optimal portfolio
is a constant vector. A deterministic, but not explicit characterization of
Q̂ is given in [35, Theorem 2.7]. The authors also provide a more explicit
candidate for the q-optimal measure [35, Theorem 2.9], but the condition of
that theorem fails in general (see Bender and Niethammer [5]).

In the Lévy setting the q-optimal measures (q ∈ ℝ) coincide with the min-
imal Hellinger measures and hence the pertinent results apply. See Choulli
and Stricker [12] and in particular their general su�cient condition [12, The-
orem 2.3]. We refer to [35, p. 1623] for a discussion. Our result di�ers in
that both the existence of Q̂ and its density process are described explicitly
in terms of the Lévy triplet.



Chapter V

Risk Aversion Asymptotics

In this chapter, which corresponds to the article [62], we use the tools from
Chapters II and III to study the optimal strategy as the relative risk aversion
tends to in�nity or to one.

V.1 Introduction

We study preferences given by power utility random �elds for an agent who
can invest in a �nancial market which is modeled by a general semimartin-
gale. We defer the precise formulation to the next section to allow for a
brief presentation of the contents and focus on the power utility function
U (p)(x) = 1

px
p, where p ∈ (−∞, 0) ∪ (0, 1). Under standard assumptions,

there exists for each p an optimal trading and consumption strategy that
maximizes the expected utility corresponding to U (p). Our main interest
concerns the behavior of these strategies in the limits p→ −∞ and p→ 0.

The relative risk aversion of U (p) tends to in�nity for p → −∞. Hence
economic intuition suggests that the agent should become reluctant to take
risks and, in the limit, not invest in the risky assets. Our �rst main result
con�rms this intuition. More precisely, we prove in a general semimartingale
model that the optimal consumption, expressed as a proportion of current
wealth, converges pointwise to a deterministic function. This function cor-
responds to the consumption which would be optimal in the case where
trading is not allowed. In the continuous semimartingale case, we show that
the optimal trading strategy tends to zero in a local L2-sense and that the
corresponding wealth process converges in the semimartingale topology.

Our second result pertains to the same limit p → −∞ but concerns the
problem without intermediate consumption. In the continuous case, we show
that the optimal trading strategy scaled by 1−p converges to a strategy which
is optimal for exponential utility. We provide economic intuition for this fact
via a sequence of auxiliary power utility functions with shifted domains.

The limit p→ 0 is related to the logarithmic utility function. Our third



90 V Risk Aversion Asymptotics

main result is the convergence of the corresponding optimal consumption for
the general semimartingale case, and the convergence of the trading strategy
and the wealth process in the continuous case.

All these results are readily observed for special models where the optimal
strategies can be calculated explicitly. While the corresponding economic
intuition extends to general models, it is a priori unclear how to go about
proving the results. Indeed, the problem is to get our hands on the optimal

controls, which is a notorious question in stochastic optimal control.
Our main tool is the opportunity process. We prove its convergence us-

ing control-theoretic arguments and convex analysis. On the one hand, this
yields the convergence of the value function. On the other hand, we deduce
the convergence of the optimal consumption, which is directly related to
the opportunity process. The optimal trading strategy is also linked to this
process, by the Bellman equation. We study the asymptotics of this back-
ward stochastic di�erential equation (BSDE) to obtain the convergence of
the strategy. This involves nonstandard arguments to deal with nonuniform
quadratic growth in the driver and solutions that are not locally bounded.

To derive the results in the stated generality, it is important to combine

ideas from optimal control, convex analysis and BSDE theory rather than to
rely on only one of these ingredients; and one may see the problem at hand
as a model problem of control in a semimartingale setting.

The chapter is organized as follows. In the next section, we specify the
optimization problem in detail. Section V.3 summarizes the main results on
the risk aversion asymptotics of the optimal strategies and indicates connec-
tions to the literature. Section V.4 introduces the main tools, the opportu-
nity process and the Bellman equation, and explains the general approach
for the proofs. In Section V.5 we study the dependence of the opportunity
process on p and establish some related estimates. Sections V.6 deals with
the limit p → −∞; we prove the main results stated in Section V.3 and, in
addition, the convergence of the opportunity process and the solution to the
dual problem (in the sense of convex duality). Similarly, Section V.7 contains
the proof of the main theorem for p→ 0 and additional re�nements.

V.2 Preliminaries

The following notation is used. If x, y ∈ ℝ are reals, x ∧ y = min{x, y}
and x ∨ y = max{x, y}. We use 1/0 := ∞ where necessary. If z ∈ ℝd
is a d-dimensional vector, zi is its ith coordinate, z⊤ its transpose, and
∣z∣ = (z⊤z)1/2 the Euclidean norm. If X is an ℝd-valued semimartingale
and � is an ℝd-valued predictable integrand, the vector stochastic integral,
denoted by

∫
� dX or � ∙ X, is a scalar semimartingale with initial value

zero. Relations between measurable functions hold almost everywhere unless
otherwise mentioned. Dellacherie and Meyer [18] and Jacod and Shiryaev [34]
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are references for unexplained notions from stochastic calculus.

V.2.1 The Optimization Problem

We consider a �xed time horizon T ∈ (0,∞) and a �ltered probability space
(Ω,ℱ ,F = (ℱt)t∈[0,T ], P ) satisfying the usual assumptions of right-continuity
and completeness, as well as ℱ0 = {∅,Ω} P -a.s. Let R be an ℝd-valued càdlàg
semimartingale with R0 = 0. Its components are interpreted as the returns
of d risky assets and the stochastic exponential S = (ℰ(R1), . . . , ℰ(Rd))
represents their prices. Let M be the set of equivalent �-martingale measures
for S. We assume

M ∕= ∅, (2.1)

so that arbitrage is excluded in the sense of the NFLVR condition (see Del-
baen and Schachermayer [17]). Our agent also has a bank account at his
disposal. As usual in mathematical �nance, the interest rate is assumed to
be zero.

The agent is endowed with a deterministic initial capital x0 > 0. A trad-

ing strategy is a predictable R-integrable ℝd-valued process �, where �i is
interpreted as the fraction of the current wealth (or the portfolio proportion)
invested in the ith risky asset. A consumption rate is an optional process
c ≥ 0 such that

∫ T
0 ct dt <∞ P -a.s. We want to consider two cases simulta-

neously: Either consumption occurs only at the terminal time T (utility from
�terminal wealth� only); or there is intermediate and a bulk consumption at
the time horizon. To unify the notation, we de�ne the measure � on [0, T ],

�(dt) :=

{
0 in the case without intermediate consumption,

dt in the case with intermediate consumption.

Moreover, let �∘ := � + �{T}, where �{T} is the unit Dirac measure at T .
The wealth process X(�, c) of a pair (�, c) is de�ned by the linear equation

Xt(�, c) = x0 +

∫ t

0
Xs−(�, c)�s dRs −

∫ t

0
cs �(ds), 0 ≤ t ≤ T.

The set of admissible trading and consumption pairs is

A(x0) =
{

(�, c) : X(�, c) > 0 and cT = XT (�, c)
}
.

The convention cT = XT (�, c) is merely for notational convenience and
means that all the remaining wealth is consumed at time T . We �x the
initial capital x0 and usually write A for A(x0). Moreover, c ∈ A indicates
that there exists � such that (�, c) ∈ A; an analogous convention is used for
similar expressions.
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It will be convenient to parametrize the consumption strategies as frac-
tions of the wealth. Let (�, c) ∈ A and let X = X(�, c) be the corresponding
wealth process. Then

� :=
c

X

is called the propensity to consume corresponding to (�, c). In general, a
propensity to consume is an optional process � ≥ 0 such that

∫ T
0 �s ds <∞

P -a.s. and �T = 1. The parametrizations by c and by � are equivalent (see
Remark II.2.1) and we abuse the notation by identifying c and � when � is
given. Note that the wealth process can be expressed as

X(�, �) = x0ℰ
(
� ∙ R− � ∙ �

)
. (2.2)

The preferences of the agent are modeled by a random utility func-
tion with constant relative risk aversion. More precisely, let D be a càdlàg
adapted positive process and �x p ∈ (−∞, 0) ∪ (0, 1). We de�ne the utility
random �eld

Ut(x) := U
(p)
t (x) := Dt

1
px

p, x ∈ (0,∞), t ∈ [0, T ], (2.3)

where we assume that there are constants 0 < k1 ≤ k2 <∞ such that

k1 ≤ Dt ≤ k2, 0 ≤ t ≤ T. (2.4)

The process D is taken to be independent of p; interpretations are discussed
in Remark II.2.2. The parameter p in U (p) will sometimes be suppressed in
the notation and made explicit when we want to recall the dependence. The
same applies to other quantities in this paper.

The constant 1 − p > 0 is called the relative risk aversion of U . The
expected utility corresponding to a consumption rate c ∈ A is given by
E
[ ∫ T

0 Ut(ct)�
∘(dt)

]
, which is either E[UT (cT )] or E[

∫ T
0 Ut(ct) dt+ UT (cT )].

We will always assume that the optimization problem is nondegenerate, i.e.,

up(x0) := sup
c∈A(x0)

E
[ ∫ T

0
U

(p)
t (ct)�

∘(dt)
]
<∞. (2.5)

This condition depends on the choice of p, but not on x0. Note that
up0(x0) < ∞ implies up(x0) < ∞ for any p < p0; and for p < 0 the condi-
tion (2.5) is void since then U (p) < 0. A strategy (�, c) ∈ A(x0) is optimal if
E
[ ∫ T

0 Ut(ct)�
∘(dt)

]
= u(x0). Note that Ut is irrelevant for t < T when there

is no intermediate consumption. We recall the following existence result.

Proposition 2.1 (Karatzas and �itkovi¢ [43]). For each p, if up(x0) < ∞,

there exists an optimal strategy (�̂, ĉ) ∈ A. The corresponding wealth process

X̂ = X(�̂, ĉ) is unique. The consumption rate ĉ can be chosen to be càdlàg

and is unique P ⊗ �∘-a.e.

In the sequel, ĉ denotes this càdlàg version, X̂ = X(�̂, ĉ) is the optimal
wealth process and �̂ = ĉ/X̂ is the optimal propensity to consume.
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V.2.2 Decompositions and Spaces of Processes

In some of the statements, we will assume that the price process S (or equiv-
alently R) is continuous. In this case, it follows from (2.1) and Schweizer [71]
that R satis�es the structure condition, i.e.,

R = M +

∫
d⟨M⟩�, (2.6)

where M is a continuous local martingale with M0 = 0 and � ∈ L2
loc(M).

Let � be a scalar special semimartingale, i.e., there exists a (unique)
canonical decomposition � = �0 + M � + A�, where �0 ∈ ℝ, M � is a local
martingale, A� is predictable of �nite variation, and M �

0 = A�0 = 0. As M is
continuous, M � has a Kunita-Watanabe (KW) decomposition with respect
to M ,

� = �0 + Z� ∙M +N � +A�, (2.7)

where [M i, N �] = 0 for 1 ≤ i ≤ d and Z� ∈ L2
loc(M); see Ansel and

Stricker [2, cas 3]. Analogous notation will be used for other special semi-
martingales and, with a slight abuse of terminology, we will refer to (2.7) as
the KW decomposition of �.

Let S be the space of all càdlàg P -semimartingales and r ∈ [1,∞). If
X ∈ S has the canonical decomposition X = X0 +MX +AX , we de�ne

∥X∥ℋr := ∣X0∣+
∥∥∫ T

0 ∣dA
X ∣
∥∥
Lr

+
∥∥[MX ]

1/2
T

∥∥
Lr
.

In particular, we will often use that ∥N∥2ℋ2 = E
[
[N ]T

]
for a local martingale

N with N0 = 0. If X is a non-special semimartingale, ∥X∥ℋr := ∞. We
can now de�ne ℋr := {X ∈ S : ∥X∥ℋr < ∞}. The same space is some-
times denoted by Sr in the literature; moreover, there are many equivalent
de�nitions for ℋr (see [18, VII.98]). The localized spaces ℋrloc are de�ned
in the usual way. In particular, if X,Xn ∈ S we say that Xn → X in ℋrloc
if there exists a localizing sequence of stopping times (�m)m≥1 such that
limn ∥(Xn − X)�m∥ℋr = 0 for all m. The localizing sequence may depend
on the sequence (Xn), causing this convergence to be non-metrizable. On
S, the Émery distance is de�ned by

d(X,Y ) := ∣X0 − Y0∣+ sup
∣H∣≤1

E

[
sup
t∈[0,T ]

1 ∧ ∣H ∙ (X − Y )t∣
]
,

where the supremum is taken over all predictable processes bounded by one
in absolute value. This complete metric induces on S the semimartingale

topology (cf. Émery [20]).
An optional process X satis�es a certain property prelocally if there ex-

ists a localizing sequence of stopping times �m such that X�m− := X1[0,�m) +
X�m−1[�m,T ] satis�es this property for each m. When X is continuous, pre-
local simply means local.
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Proposition 2.2 ([20]). Let X,Xn ∈ S and r ∈ [1,∞). Then Xn → X in

the semimartingale topology if and only if every subsequence of (Xn) has a

subsequence which converges to X prelocally in ℋr.

We denote by BMO the space of martingales N with N0 = 0 satisfying

∥N∥2BMO :=
∥∥∥ sup

�
E
[
[N ]T − [N ]�−

∣∣ℱ� ]∥∥∥
L∞

<∞,

where � ranges over all stopping times (more precisely, this is the BMO2-
norm). There exists a similar notion for semimartingales: let ℋ! be the
subspace of ℋ1 consisting of all special semimartingales X with X0 = 0 and

∥X∥2ℋ! :=
∥∥∥ sup

�
E
[(

[MX ]T − [MX ]�−
)1/2

+
∫ T
�−∣dA

X ∣
∣∣∣ℱ�]∥∥∥

L∞
<∞.

Finally, let ℛr be the space of scalar adapted processes which are right-
continuous and such that

∥X∥ℛr :=
∥∥∥ sup

0≤t≤T
∣Xt∣

∥∥∥
Lr
<∞.

With a mild abuse of notation, we will use the same norm also for left-
continuous processes.

V.3 Main Results

In this section we present the main results about the limits of the optimal
strategies. To state an assumption in the results, we �rst recall the opportu-
nity process L(p). Fix p such that up(x0) < ∞. Then by Proposition II.3.1
there exists a unique càdlàg semimartingale L(p) such that

Lt(p)
1
p

(
Xt(�, c)

)p
= ess sup

c̃∈A(�,c,t)
E
[ ∫ T

t
Us(c̃s)�

∘(ds)
∣∣∣ℱt], 0 ≤ t ≤ T (3.1)

for all (�, c) ∈ A, where A(�, c, t) :=
{

(�̃, c̃) ∈ A : (�̃, c̃) = (�, c) on [0, t]
}
.

We can now proceed to state the main results. The proofs are postponed
to Sections V.6 and V.7. Those sections also contain statements about the
convergence of the opportunity processes and the solutions to the dual prob-
lems, as well as some re�nements of the results below.

V.3.1 The Limit p→ −∞

The relative risk aversion 1 − p of U (p) increases to in�nity as p → −∞.
Therefore we expect that in the limit, the agent does not invest at all. In
that situation the optimal propensity to consume is �t = (1 +T − t)−1 since
this corresponds to a constant consumption rate. Our �rst result shows that
this coincides with the limit of the U (p)-optimal propensities to consume.
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Theorem 3.1. The following convergences hold as p→ −∞.

(i) Let t ∈ [0, T ]. In the case with intermediate consumption,

�̂t(p)→
1

1 + T − t
P -a.s.

If F is continuous, the convergence is uniform in t, P -a.s.; and holds

also in ℛrloc for all r ∈ [1,∞).

(ii) If S is continuous and L(p) is continuous for all p < 0, then

�̂(p)→ 0 in L2
loc(M)

and X̂(p)→ x0 exp
(
−
∫ ⋅

0
�(ds)

1+T−s
)
in the semimartingale topology.

The continuity assumptions in (ii) are always satis�ed if the �ltration F
is generated by a Brownian motion; see also Remark 4.2.

Literature. We are not aware of a similar result in the continuous-time litera-
ture, with the exception that when the strategies can be calculated explicitly,
the convergences mentioned in this section are often straightforward to ob-
tain. E.g., Grasselli [31] carries out such a construction in a complete market
model. There are also related systematic results. Carassus and Rásonyi [10]
and Grandits and Summer [30] study convergence to the superreplication
problem for increasing (absolute) risk aversion of general utility functions
in discrete models. Note that superreplicating the contingent claim B ≡ 0
corresponds to not trading at all. For the maximization of exponential util-
ity − exp(−�x) without claim, the optimal strategy is proportional to the
inverse of the absolute risk aversion � and hence trivially converges to zero
in the limit � → ∞. The case with claim has also been studied. See, e.g.,
Mania and Schweizer [53] for a continuous model, and Becherer [4] for a
related result. The references given here and later in this section do not
consider intermediate consumption.

We continue with our second main result, which concerns only the case
without intermediate consumption. We �rst introduce in detail the expo-
nential hedging problem already mentioned above. Let B ∈ L∞(ℱT ) be a
contingent claim. Then the aim is to maximize the expected exponential
utility (here with � = 1) of the terminal wealth including the claim,

max
#∈Θ

E
[
− exp

(
B − x0 − (# ∙ R)T

)]
, (3.2)

where # is the trading strategy parametrized by the monetary amounts in-
vested in the assets (setting #

i
:= 1{Si− ∕=0}#

i/Si− yields # ∙ S = # ∙ R and
corresponds to the more customary number of shares of the assets).

To describe the set Θ, we de�ne the entropy of Q ∈M relative to P by

H(Q∣P ) := E
[dQ
dP

log
(dQ
dP

)]
= EQ

[
log
(dQ
dP

)]
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and let M ent =
{
Q ∈M : H(Q∣P ) <∞

}
. We assume in the following that

M ent ∕= ∅. (3.3)

Now Θ :=
{
# ∈ L(R) : # ∙ R is a Q-supermartingale for all Q ∈ M ent

}
is

the class of admissible strategies for (3.2). If S is locally bounded, there
exists an optimal strategy #̂ ∈ Θ for (3.2) by Kabanov and Stricker [37,
Theorem 2.1]. (See Biagini and Frittelli [7, 8] for the unbounded case.)

As there is no intermediate consumption, the process D in (2.3) reduces
to a random variable DT ∈ L∞(ℱT ). If we choose

B := log(DT ), (3.4)

we have the following result.

Theorem 3.2. Let S be continuous and assume that L(p) is continuous for

all p < 0. Under (3.3) and (3.4),

(1− p) �̂(p)→ #̂ in L2
loc(M).

Here �̂(p) is in the fractions of wealth parametrization, while #̂ denotes the

monetary amounts invested for the exponential utility.

As this convergence may seem surprising at �rst glance, we give the
following heuristics.

Remark 3.3. Assume B = log(DT ) = 0 for simplicity. The preferences
induced by U (p)(x) = 1

px
p on ℝ+ are not directly comparable to the ones

given by the exponential utility, which are de�ned on ℝ. We consider the
shifted power utility functions

Ũ (p)(x) := U (p)
(
x+ 1− p

)
, x ∈ (p− 1,∞).

Then Ũ (p) again has relative risk aversion 1 − p > 0 and its domain of
de�nition increases to ℝ as p→ −∞. Moreover,

(1− p)1−p Ũ (p)(x) = 1−p
p

( x

1− p
+ 1
)p
→ −e−x, p→ −∞, (3.5)

and the multiplicative constant does not a�ect the preferences.
Let the agent with utility function Ũ (p) be endowed with some initial

capital x∗0 ∈ ℝ independent of p. (If x∗0 < 0, we consider only values of
p such that p − 1 < x∗0.) The change of variables x = x̃ + 1 − p yields
U (p)(x) = Ũ (p)(x̃). Hence the corresponding optimal wealth processes X̂(p)
and X̃(p) are related by X̃(p) = X̂(p)− 1 + p if we choose the initial capital
x0 := x∗0 + 1− p > 0 for the agent with U (p). We conclude

dX̃(p) = dX̂(p) = X̂(p)�̂(p) dR =
(
X̃(p) + 1− p

)
�̂(p) dR,
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i.e., the optimal monetary investment #̃(p) for Ũ (p) is given by

#̃(p) =
(
X̃(p) + 1− p

)
�̂(p).

In view of (3.5), it is reasonable that #̃(p) should converge to #̂, the optimal
monetary investment for the exponential utility. We recall that �̂(p) (in
fractions of wealth) does not depend on x0 and converges to zero under the
conditions of Theorem 3.1. Thus, loosely speaking, X̃(p)�̂(p) ≈ 0 for −p
large, and hence

#̃(p) ≈ (1− p)�̂(p).

More precisely, one can show that limp→−∞
(
X̃(p)�̂(p)

)
∙ R = 0 in the

semimartingale topology, using arguments as in Appendix V.8.

Literature. To the best of our knowledge, the statement of Theorem 3.2
is new in the systematic literature. However, there are known results on
the dual side for the case B = 0. The problem dual to exponential utility
maximization is the minimization of H(Q∣P ) over M ent and the optimal
QE ∈ M ent is called minimal entropy martingale measure. Under addi-
tional assumptions on the model, the solution Ŷ (p) of the dual problem for
power utility (4.3) introduced below is a martingale and then the measure Qq

de�ned by dQq/dP = ŶT (p)/Ŷ0(p) is called q-optimal martingale measure,
where q < 1 is conjugate to p. This measure can be de�ned also for q > 1,
in which case it is not connected to power utility. The convergence of Qq to
QE for q → 1+ was proved by Grandits and Rheinländer [29] for continuous
semimartingale models satisfying a reverse Hölder inequality. Under the ad-
ditional assumption that F is continuous, the convergence of Qq to QE for
q → 1 and more generally the continuity of q 7→ Qq for q ≥ 0 were obtained
by Mania and Tevzadze [54] (see also Santacroce [67]) using BSDE conver-
gence together with BMO arguments. The latter are possible due to the
reverse Hölder inequality; an assumption which is not present in our results.

V.3.2 The Limit p→ 0

As p tends to zero, the relative risk aversion of the power utility tends to 1,
which corresponds to the utility function log(x). Hence we consider

ulog(x0) := sup
c∈A(x0)

E
[ ∫ T

0
log(ct)�

∘(dt)
]
;

here integrals are set to −∞ if they are not well de�ned in ℝ. A log-utility
agent exhibits a very special (�myopic�) behavior, which allows for an explicit
solution of the utility maximization problem (cf. Goll and Kallsen [24, 25]).
If in particular S is continuous, the log-optimal strategy is

�t = �t, �t =
1

1 + T − t
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by [24, Theorem 3.1], where � is de�ned by (2.6). Our result below shows
that the optimal strategy for power utility with D ≡ 1 converges to the log-
optimal one as p→ 0. In general, the randomness ofD is an additional source
of risk and will cause an excess hedging demand. Consider the bounded
semimartingale

�t := E
[ ∫ T

t
Ds �

∘(ds)
∣∣∣ℱt].

If S is continuous, � = �0 +Z� ∙M+N�+A� denotes the Kunita-Watanabe
decomposition of � with respect to M and the standard case D ≡ 1 corre-
sponds to �t = �∘[t, T ] and Z� = 0.

Theorem 3.4. Assume up0(x0) <∞ for some p0 ∈ (0, 1). As p→ 0,

(i) in the case with intermediate consumption,

�̂t(p)→
Dt

�t
uniformly in t, P -a.s.

(ii) if S is continuous,

�̂(p)→ �+
Z�

�−
in L2

loc(M)

and the corresponding wealth processes converge in the semimartingale

topology.

Remark 3.5. If we consider the limit p→ 0−, we need not a priori assume
that up0(x0) < ∞ for some p0 > 0. Without that condition, the assertions
of Theorem 3.4 remain valid if (i) is replaced by the weaker statement that
limp→0− �̂t(p) → Dt/�t P -a.s. for all t. If F is continuous, (i) remains valid
without changes. In particular, these convergences hold even if ulog(x0) =∞.

Literature. In the following discussion we assume D ≡ 1 for simplicity. It
is part of the folklore that the log-optimal strategy can be obtained from
�̂(p) by formally setting p = 0. Initiated by Jouini and Napp [36], a re-
cent branch of the literature studies the stability of the utility maximization
problem under perturbations of the utility function (with respect to point-
wise convergence) and other ingredients of the problem. To the best of our
knowledge, intermediate consumption was not considered so far and the pre-
vious results for continuous time concern continuous semimartingale models.

We note that log(x) = limp→0(U (p)(x)− p−1) and here the additive con-
stant does not in�uence the optimal strategy, i.e., we have pointwise conver-
gence of utility functions �equivalent� to U (p). Now Larsen [51, Theorem 2.2]
implies that the optimal terminal wealth X̂T for U (p) converges in probabil-
ity to the log-optimal one and that the value functions at time zero converge
pointwise (in the continuous case without consumption). We use the speci�c
form of our utility functions and obtain a stronger result. Finally, we can
mention that on the dual side and for p→ 0−, the convergence is related to
the continuity of q-optimal measures as mentioned after Remark 3.3.
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For general D and p, it seems di�cult to determine the precise in�uence
of D on the optimal trading strategy �̂(p). We can read Theorem 3.4(ii) as
a partial result on the excess hedging demand �̂(p)− �̂(p, 1) due to D; here
�̂(p, 1) denotes the optimal strategy for the case D ≡ 1.

Corollary 3.6. Suppose that the conditions of Theorem 3.4(ii) hold. Then

�̂(p) − �̂(p, 1) → Z�/�− in L2
loc(M) as p → 0; i.e., the asymptotic excess

hedging demand due to D is given by Z�/�−.

The stability theory mentioned above considers also perturbations of the
probability measure P (see Kardaras and �itkovi¢ [45]) and our corollary
can be related as follows. In the special case when D is a martingale, U (p)

under P corresponds to the standard power utility function optimized under
the measure dP̃ = (DT /D0) dP (see Remark II.2.2). The excess hedging
demand due to D then represents the in�uence of the �subjective beliefs� P̃ .

V.4 Tools and Ideas for the Proofs

In this section we introduce our main tools and then present the basic ideas
how to apply them for the proofs of the theorems.

V.4.1 Opportunity Processes

We �x p and assume up(x0) < ∞ throughout this section. We �rst discuss
the properties of the (primal) opportunity process L = L(p) as introduced
in (3.1). Directly from that equation we have that LT = DT and that
up(x0) = L0

1
px

p
0 is the value function from (2.5). Moreover, L has the fol-

lowing properties by Lemma II.3.5 and the bounds (2.4) for D.

Lemma 4.1. The opportunity process satis�es L,L− > 0.

(i) If p ∈ (0, 1), L is a supermartingale satisfying

Lt ≥
(
�∘[t, T ]

)−p
E
[ ∫ T

t
Ds �

∘(ds)
∣∣∣ℱt] ≥ k1.

(ii) If p < 0, L is a bounded semimartingale satisfying

0 < Lt ≤
(
�∘[t, T ]

)−p
E
[ ∫ T

t
Ds �

∘(ds)
∣∣∣ℱt] ≤ k2

(
�∘[t, T ]

)1−p
.

If in addition there is no intermediate consumption, then L is a sub-

martingale.

In particular, L is always a special semimartingale. We denote by

� :=
1

1− p
> 0, q :=

p

p− 1
∈ (−∞, 0) ∪ (0, 1) (4.1)
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the relative risk tolerance and the exponent conjugate to p, respectively.
These constants are of course redundant given p, but turn out to simplify
the notation.

In the case with intermediate consumption, the opportunity process and
the optimal consumption are related by

ĉt =
(Dt

Lt

)�
X̂t and hence �̂t =

(Dt

Lt

)�
(4.2)

according to Theorem II.5.1. Next, we introduce the convex-dual analogue
of L; cf. Section II.4 for the following notions and results. The dual problem
is

inf
Y ∈Y

E
[ ∫ T

0
U∗t (Yt)�

∘(dt)
]
, (4.3)

where U∗t (y) = supx>0

{
Ut(x) − xy

}
= −1

qy
qD�

t is the conjugate of Ut.
Only three properties of the domain Y = Y (p) are relevant for us. First,
each element Y ∈ Y is a positive càdlàg supermartingale. Second, the set Y
depends on p only by a normalization: with the constant y0(p) := L0(p)xp−1

0 ,
the set Y ′ := y0(p)−1Y (p) does not depend on p. As the elements of Y will
occur only in terms of certain fractions, the constant plays no role. Third,
the P -density process of any Q ∈M is contained in Y (modulo scaling).

The dual opportunity process L∗ is the analogue of L for the dual problem
and can be de�ned by

L∗t :=

⎧⎨⎩ess supY ∈Y E
[ ∫ T

t D�
s (Ys/Yt)

q �∘(ds)
∣∣∣ℱt] if p < 0 ,

ess infY ∈Y E
[ ∫ T

t D�
s (Ys/Yt)

q �∘(ds)
∣∣∣ℱt] if p ∈ (0, 1).

(4.4)

Here the extremum is attained at the minimizer Y ∈ Y for (4.3), which we
denote by Ŷ = Ŷ (p). Finally, we shall use that the primal and the dual
opportunity process are related by the power

L∗ = L�. (4.5)

V.4.2 Bellman BSDE

We continue with a �xed p such that up(x0) <∞. We recall (Chapter III) the
Bellman BSDE, which in the present chapter will be used only for continuous
S. In this case, recall (2.6) and let L = L0 + ZL ∙ M + NL + AL be the
KW decomposition1 of L with respect to M . Then the triplet (L,ZL, NL)

1In this chapter, we write ZL instead of 'L (as in Chapter III), since this is more in
line with the BSDE literature.
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satis�es the Bellman BSDE

dLt =
q

2
Lt−

(
�t +

ZLt
Lt−

)⊤
d⟨M⟩t

(
�t +

ZLt
Lt−

)
− pU∗t (Lt−)�(dt)

+ ZLt dMt + dNL
t ; (4.6)

LT = DT .

Put di�erently, the �nite variation part of L satis�es

ALt =
q

2

∫ t

0
Ls−

(
�s +

ZLs
Ls−

)⊤
d⟨M⟩s

(
�s +

ZLs
Ls−

)
− p

∫ t

0
U∗s (Ls−)�(ds).

(4.7)
Here U∗ is de�ned as after (4.3). Moreover, the optimal trading strategy �̂
can be described by

�̂t = �
(
�t +

ZLt
Lt−

)
. (4.8)

See Corollary III.3.12 for these results. Finally, still under the assumption
of continuity, the solution to the dual problem (4.3) is given by the local
martingale

Ŷ = y0ℰ
(
− � ∙M +

1

L−
∙ NL

)
, (4.9)

with the constant y0 = u′p(x0) = L0x
p−1
0 (cf. Remark III.5.18).

Remark 4.2. Continuity of S does not imply that L is continuous; the
local martingale NL may still have jumps (see also Remark III.3.13(i)). If
the �ltration F is continuous (i.e., all F-martingales are continuous), it clearly
follows that L and S are continuous. The most important example with this
property is the Brownian �ltration.

V.4.3 The Strategy for the Proofs

We can now summarize the basic scheme that is common for the proofs of
the three theorems.

The �rst step is to prove the pointwise convergence of the opportunity
process L or of the dual opportunity process L∗; the choice of the process
depends on the theorem. The convergence of the optimal propensity to con-
sume �̂ then follows in view of the feedback formula (4.2). The de�nitions
of L and L∗ via the value processes lend themselves to control-theoretic ar-
guments, and of course Jensen's inequality will be the basic tool to derive
estimates. In view of the relation L∗ = L� from (4.5), it is essentially equiva-
lent whether one works with L or L∗, as long as p is �xed. However, the dual
problem has the advantage of being de�ned over a set of supermartingales,
which are easier to handle than consumption and wealth processes. This is
particularly useful when passing to the limit.
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The second step is the convergence of the trading strategy �̂. Note that
its formula (4.8) contains the integrand ZL from the KW decomposition
of L with respect to M . Therefore, the convergence of �̂ is related to the
convergence of the martingale partML (resp.ML∗). In general, the pointwise
convergence of a semimartingale is not enough to deduce the convergence
of its martingale part; this requires some control over the semimartingale
decomposition. In our case, this control is given by the Bellman BSDE (4.6),
which can be seen as a description for the dependence of the �nite variation
part AL on the martingale part ML. As we use the BSDE to show the
convergence of ML, we bene�t from techniques from the theory of quadratic
BSDEs. However, we cannot apply standard results from that theory since
our assumptions are not strong enough.

In general, our approach is to extract as much information as possible
by basic control arguments and convex analysis before tackling the BSDE,
rather than to rely exclusively on (typically delicate) BSDE arguments. For
instance, we use the BSDE only after establishing the pointwise convergence
of its left hand side, i.e., the opportunity process. This essentially eliminates
the need for an a priori estimate or a comparison principle and constitutes
a key reason for the generality of our results. Our procedure shares basic
features of the viscosity approach to Markovian control problems, where one
also works directly with the value function before tackling the Hamilton-
Jacobi-Bellman equation.

V.5 Auxiliary Results

We start by collecting inequalities for the dependence of the opportunity
processes on p. The precise formulations are motivated by the applications
in the proofs of the previous theorems, but the comparison results are also
of independent interest.

V.5.1 Comparison Results

We assume in the entire section that up0(x0) < ∞ for a given exponent p0.
For convenience, we recall the quantities � = 1/(1−p) > 0 and q = p/(p−1)
de�ned in (4.1). It is useful to note that q ∈ (−∞, 0) for p ∈ (0, 1) and vice
versa. When there is a second exponent p0 under consideration, �0 and q0

have the obvious de�nition. We also recall from (2.4) the bounds k1 and k2

for D.

Proposition 5.1. Let 0 < p < p0 < 1. For each t ∈ [0, T ],

L∗t (p) ≤ E
[ ∫ T

t
D�
s �
∘(ds)

∣∣∣ℱt]1−q/q0 (
k�−�01 L∗t (p0)

)q/q0
, (5.1)

Lt(p) ≤
(
k2�

∘[t, T ]
)1−p/p0Lt(p0)p/p0 . (5.2)
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If p < p0 < 0, the converse inequalities hold, if in (5.1) k1 is replaced by k2.

If p < 0 < p0 < 1, the converse inequalities hold, if in (5.2) k2 is replaced by

k1.

Proof. We �x t and begin with (5.1). To unify the proofs, we �rst argue a
Jensen inequality: if X = (Xs)s∈[t,T ] > 0 is optional and � ∈ (0, 1), then

E
[ ∫ T

t
D�
sX

�
s �
∘(ds)

∣∣∣ℱt] ≤ E[ ∫ T

t
D�
s �
∘(ds)

∣∣∣ℱt]1−�
E
[ ∫ T

t
D�
sXs �

∘(ds)
∣∣∣ℱt]�.
(5.3)

To see this, introduce the probability space
(
[t, T ]×Ω,ℬ([t, T ])⊗ℱ , �

)
, where

�(I ×G) := E
[
�−1

∫
I

1GD
�
s �
∘(ds)

]
, G ∈ ℱ , I ∈ ℬ([t, T ]),

with the normalizing factor � := E[
∫ T
t D�

s �∘(ds)∣ℱt]. On this space, X is a
random variable and we have the conditional Jensen inequality

E�
[
X�
∣∣[t, T ]×ℱt

]
≤ E�

[
X
∣∣[t, T ]×ℱt

]�
for the �-�eld [t, T ] × ℱt := {[t, T ] × A : A ∈ ℱt}. But this inequality
coincides with (5.3) if we identify L0([t, T ]×Ω, [t, T ]×ℱt) and L0(Ω,ℱt) by
using that an element of the �rst space is necessarily constant in its time
variable.

Let 0 < p ≤ p0 < 1 and let Ŷ := Ŷ (p0) be the solution of the dual
problem for p0. Using (4.4) and then (5.3) with � := q/q0 ∈ (0, 1) and
X�
s :=

(
(Ŷs/Ŷt)

q0
)�

= (Ŷs/Ŷt)
q,

L∗t (p) ≤ E
[ ∫ T

t
D�
s

(
Ŷs/Ŷt

)q
�∘(ds)

∣∣∣ℱt]
≤ E

[ ∫ T

t
D�
s �
∘(ds)

∣∣∣ℱt]1−q/q0
E
[ ∫ T

t
D�
s (Ŷs/Ŷt)

q0 �∘(ds)
∣∣∣ℱt]q/q0 .

Now D�
s ≤ k�−�01 D�0

s since � − �0 < 0, which completes the proof of the
�rst claim in view of (4.4). In the cases with p < 0, the in�mum in (4.4) is
replaced by a supremum and � = q/q0 is either > 1 or < 0, reversing the
direction of Jensen's inequality.

We turn to (5.2). Let 0 < p ≤ p0 < 1 and X̂ = X̂(p), ĉ = ĉ(p).
Using (3.1) and the usual Jensen inequality twice,

Lt(p0)X̂p0
t ≥ E

[ ∫ T

t
Dsĉ

p0
s �∘(ds)

∣∣∣ℱt]
≥ �∘[t, T ]1−p0/pE

[ ∫ T

t
Dp/p0
s ĉps �

∘(ds)
∣∣∣ℱt]p0/p

≥
(
k2�

∘[t, T ]
)1−p0/p(Lt(p)X̂p

t

)p0/p
and the claim follows. The other cases are similar.
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A useful consequence is that L(p) gains moments as p moves away from
the possibly critical exponent p0.

Corollary 5.2. (i) Let 0 < p < p0 < 1. Then

L(p) ≤ CL(p0) (5.4)

with a constant C independent of p0 and p. In the case without inter-

mediate consumption we can take C = 1.

(ii) Let r ≥ 1 and 0 < p ≤ p0/r. Then

E
[
(L� (p))r

]
≤ Cr

for all stopping times � , with a constant Cr independent of p0, p, � . In
particular, L(p) is of class (D) for all p ∈ (0, p0).

Proof. (i) Denote L = L(p0). By Lemma 4.1, L/k1 ≥ 1, hence Lp/p0 =

k
p/p0
1 (L/k1)p/p0 ≤ k

p/p0
1 (L/k1) as p/p0 ∈ (0, 1). Proposition 5.1 yields the

result with C =
(
�∘[0, T ]k2/k1

)1−p/p0 ; note that C ≤ 1 ∨ (1 + T )k2/k1. In
the absence of intermediate consumption we may assume k1 = k2 = 1 by the
subsequent Remark 5.3 and then C = 1.

(ii) Let r ≥ 1, 0 < p ≤ p0/r, and L = L(p0). Proposition 5.1 shows

Lt(p)
r ≤

(
k2�

∘[t, T ]
)r(1−p/p0)

L
rp/p0
t ≤

(
(1 ∨ k2)(1 + T )

)r
L
rp/p0
t .

Note rp/p0 ∈ (0, 1), thus Lrp/p0 is a supermartingale by Lemma 4.1 and
E[L

rp/p0
� ] ≤ Lrp/p00 ≤ 1 ∨ k2.

Remark 5.3. In the case without intermediate consumption we may assume
D ≡ 1 in the proof of Corollary 5.2(i). Indeed, D reduces to the random
variable DT and can be absorbed into the measure P as follows. Under the
measure P̃ with P -density process �t = E[DT ∣ℱt]/E[DT ], the opportunity
process for the utility function Ũ(x) = 1

px
p is L̃ = L/� by Remark II.3.2. If

Corollary 5.2(i) is proved for D ≡ 1, we conclude L̃(p) ≤ L̃(p0) and then the
inequality for L follows.

Inequality (5.4) is stated for reference as it has a simple form; however,
note that it was deduced using the very poor estimate ab ≥ a for a, b ≥ 1. In
the pure investment case, we have C = 1 and so (5.4) is a direct comparison
result. Intermediate consumption destroys this monotonicity property: (5.4)
fails for C = 1 in that case, e.g., if D ≡ 1 and Rt = t + Wt, where W is
a standard Brownian motion, and p = 0.1 and p0 = 0.2, as can be seen
by explicit calculation. This is not surprising from a BSDE perspective,
because the driver of (4.6) is not monotone with respect to p in the presence
of the d�-term. In the pure investment case, the driver is monotone and so
the comparison result can be expected, even for the entire parameter range.
This is con�rmed by the next result; note that the inequality is converse

to (5.2) for the considered parameters.
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Proposition 5.4. Let p < p0 < 0, then

Lt(p) ≤
k2

k1

(
�∘[t, T ]

)p0−pLt(p0).

In the case without intermediate consumption, L(p) ≤ L(p0).

The proof is based on the following auxiliary statement.

Lemma 5.5. Let Y > 0 be a supermartingale. For �xed 0 ≤ t ≤ s ≤ T ,

� : (0, 1)→ ℝ+, q 7→ �(q) :=
(
E
[
(Ys/Yt)

q
∣∣ℱt]) 1

1−q

is a monotone decreasing function P -a.s. If Y is a martingale, we have

�(1) := limq→1− �(q) = exp
(
−E

[
(Ys/Yt) log(Ys/Yt)

∣∣ℱt]) P -a.s., where the

conditional expectation has values in ℝ ∪ {+∞}.

Lemma 5.5 can be obtained using Jensen's inequality and a suitable
change of measure; see Lemma II.4.10 for details.

Proof of Proposition 5.4. Let 0 < q0 < q < 1 be the dual exponents and
denote Ŷ := Ŷ (p). By Lemma 5.5 and Jensen's inequality for 1−q

1−q0 ∈ (0, 1),∫ T

t
E
[
(Ŷs/Ŷt)

q
∣∣ℱt]�∘(ds) ≤ ∫ T

t

(
E
[
(Ŷs/Ŷt)

q0
∣∣ℱt]) 1−q

1−q0 �∘(ds)

≤ �∘[t, T ]

(
1− 1−q

1−q0

)(∫ T

t
E
[
(Ŷs/Ŷt)

q0
∣∣ℱt]�∘(ds)) 1−q

1−q0
.

Using (2.4) and (4.4) twice, we conclude that

L∗t (p) ≤ k
�
2

∫ T

t
E
[
(Ŷs/Ŷt)

q
∣∣ℱt]�∘(ds)

≤ k�2 k
−�0 1−q

1−q0
1 �∘[t, T ]

(
1− 1−q

1−q0

)(∫ T

t
E
[
D�0
s (Ŷs/Ŷt)

q0
∣∣ℱt]�∘(ds)) 1−q

1−q0

≤ k�2 k
−�0 1−q

1−q0
1 �∘[t, T ]

(
1− 1−q

1−q0

)
L∗t (p0)

1−q
1−q0 .

Now (4.5) and � = 1 − q yield the �rst result. In the case without inter-
mediate consumption, we may assume D ≡ 1 and hence k1 = k2 = 1, as in
Remark 5.3.

Remark 5.6. Our argument for Proposition 5.4 extends to p = −∞ (cf.
Lemma 6.7 below). The proposition generalizes [54, Proposition 2.2], where
the result is proved for the case without intermediate consumption and under
the additional condition that Ŷ (p0) is a martingale (or equivalently, that the
q0-optimal equivalent martingale measure exists).
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Propositions 5.1 and 5.4 combine to the following continuity property of
p 7→ L(p) at interior points of (−∞, 0). We will not pursue this further as
we are interested mainly in the boundary points of this interval.

Corollary 5.7. Assume D ≡ 1 and let Ct := �∘[t, T ]. If p ≤ p0 < 0,

C
1−p/p0
t L(p0)p/p0 ≤ L(p) ≤ Cp0−pt L(p0) ≤ C

1−p0/p+p0−p
t L(p)p0/p.

In particular, p 7→ Lt(p) is continuous on (−∞, 0) uniformly in t, P -a.s.

Remark 5.8. The optimal propensity to consume �̂(p) is not monotone with
respect to p in general. For instance, monotonicity fails for D ≡ 1 and Rt =
t + Wt, where W is a standard Brownian motion, and p ∈ {−1/2,−1,−2}.
One can note that p determines both the risk aversion and the elasticity of
intertemporal substitution (see, e.g., Gollier [27, �15]). As with any time-
additive utility speci�cation, it is not possible in our setting to study the
dependence on each of these quantities in an isolated way.

V.5.2 BMO Estimate

In this section we give BMO estimates for the martingale part of L. The
following lemma is well known; we state the proof since the argument will
be used also later on.

Lemma 5.9. Let X be a submartingale satisfying 0 ≤ X ≤ � for some

constant � > 0. Then for all stopping times 0 ≤ � ≤ � ≤ T ,

E
[
[X]� − [X]�

∣∣ℱ�] ≤ E[X2
� −X2

�

∣∣ℱ�].
Proof. Let X = X0 + MX + AX be the Doob-Meyer decomposition. As
X2
t = X2

0 + 2
∫ t

0 Xs− (dMX
s + dAXs ) + [X]t and 2

∫ �
� Xs−dA

X
s ≥ 0,

[X]� − [X]� ≤ X2
� −X2

� − 2

∫ �

�
Xs−dM

X
s .

The claim follows by taking conditional expectations because X− ∙MX is a
martingale. Indeed, X is bounded and supt ∣MX

t ∣ ≤ 2� + AXT ∈ L1, so the
BDG inequalities [18, VII.92] show [MX ]

1/2
T ∈ L1, hence [X− ∙M

X ]
1/2
T ∈ L1,

which by the BDG inequalities implies that supt ∣X− ∙MX
t ∣ ∈ L1.

We wish to apply Lemma 5.9 to L(p) in the case p < 0. However,
the submartingale property fails in general for the case with intermediate
consumption (cf. Lemma 4.1). We introduce instead a closely related process
having this property.
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Lemma 5.10. Let p < 0 and consider the case with intermediate consump-

tion. Then

Bt :=
(1 + T − t

1 + T

)p
Lt +

1

(1 + T )p

∫ t

0
Ds ds

is a submartingale satisfying 0 < Bt ≤ k2(1 + T )1−p.

Proof. Choose (�, c) ≡ (0, x0/(1 + T )) in Proposition II.3.4 to see that B is
a submartingale. The bound follows from Lemma 4.1.

We are now in the position to exploit Lemma 5.9.

Lemma 5.11. (i) Let p1 < 0. There exists a constant C = C(p1) such

that ∥ML(p)∥BMO ≤ C for all p ∈ (p1, 0). In the case without inter-

mediate consumption one can take p1 = −∞.

(ii) Assume up0(x0) < ∞ for some p0 ∈ (0, 1) and let � be a stopping

time such that L(p0)� ≤ � for a constant � > 0. Then there exists

C ′ = C ′(�) such that ∥(ML(p))�∥BMO ≤ C ′ for all p ∈ (0, p0].

Proof. (i) Let p1 < p < 0 and let � be a stopping time. We �rst show that

E
[
[L(p)]T − [L(p)]�

∣∣ℱ� ] ≤ C. (5.5)

In the case without intermediate consumption, L = L(p) is a positive sub-
martingale with L ≤ k2 (Lemma 4.1), so Lemma 5.9 implies (5.5) with
C = k2

2. In the other case, de�ne B as in Lemma 5.10 and f(t) := (1+T−t
1+T )p.

Then [L]t − [L]0 =
∫ t

0 f
−2(s) d[B]s and f−2(s) ≤ 1 as f is increasing with

f(0) = 1. Thus [L]T − [L]� =
∫ T
� f−2(s) d[B]s ≤ [B]T − [B]� . Now (5.5)

follows since B ≤ k2(1 + T )1−p and Lemma 5.9 imply

E
[
[B]T − [B]�

∣∣ℱ� ] ≤ k2
2(1 + T )2−2p ≤ k2

2(1 + T )2−2p1 =: C(p1).

We have [L] = L2
0 + [ML] + [AL] + 2[ML, AL]. Since AL is predictable,

N := 2[ML, AL] is a local martingale with some localizing sequence (�n).
Moreover, [ML]t − [ML]s = [L]t − [L]s − ([A]t − [A]s)− (Nt −Ns) and (5.5)
imply

E
[
[ML]T∧�n − [ML]�∧�n

∣∣ℱ�∧�n] ≤ C.
Choosing � = 0 and n → ∞ we see that [M ]T ∈ L1(P ) and thus Hunt's
lemma [18, V.45] shows the a.s.-convergence in this inequality; i.e., we have
E
[
[ML]T − [ML]�

∣∣ℱ� ] ≤ C. If L is bounded by �, the jumps of ML are
bounded by 2� (cf. [34, I.4.24]), therefore

sup
�
E
[
[ML]T − [ML]�−

∣∣ℱ� ] ≤ C + 4�2.

By Lemma 4.1 we can take � = k2(1 + T )1−p1 , and � = k2 when there is no
intermediate consumption.
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(ii) Let 0 < p ≤ p0 < 1. The assumption and Corollary 5.2(i) show
that L(p)� ≤ C� for a constant C� independent of p and p0. We ap-
ply Lemma 5.9 to the nonnegative process X(p) := C� − L(p)�, which is
a submartingale by Lemma 4.1, and obtain E

[
[L(p)�]T − [L(p)�]�

∣∣ℱ� ] =
E
[
[X(p)]T − [X(p)]�

∣∣ℱ� ] ≤ C2
�. Now the rest of the proof is as in (i).

Corollary 5.12. Let S be continuous and assume that either p ∈ (0, 1)
and L is bounded or that p < 0 and L is bounded away from zero. Then

� ∙M ∈ BMO, where � and M are de�ned by (2.6).

Proof. In both cases, the assumed bound and Lemma 4.1 imply that L
is bounded away from zero and in�nity. Taking conditional expectations
in (4.6), we obtain a constant C > 0 such that

E

[ ∫ T

t
L−

(
�+

ZL

L−

)⊤
d⟨M⟩

(
�+

ZL

L−

)∣∣∣∣ℱt] ≤ C, 0 ≤ t ≤ T.

Moreover, we have ML ∈ BMO by Lemma 5.11. Using the bounds for L
and the Cauchy-Schwarz inequality, it follows that E[

∫ T
t �⊤ d⟨M⟩�∣ℱt] ≤

C ′(1 + ∥ZL ∙M∥BMO) ≤ C ′(1 + ∥ML∥BMO) for a constant C ′ > 0.

We remark that uniform bounds for L (as in the condition of Corol-
lary 5.12) are equivalent to a reverse Hölder inequality Rq(P ) for some el-
ement of the dual domain Y ; see Proposition II.4.5 for details. Here the
index q satis�es q < 1. Therefore, our corollary complements well known
results stating that Rq(P ) with q > 1 implies � ∙ M ∈ BMO (in a suitable
setting); see, e.g., Delbaen et al. [16, Theorems A,B].

V.6 The Limit p→ −∞
The �rst goal of this section is to prove Theorem 3.1. Recall that the con-
sumption strategy is related to the opportunity processes via (4.2) and (4.5).
From these relations and the intuition mentioned before Theorem 3.1, we
expect that the dual opportunity process L∗t = L�t converges to �∘[t, T ] as
p → −∞. Noting that the exponent � = 1/(1 − p) → 0, this implies that
Lt(p)→∞ for all t < T , in the case with intermediate consumption. There-
fore, we shall work here with L∗ rather than L. In the pure investment case,
the situation is di�erent as then L ≤ k2 (Lemma 4.1). There, the limit of L
yields additional information; this is examined in Section V.6.1 below.

Proposition 6.1. For each t ∈ [0, T ],

lim
p→−∞

L∗t (p) = �∘[t, T ] P -a.s. and in Lr(P ), r ∈ [1,∞),

with a uniform bound. If F is continuous, the convergences are uniform in t.
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Remark 6.2. We will use later that the same convergences hold if t is
replaced by a stopping time, which is an immediate consequence in view
of the uniform bound. Of course, we mean by �uniform bound� that there
exists a constant C > 0, independent of p and t, such that 0 ≤ L∗t (p) ≤ C.
Analogous terminology will be used in the sequel.

Proof. We consider 0 > p→ −∞ and note that q → 1− and � → 0+. From
Lemma 4.1 we have

0 ≤ L∗t (p) = L�t (p) ≤ k�2�
∘[t, T ]→ �∘[t, T ], (6.1)

uniformly in t. To obtain a lower bound, we consider the density process Y
of some Q ∈M , which exists by assumption (2.1). From (4.4) we have

L∗t (p) ≥ k
�
1

∫ T

t
E
[
(Ys/Yt)

q
∣∣ℱt]�∘(ds).

For �xed s ≥ t, clearly (Ys/Yt)
q → Ys/Yt P -a.s. as q → 1, and noting

the bound 0 ≤ (Ys/Yt)
q ≤ 1 + Ys/Yt ∈ L1(P ) we conclude by dominated

convergence that

E
[
(Ys/Yt)

q
∣∣ℱt]→ E

[
Ys/Yt

∣∣ℱt] ≡ 1 P -a.s., for all s ≥ t.

Since Y q is a supermartingale, 0 ≤ E
[
(Ys/Yt)

q
∣∣ℱt] ≤ 1. Hence, for each t,

dominated convergence shows∫ T

t
E
[
(Ys/Yt)

q
∣∣ℱt]�∘(ds)→ �∘[t, T ] P -a.s.

This ends the proof of the �rst claim. The convergence in Lr(P ) follows by
the bound (6.1).

Assume that F is continuous; then the martingale Y is continuous. For
�xed (s, !) ∈ [0, T ]× Ω we consider (a �xed version of)

fq(t) := E
[
(Ys/Yt)

q
∣∣ℱt]1/q(!), t ∈ [0, s].

These functions are continuous in t and increasing in q by Jensen's inequality,
and converge to 1 for each t. Hence fq → 1 uniformly in t on the compact
[0, s], by Dini's lemma. The same holds for fq(t)q = E

[
(Ys/Yt)

q
∣∣ℱt](!).

Fix ! ∈ Ω and let ", "′ > 0. By Egorov's theorem there exist a measurable
set I = I(!) ⊆ [0, T ] and � = �(!) ∈ (0, 1) such that �∘([0, T ] ∖ I) < " and
supt∈[0,s] ∣E

[
(Ys/Yt)

q
∣∣ℱt] − 1∣ < "′ for all q > 1 − � and all s ∈ I. For

q > 1− � and t ∈ [0, T ] we have∫ T

t

∣∣E[(Ys/Yt)q∣∣ℱt]− 1
∣∣�∘(ds)

≤
∫
I

∣∣E[(Ys/Yt)q∣∣ℱt]− 1
∣∣�∘(ds) +

∫
[t,T ]∖I

∣∣E[(Ys/Yt)q∣∣ℱt]− 1
∣∣�∘(ds)

≤ "′(1 + T ) + ".
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We have shown that supt∈[0,T ] ∣L∗t (p)−�∘[t, T ]∣ → 0 P -a.s., and also in Lr(P )
by dominated convergence and the uniform bound resulting from (6.1) in
view of k�2�

∘[t, T ] ≤ (1 ∨ k2)(1 + T ).

Under additional continuity assumptions, we will prove that the martin-
gale part of L∗ converges to zero in ℋ2

loc. We �rst need some preparations.
For each p, it follows from Lemma 4.1 that L∗ has a canonical decomposition
L∗ = L∗0 +ML∗ +AL

∗
. When S is continuous, we denote the KW decompo-

sition with respect to M by L∗ = L∗0 +ZL
∗
∙M +NL∗ +AL

∗
. If in addition

L is continuous, we obtain from L∗ = L� and (4.7) by Itô's formula that

ML∗ = �L�−1 ∙ML; ZL
∗
/L∗ = �ZL/L; NL∗ = �L�−1 ∙ NL; (6.2)

AL
∗

= q
2

∫ (
��L∗ + 2ZL

∗)⊤
d⟨M⟩�+ p

2

∫ (
L∗
)−1

d⟨NL∗⟩ −
∫
D� d�.

Here d� is a shorthand for �(ds).

Lemma 6.3. Let p0 < 0. There exists a localizing sequence (�n) such that(
L∗(p)

)�n
− > 1/n simultaneously for all p ∈ (−∞, p0];

and moreover, if S and L(p) are continuous, (ML∗(p))�n ∈ BMO for p ≤ p0.

Proof. Fix p0 < 0 (and corresponding q0) and a sequence "n ↓ 0 in (0, 1). Set
�n = inf{t ≥ 0 : L∗t (p0) ≤ "n} ∧ T . Then �n → T stationarily because each
path of L∗(p0) is bounded away from zero (Lemma 4.1). Proposition 5.1 im-
plies that there is a constant � = �(p0) > 0 such that L∗t (p) ≥ �

(
L∗t (p0)

)q/q0
for all p ≤ p0. It follows that L∗(�n∧t)−(p) ≥ �"

1/q0
n for all p ≤ p0 and we

have proved the �rst claim.
Fix p ∈ (−∞, p0], let S and L = L(p) be continuous and recall that

ML∗ = �L�−1 ∙ML from (6.2). Noting that � − 1 < 0, we have just shown
that the integrand �L�−1 is bounded on [0, �n]. Since ML ∈ BMO by
Lemma 5.11(i), we conclude that (ML∗)�n ∈ BMO.

Proposition 6.4. Assume that S and L(p) are continuous for all p < 0. As
p→ −∞,

ZL
∗(p) → 0 in L2

loc(M) and NL∗(p) → 0 in ℋ2
loc.

Proof. We �x some p0 < 0 and consider p ∈ (−∞, p0]. Using Lemma 6.3, we
may assume by localization that ML∗(p) ∈ ℋ2 and � ∈ L2(M). De�ne the
continuous processes X = X(p) by

Xt(p) := k�2�
∘[t, T ]− L∗t (p),

then 0 ≤ X(p) ≤ (1∨k2)(1+T ) by (6.1). Fix p. We shall apply Itô's formula
to Φ(X), where

Φ(x) := exp(x)− x.
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For x ≥ 0, Φ satis�es

Φ(x) ≥ 1, Φ′(0) = 0, Φ′(x) ≥ 0, Φ′′(x) ≥ 1, Φ′′(x)− Φ′(x) = 1.

We have 1
2

∫ T
0 Φ′′(X) d⟨X⟩ = Φ(XT )−Φ(X0)−

∫ T
0 Φ′(X) ( dMX +dAX). As

Φ′(X) is like X uniformly bounded and MX = −ML∗ ∈ ℋ2, the stochastic
integral wrt. MX is a true martingale and

E
[ ∫ T

0
Φ′′(X) d⟨X⟩

]
= 2E

[
Φ(XT )− Φ(X0)

]
− 2E

[ ∫ T

0
Φ′(X) dAX

]
.

Note that dAX = −k�2 d�− dAL
∗
, so that (6.2) yields

2 dAX = −q
(
��L∗ + 2ZL

∗)⊤
d⟨M⟩�− p

(
L∗
)−1

d⟨NL∗⟩+ 2
(
D� − k�2

)
d�.

Letting p → −∞, we have q → 1− and � → 0+. Hence, using that X and
L∗ are bounded uniformly in p,

−q�E
[ ∫ T

0
Φ′(X)(�L∗)⊤ d⟨M⟩�

]
→ 0,

E
[ ∫ T

0
Φ′(X)

(
D� − k�2

)
d�
]
→ 0,

E
[
Φ(XT )− Φ(X0)

]
→ 0,

where the last convergence is due to Proposition 6.1 (and the subsequent
remark). If o denotes the sum of these three expectations tending to zero,

E

[ ∫ T

0
Φ′′(X) d⟨X⟩

]
= E

[ ∫ T

0
Φ′(X)

{
2q
(
ZL
∗)⊤

d⟨M⟩�+ p
(
L∗
)−1

d⟨NL∗⟩
}]

+ o.

Note d⟨X⟩ = d⟨L∗⟩ =
(
ZL
∗)⊤

d⟨M⟩ZL∗ + d⟨NL∗⟩. For the right hand side,
we use Φ′(X) ≥ 0 and ∣q∣ < 1 and the Cauchy-Schwarz inequality to obtain

E

[ ∫ T

0
Φ′′(X)

{(
ZL
∗)⊤

d⟨M⟩ZL∗ + d⟨NL∗⟩
}]

≤ E
[ ∫ T

0
Φ′(X)

{(
ZL
∗)⊤

d⟨M⟩ZL∗+ �⊤ d⟨M⟩�+ p
(
L∗
)−1

d⟨NL∗⟩
}]

+ o.

We bring the terms with ZL
∗
and NL∗ to the left hand side, then

E

[ ∫ T

0

{
Φ′′(X)− Φ′(X)

}(
ZL
∗)⊤

d⟨M⟩ZL∗
]

+ E

[ ∫ T

0

{
Φ′′(X)− pΦ′(X)

(
L∗
)−1}

d⟨NL∗⟩
]
≤ E

[ ∫ T

0
Φ′(X)�⊤d⟨M⟩�

]
+ o.
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As Φ′(0) = 0, we have limp→−∞Φ′(Xt) → 0 P -a.s. for all t, with a uniform
bound, hence � ∈ L2(M) implies that the right hand side converges to
zero. We recall Φ′′ − Φ′ ≡ 1 and Φ′′(X) − pΦ′(X)

(
L∗
)−1 ≥ Φ′′(0) = 1.

Thus both expectations on the left hand side are nonnegative and we can
conclude that they converge to zero; therefore, E

[ ∫ T
0 (ZL

∗
)⊤ d⟨M⟩ZL∗

]
→ 0

and E[⟨NL∗⟩T ]→ 0.

Proof of Theorem 3.1. In view of (4.2), part (i) follows from Proposition 6.1;
note that the convergence in ℛrloc is immediate as �̂(p) is locally bounded
uniformly in p by Lemma 6.3 and (4.2). For part (ii), recall from (4.8)
and (6.2) that

�̂ = �(�+ ZL/L) = ��+ ZL
∗
/L∗

for each p. As � → 0, clearly �� → 0 in L2
loc(M). By Lemma 6.3, 1/L∗

is locally bounded uniformly in p, hence �̂(p) → 0 in L2
loc(M) follows from

Proposition 6.4. As �̂(p) is locally bounded uniformly in p, Corollary 8.4(i)
from the Appendix yields the convergence of the wealth processes X̂(p).

V.6.1 Convergence to the Exponential Problem

In this section, we prove Theorem 3.2 and establish the convergence of the
corresponding opportunity processes. We assume that there is no intermedi-
ate consumption, that S is locally bounded and satis�es (3.3), and that the
contingent claim B is bounded (we will choose a speci�c B later). Hence
there exists an (essentially unique) optimal strategy #̂ ∈ Θ for (3.2). It is
easy to see that #̂ does not depend on the initial capital x0. If # ∈ Θ,
we denote by G(#) = # ∙ R the corresponding gains process and de�ne
Θ(#, t) = {#̃ ∈ Θ : Gt(#̃) = Gt(#)}. We consider the value process (from
initial wealth zero) of (3.2),

Vt(#) := ess sup#̃∈Θ(#,t)E
[
− exp

(
B −GT (#̃)

)∣∣ℱt], 0 ≤ t ≤ T.

Note the concatenation property #1, #2 ∈ Θ⇒ #11[0,t] + #21(t,T ] ∈ Θ. With

Gt,T (#) :=
∫ T
t # dR, we have GT (#̃) = Gt(#) +Gt,T (#̃1(t,T ]) for #̃ ∈ Θ(#, t).

Therefore, if we de�ne the exponential opportunity process

Lexp
t := ess inf #̃∈ΘE

[
exp

(
B −Gt,T (#̃)

)∣∣ℱt], 0 ≤ t ≤ T, (6.3)

then using standard properties of the essential in�mum one can check that

Vt(#) = − exp(−Gt(#))Lexp
t .

Thus Lexp is a reduced form of the value process, analogous to L(p) for power
utility. We also note that Lexp

T = exp(B).

Lemma 6.5. The exponential opportunity process Lexp is a submartingale

satisfying Lexp ≤ ∥ exp(B)∥L∞(P ) and L
exp, Lexp

− > 0.
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Proof. The martingale optimality principle of dynamic programming, which
is proved here exactly as in Proposition II.6.2, yields that V (#) is a su-
permartingale for every # ∈ Θ such that E[V⋅(#)] > −∞ and a mar-
tingale if and only if # is optimal. As V (#) = − exp(−G(#))Lexp, we
obtain the submartingale property by the choice # ≡ 0. It follows that
Lexp ≤ ∥Lexp

T ∥L∞ = ∥ exp(B)∥L∞ .
The optimal strategy #̂ is optimal for all the conditional problems (6.3),

hence Lexp
t = E

[
exp

(
B − Gt,T (#̂)

)∣∣ℱt] > 0. Thus � := exp(−G(#̂))Lexp

is a positive martingale, by the optimality principle. In particular, we have
P [inf0≤t≤T �t > 0] = 1, and now the same property for Lexp follows.

Assume that S is continuous and denote the KW decomposition of Lexp

with respect to M by Lexp = Lexp
0 + ZL

exp
∙ M + NLexp

+ AL
exp

. Then the
triplet (ℓ, z, n) :=

(
Lexp, ZL

exp
, NLexp)

satis�es the BSDE

dℓt =
1

2
ℓt−

(
�t +

zt
ℓt−

)⊤
d⟨M⟩t

(
�t +

zt
ℓt−

)
+ zt dMt + dnt (6.4)

with terminal condition ℓT = exp(B), and the optimal strategy #̂ is

#̂ = �+
ZL

exp

Lexp
−

. (6.5)

This can be derived directly by dynamic programming or inferred, e.g., from
Frei and Schweizer [23, Proposition 1]. We will actually reprove the BSDE
later, but present it already at this stage for the following motivation.

We observe that (6.4) coincides with the BSDE (4.6), except that q is

replaced by 1 and the terminal condition is exp(B) instead of DT . From now
on we assume exp(B) = DT , then one can guess that the solutions L(p)
should converge to Lexp as q → 1−, or equivalently p→ −∞.

Theorem 6.6. Let S be continuous.

(i) As p ↓ −∞, Lt(p) ↓ Lexp
t P -a.s. for all t, with a uniform bound.

(ii) If L(p) is continuous for each p < 0, then Lexp is also continuous and

the convergence L(p) ↓ Lexp is uniform in t, P -a.s. Moreover,

(1− p) �̂(p)→ #̂ in L2
loc(M).

We note that (ii) is also a statement about the rate of convergence for
�̂(p)→ 0 in Theorem 3.1(ii) for the case without intermediate consumption.
The proof occupies most of the remainder of the section. Part (i) follows from
the next two lemmata; recall that the monotonicity of p 7→ Lt(p) was already
established in Proposition 5.4 while the uniform bound is from Lemma 4.1.

Lemma 6.7. We have L(p) ≥ Lexp for all p < 0.
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Proof. As is well-known, we may assume that B = 0 by a change of measure
from P to dP (B) = (eB/E[eB]) dP . Let QE ∈ M ent be the measure with
minimal entropyH(Q∣P ); see, e.g., [37, Theorem 3.5]. Let Y be its P -density
process, then

− log(Lexp
t ) = EQ

E[
log(YT /Yt)

∣∣ℱt] = E
[
(YT /Yt) log(YT /Yt)

∣∣ℱt]. (6.6)

This is merely a dynamic version of the well-known duality relation stated,
e.g., in [37, Theorem 2.1] and one can retrieve this version, e.g., from [23,
Eq. (8),(10)]. Using the decreasing function � from Lemma 5.5,

Lexp
t = exp

(
− E

[
(YT /Yt) log(YT /Yt)

∣∣ℱt]) = �(1)

≤ �(q) = E
[
(YT /Yt)

q
∣∣ℱt]1/� ≤ L∗(p)1/� = L(p),

where (4.4) was used for the second inequality.

Lemma 6.8. Let S be continuous. Then lim supp→−∞ Lt(p) ≤ L
exp
t .

Proof. Fix t ∈ [0, T ]. We denote ℰtT (X) := ℰ(X)T /ℰ(X)t and similarly
XtT := XT −Xt.

(i) Let # ∈ L(R) be such that ∣# ∙ R∣+⟨# ∙ R⟩ is bounded by a constant.
Noting that L(R) ⊆ A because R is continuous, we have from (3.1) that

Lt(p) = ess inf�∈AE
[
DTℰptT (� ∙ R)

∣∣ℱt] ≤ E[DTℰptT (∣p∣−1# ∙ R)
∣∣ℱt]

= E
[
DT exp

(
− (# ∙ R)tT + 1

2∣p∣⟨# ∙ R⟩tT
)∣∣ℱt].

The expression under the last conditional expectation is bounded uniformly
in p, so the last line converges to E

[
exp

(
B − (# ∙ R)tT

)∣∣ℱt] P -a.s. when
p→ −∞; recall DT = exp(B). We have shown

lim sup
p→−∞

Lt(p) ≤ E
[

exp
(
B − (# ∙ R)tT

)∣∣ℱt] P -a.s. (6.7)

(ii) Let # ∈ L(R) be such that exp(−# ∙ R) is of class (D). De�ning the
stopping times �n = inf{s > 0 : ∣# ∙ Rs∣+ ⟨# ∙ R⟩s ≥ n}, we have

lim sup
p→−∞

Lt(p) ≤ E
[

exp
(
B − (# ∙ R)�ntT

)∣∣ℱt] P -a.s.

for each n, by step (i) applied to #1(0,�n]. Using the class (D) property, the
right hand side converges to E

[
exp

(
B− (# ∙ R)tT

)∣∣ℱt] in L1(P ) as n→∞,
and also P -a.s. along a subsequence. Hence (6.7) again holds.

(iii) The previous step has a trivial extension: Let gtT ∈ L0(ℱT ) be a
random variable such that gtT ≤ (# ∙ R)tT for some # as in (ii). Then

lim sup
p→−∞

Lt(p) ≤ E
[

exp(B − gtT )
∣∣ℱt] P -a.s.
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(iv) Let #̂ ∈ Θ be the optimal strategy. We claim that there exists a
sequence gntT ∈ L0(ℱT ) of random variables as in (iii) such that

exp
(
B − gntT

)
→ exp

(
B −Gt,T (#̂)

)
in L1(P ).

Indeed, we may assume B = 0, as in the previous proof. Then our claim
follows by the construction of Schachermayer [69, Theorem 2.2] applied to
the time interval [t, T ]; recall the de�nitions [69, Eq. (4),(5)]. We conclude
that lim supp→−∞ Lt(p) ≤ E

[
exp

(
B − Gt,T (#̂)

)∣∣ℱt] = Lexp
t P -a.s. by the

L1(P )-continuity of the conditional expectation.

Remark 6.9. Recall that exp(−G(#̂))Lexp is a martingale, hence of class (D).
If Lexp is uniformly bounded away from zero, it follows that exp(−G(#̂)) is
already of class (D) and the last two steps in the previous proof are unnec-
essary. This situation occurs precisely when the right hand side of (6.6) is
bounded uniformly in t. In standard terminology, the latter condition states
that the reverse Hölder inequality RL log(L)(P ) is satis�ed by the density
process of the minimal entropy martingale measure.

Lemma 6.10. Let S be continuous and assume that L(p) is continuous for

all p < 0. Then Lexp is continuous and Lt(p)→ Lexp
t uniformly in t, P -a.s.

Moreover, ZL(p) → Zexp in L2
loc(M) and N(p)→ N exp in ℋ2

loc.

We have already identi�ed the monotone limit Lexp
t = limLt(p). Hence,

by uniqueness of the KW decomposition, the above lemma follows from the
subsequent one, which we state separately to clarify the argument. The most
important input from the control problems is that by stopping, we can bound
L(p) away from zero simultaneously for all p (cf. Lemma 6.3).

Lemma 6.11. Let S be continuous and assume that L(p) is continuous for

all p < 0. Then
(
L(p), ZL(p), N(p)

)
converge to a solution (L̃, Z̃, Ñ) of the

BSDE (6.4) as p → −∞: L̃ is continuous and Lt(p) → L̃t uniformly in t,
P -a.s.; while ZL(p) → Z̃ in L2

loc(M) and N(p)→ Ñ in ℋ2
loc.

Proof. For notational simplicity, we write the proof for the one-dimensional
case (d = 1). We �x a sequence pn ↓ −∞ and corresponding qn ↑ 1. As
p 7→ Lt(p) is monotone and positive, the P -a.s. limit L̃t := limn Lt(pn) exists.

The sequence ML(pn) of martingales is bounded in the Hilbert space ℋ2

by Lemma 5.11(i). Hence it has a subsequence, still denoted by ML(pn),
which converges to some M̃ ∈ ℋ2 in the weak topology of ℋ2. If we denote
the KW decomposition by M̃ = Z̃ ∙M + Ñ , we have by orthogonality that
ZL(pn) → Z̃ weakly in L2(M) and NL(pn) → Ñ weakly in ℋ2. We shall use
the BSDE to deduce the strong convergence.

The drivers in the BSDE (4.6) corresponding to pn and in (6.4) are

fn(t, l, z) := qn f(t, l, z), f(t, l, z) :=
1

2
l
(
�t +

z

l

)2
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for (t, l, z) ∈ [0, T ] × (0,∞) × ℝ. For �xed t and any convergent sequence
(lm, zm)→ (l, z) ∈ (0,∞)× ℝ, we have

fm(t, lm, zm)→ f(t, l, z) P -a.s.

By Lemmata 6.7 and 6.5 we can �nd a localizing sequence (�k) such that

1/k < L(p)�k ≤ k2 for all p < 0,

where the upper bound is from Lemma 4.1. For the processes from (2.6) we
may assume that ��k ∈ L2(M) and M �k ∈ ℋ2 for each k.

To relax the notation, let Ln = L(pn), Zn = ZL(pn), Nn = NL(pn), and
Mn = ML(pn) = Zn ∙M +Nn. The purpose of the localization is that (fn)
are uniformly quadratic in the relevant domain: As (Ln, Zn)�k takes values
in [1/k, k2]× ℝ and

∣fn(t, l, z)∣ ≤
∣∣l�2

t + �tz + z2/l
∣∣ ≤ (1 + l)�2

t + (1 + 1/l)z2,

we have for all m,n ∈ ℕ that

∣fm(t, Lnt , Z
n
t )∣�k ≤ �t + Ck(Z

n
t∧�k)2, where (6.8)

� := (1 + k2)
(
��k
)2 ∈ L1

�k
(M), Ck := 1 + k.

Here Lr� (M) := {H ∈ L2
loc(M) : H1[0,� ] ∈ Lr(M)} for a stopping time � and

r ≥ 1. Similarly, we set ℋ2
� = {X ∈ S : X� ∈ ℋ2}. Now the following can

be shown using a technique of Kobylanski [48].

Lemma 6.12. For �xed k,

(i) Zn → Z̃ in L2
�k

(M) and Nn → Ñ in ℋ2
�k
,

(ii) supt≤T ∣Lnt∧�k − L̃t∧�k ∣ → 0 P -a.s.

The proof is deferred to Appendix V.9. Since (ii) holds for all k, it follows
that L̃ is continuous. Now Dini's lemma shows supt≤T ∣Lnt − L̃t∣ → 0 P -a.s.
as claimed. Lemma 6.12 also implies that the limit (L̃, Z̃, Ñ) satis�es the
BSDE (6.4) on [0, �k] for all k, hence on [0, T ]. The terminal condition is
satis�ed as LnT = DT = exp(B) for all n.

To end the proof, note that the convergences hold for the original se-
quence (pn), rather than just for a subsequence, since p 7→ L(p) is monotone
and since our choice of (�k) does not depend on the subsequence.

We can now �nish the proof of Theorem 6.6 (and Theorem 3.2).

Proof of Theorem 6.6. Part (i) was already proved. For (ii), uniform conver-
gence and continuity were shown in Lemma 6.10. In view of (4.8) and (6.5),
the claim for the strategies is that

(1− p) �̂(p) = �+
ZL(p)

L(p)
→ �+

ZL
exp

Lexp
= #̂ in L2

loc(M).
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By a localization as in the previous proof, we may assume that L(p) +
(L(p))−1 +Lexp + (Lexp)−1 is bounded uniformly in p, and, by Lemma 6.10,
that ZL(p) ∙M → Zexp ∙M in ℋ2. We have∥∥∥ZL(p)

L(p)
∙M − ZL

exp

Lexp
∙M

∥∥∥
ℋ2

≤
∥∥∥ 1
L(p)

(
ZL(p) − ZLexp)

∙M
∥∥∥
ℋ2

+
∥∥∥( 1

L(p) −
1

Lexp

)
ZL

exp
∙M

∥∥∥
ℋ2
.

Clearly the �rst norm converges to zero. Noting that ZL
exp

∙M ∈ ℋ2 (even
BMO) due to Lemma 5.9, the second norm tends to zero by dominated
convergence for stochastic integrals.

The last result of this section concerns the convergence of the (nor-
malized) solution Ŷ (p) of the dual problem (4.3); see also the comment
after Remark 3.3. We recall the assumption (3.3) and that there is no
intermediate consumption. To state the result, let QE(B) ∈ M be the
measure which minimizes the relative entropy H( ⋅ ∣P (B)) over M , where
dP (B) := (eB/E[eB]) dP . For B = 0 this is simply the minimal entropy
martingale measure, and the existence of QE(B) follows from the existence
of the latter by a change of measure.

Proposition 6.13. Let S be continuous and assume that L(p) is continuous
for all p < 0. Then Ŷ (p)/Ŷ0(p) converges in the semimartingale topology to

the density process of QE(B) as p→ −∞.

Proof. We deduce from Lemma 6.10 that L−1 ∙ N → (Lexp)−1 ∙ N exp in
ℋ2
loc, as in the previous proof. Since Ŷ /Ŷ0 = ℰ(−� ∙M +L−1 ∙ N) by (4.9),

Lemma 8.2(ii) shows that Ŷ /Ŷ0 → ℰ
(
−� ∙M+(Lexp)−1 ∙ N exp

)
in the semi-

martingale topology. The right hand side is the density process of QE(B);
this follows, e.g., from [23, Proposition 1].

V.7 The Limit p→ 0

In this section we prove Theorem 3.4, some re�nements of that result, as well
as the corresponding convergence for the opportunity processes and the dual
problem. Due to substantial technical di�erences, we consider separately
the limits p → 0 from below and from above. Recall the semimartingale
�t = E

[ ∫ T
t Ds �

∘(ds)
∣∣ℱt] with canonical decomposition

�t = (�0 +M�
t ) +A�t = E

[ ∫ T

0
Ds �

∘(ds)
∣∣∣ℱt]− ∫ t

0
Ds �(ds). (7.1)

Clearly � is a supermartingale with continuous �nite variation part, and a
martingale in the case without intermediate consumption (� = 0). From (2.4)
we have the uniform bounds

0 < k1 ≤ � ≤ (1 + T )k2. (7.2)



118 V Risk Aversion Asymptotics

V.7.1 The Limit p→ 0−

We start with the convergence of the opportunity processes.

Proposition 7.1. As p→ 0−,
(i) for each t ∈ [0, T ], L∗t (p) → �t P -a.s. and in Lr(P ) for r ∈ [1,∞),

with a uniform bound.

(ii) if F is continuous, then L∗t (p) → �t uniformly in t, P -a.s.; and in ℛr
for r ∈ [1,∞).

(iii) if up0(x0) < ∞ for some p0 ∈ (0, 1), then L∗t (p) → �t uniformly in t,
P -a.s.; in ℛr for r ∈ [1,∞); and prelocally in ℛ∞.

The same assertions hold for L∗ replaced by L.

Proof. We note that p → 0− implies q → 0+ and � → 1−. In view of
L = (L∗)1/� , it su�ces to prove the claims for L∗. From Lemma 4.1,

0 ≤ L∗t (p) ≤ �∘[t, T ]−�pE
[ ∫ T

t
Ds �

∘(ds)
∣∣∣ℱt]� → �t in ℛ∞. (7.3)

To obtain a lower bound, we consider the density process Y of some Q ∈M .
(i) Using (4.4) we obtain

L∗t (p) ≥
∫ T

t
E
[
D�
s (Ys/Yt)

q
∣∣ℱt]�∘(ds).

Clearly D�
s → Ds in ℛ∞ and (Ys/Yt)

q → 1 P -a.s. for q → 0. We can argue
as in Proposition 6.1: For s ≥ t �xed, 0 ≤ (Ys/Yt)

q ≤ 1 + Ys/Yt ∈ L1(P )

yields E
[
D�
s (Ys/Yt)

q
∣∣ℱt]→ E[Ds∣ℱt] P -a.s. Since Y q is a supermartingale,

0 ≤ E
[
D�
s (Ys/Yt)

q
∣∣ℱt] ≤ 1 ∨ k2, and we conclude for each t that

∫ T

t
E
[
D�
s (Ys/Yt)

q
∣∣ℱt]�∘(ds)→ ∫ T

t
E
[
Ds

∣∣ℱt]�∘(ds) = �t P -a.s.

Hence L∗t (p) → �t P -a.s. and the convergence in Lr(P ) follows by the
bound (7.3).

(ii) Assume that F is continuous. Our argument will be similar to
Proposition 6.1, but the source of monotonicity is di�erent. Fix (s, !) ∈
[0, T ]× Ω and consider

gq(t) := E
[
(Ys/Yt)

q
∣∣ℱt] 1

1−q (!), t ∈ [0, s].

Then gq(t) is continuous in t and decreasing in q by virtue of Lemma 5.5.
Dini's lemma yields gq → 1 uniformly on [0, s], hence E

[
(Ys/Yt)

q
∣∣ℱt]→ 1
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uniformly in t. We deduce that E
[
D�
s (Ys/Yt)

q
∣∣ℱt](!) → E[Ds∣ℱt](!) uni-

formly in t since∣∣∣E[D�
s (Ys/Yt)

q
∣∣ℱt]− E[Ds∣ℱt]

∣∣∣
≤ E

[
∣D�

s −Ds∣(Ys/Yt)q
∣∣ℱt]+

∣∣∣E[Ds{(Ys/Yt)q − 1}
∣∣ℱt]∣∣∣

≤ ∥D�
s −Ds∥L∞(P )E

[
(Ys/Yt)

q
∣∣ℱt]+ ∥Ds∥L∞(P )

∣∣∣E[(Ys/Yt)q∣∣ℱt]− 1
∣∣∣

≤ ∥D�
s −Ds∥L∞(P ) + k2

∣∣∣E[(Ys/Yt)q∣∣ℱt]− 1
∣∣∣.

The rest of the argument is like the end of the proof of Proposition 6.1.
(iii) Let up0(x0) <∞ for some p0 ∈ (0, 1). Then we can take a di�erent

approach via Proposition 5.1, which shows that

L∗t (p) ≥ E
[ ∫ T

t
D�
s �
∘(ds)

∣∣∣ℱt]1−q/q0 (
k�−�01 L∗t (p0)

)q/q0
for all p < 0, where we note that q0 < 0. Using that almost every path of
L∗(p0) is bounded and bounded away from zero (Lemma 4.1), the right hand
side P -a.s. tends to �t = E[

∫ T
t Ds �

∘(ds)∣ℱt] uniformly in t as q → 0. Since
L∗(p0) is prelocally bounded, the prelocal convergence in ℛ∞ follows in the
same way.

Remark 7.2. One can ask when the convergence in Proposition 7.1 holds
even in ℛ∞. The following statements remain valid if L∗ replaced by L.

(i) Assume again that up0(x0) < ∞ for some p0 ∈ (0, 1), and in addition
that L∗(p0) is (locally) bounded. Then the argument for Proposi-
tion 7.1(iii) shows L∗(p)→ � in ℛ∞ (ℛ∞loc).

(ii) Conversely, L∗(p) → � in ℛ∞ (ℛ∞loc) implies that L∗(p) is (locally)
bounded away from zero for all p < 0 close to zero, because � ≥ k1 > 0.

As we turn to the convergence of the martingale part ML(p), a suitable
localization will again be crucial.

Lemma 7.3. Let p1 < 0. There exists a localizing sequence (�n) such that(
L(p)

)�n
− > 1/n simultaneously for all p ∈ [p1, 0).

Proof. This follows from Proposition 5.4 and Lemma 4.1.

Next, we state a basic result (i) for the convergence of ML(p) in ℋ2
loc and

stronger convergences under additional assumptions (ii) and (iii), for which
Remark 7.2(i) gives su�cient conditions.
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Proposition 7.4. Assume that S is continuous. As p→ 0−,
(i) ML(p) →M� in ℋ2

loc.

(ii) if L(p)→ � in ℛ∞loc, then ML(p) →M� in BMOloc.

(iii) if L(p)→ � in ℛ∞, then ML(p) →M� in BMO.

Proof. Set X = X(p) = � − L(p). Then X is bounded uniformly in p
by Lemma 4.1 and our aim is to prove MX(p) → 0. Lemma 5.9 applied to
∥�∥∞−� shows thatM� ∈ BMO. We may restrict our attention to p in some
interval [p1, 0) and Lemma 5.11 shows that supp∈[p1,0) ∥ML(p)∥BMO < ∞.
Due to the orthogonality of the sum ML = ZL ∙ M + NL, we have in
particular that

sup
p∈[p1,0)

∥ZL(p) ∙M∥BMO <∞. (7.4)

Under the condition of (iii), L(p) is bounded away from zero for all p close
to zero since � ≥ k1 > 0; moreover, � ∙ M ∈ BMO by Corollary 5.12. For
(i) and (ii) we may assume by a localization as in Lemma 7.3 that L−(p) is
bounded away from zero uniformly in p. SinceM is continuous, we may also
assume that � ∙M ∈ BMO, by another localization.

Using the formula (4.7) for AL and the decomposition (7.1) of �, the
�nite variation part AX is continuous and

2 dAX = 2
{

(1− p)D�Lq− −D
}
d� (7.5)

− q
{
L−�

⊤ d⟨M⟩�+ 2�⊤ d⟨M⟩ZL + L−1
−
(
ZL
)⊤
d⟨M⟩ZL

}
.

In particular, we note that

[MX ] = [X]−X2
0 = X2 −X2

0 − 2

∫
X− dX. (7.6)

For case (i) we have X2
0 → 0 and E[X2

T ]→ 0 by Proposition 7.1 (Remark 6.2
applies). In case (iii) we have X → 0 in ℛ∞ by assumption and under (ii)
the same holds after a localization. If we denote o1

t := E
[
X2
T −X2

t

∣∣ℱt], we
therefore have that o1

0 → 0 in case (i) and o1 → 0 in ℛ∞ in cases (ii) and
(iii). Denote also o2

t := 2E
[ ∫ T

t X−{(1 − p)D�Lq− − D} d�
∣∣ℱt]. Recalling

that p→ 0− implies q → 0+ and � → 1−, we have (1−p)D�Lq−−D → 0 in
ℛ∞ and since X− is bounded uniformly in p, it follows that o2 → 0 in ℛ∞.
As MX ∈ BMO and X− is bounded,

∫
X− dM

X is a martingale and (7.6)
yields

E
[
[MX ]T − [MX ]t

∣∣ℱt] = E
[
X2
T −X2

t

∣∣ℱt]− 2E
[ ∫ T

t
X− dA

X
∣∣∣ℱt].
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Using (7.5) and the de�nitions of o1 and o2, we can rewrite this as

E
[
[MX ]T − [MX ]t

∣∣ℱt]− o1
t + o2

t

= qE
[ ∫ T

t
X−
{
L−�

⊤ d⟨M⟩�+ 2�⊤ d⟨M⟩ZL + L−1
−
(
ZL
)⊤
d⟨M⟩ZL

}∣∣∣ℱt].
Applying the Cauchy-Schwarz inequality and using that X−, L−, L−1

− are
bounded uniformly in p, it follows that

E
[
[MX ]T − [MX ]t

∣∣ℱt]− o1
t + o2

t

≤ qE
[ ∫ T

t
X−(1 + L−)�⊤ d⟨M⟩�

∣∣∣ℱt]
+ qE

[ ∫ T

t
X−(1 + L−1

− )
(
ZL
)⊤
d⟨M⟩ZL

∣∣∣ℱt]
≤ qC

(
∥� ∙M∥BMO + ∥ZL(p) ∙M∥BMO

)
,

where C > 0 is a constant independent of p and t. In view of (7.4), the right
hand side is bounded by qC ′ with a constant C ′ > 0 and we have

E
[
[MX ]T − [MX ]t

∣∣ℱt] ≤ qC ′ + o1
t − o2

t .

For (i) we only have to prove the convergence to zero of the left hand side
for t = 0 and so this ends the proof. For (ii) and (iii) we observe that
[MX ]t = [MX ]t− + (ΔMX

t )2 and ∣ΔMX ∣ = ∣ΔX∣ ≤ 2∥X∥ℛ∞ to obtain

sup
t≤T

E
[
[MX ]T − [MX ]t−

∣∣ℱt] ≤ qC ′ + ∥o1∥ℛ∞ + ∥o2∥ℛ∞ + 4∥X∥2ℛ∞

and we have seen that the right hand side tends to 0 as p→ 0−.

V.7.2 The Limit p→ 0+

We notice that the limit of L(p) for p→ 0+ is meaningless without supposing
that up0(x0) <∞ for some p0 ∈ (0, 1), so we make this a standing assumption

for the entire Section V.7.2. We begin with a result on the integrability of
the tail of the sequence.

Lemma 7.5. Let 1 ≤ r < ∞. There exists a localizing sequence (�n) such

that

ess sup
t∈[0,T ], p∈(0,p0/r]

Lt∧�n(p) is in Lr(P ) for all n.

Proof. Let p1 = p0/r and �n = inf{t > 0 : Lt(p1) > n} ∧ T , then by
Corollary 5.2(ii), supt Lt∧�n(p1) ≤ n + ΔL�n(p1) ∈ Lr(P ). But L(p) ≤
CL(p1) by Corollary 5.2(i), so (�n) already satis�es the requirement.
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Proposition 7.6. As p→ 0+,

L∗(p)→ �,

uniformly in t, P -a.s.; in ℛrloc for r ∈ [1,∞); and prelocally in ℛ∞. More-

over, the convergence takes place in ℛ∞ (in ℛ∞loc) if and only if L(p1) is

(locally) bounded for some p1 ∈ (0, p0). The same assertions hold for L∗

replaced by L.

Proof. We consider only p ∈ (0, p0) in this proof and recall that p → 0+
implies q → 0− and � → 1−. Since L = (L∗)1/� , it su�ces to prove the
claims for L∗. Using Lemma 4.1,

L∗t (p) ≥ �∘[t, T ]−�pE
[ ∫ T

t
Ds �

∘(ds)
∣∣∣ℱt]� → �t in ℛ∞. (7.7)

Conversely, by Proposition 5.1,

L∗t (p) ≤ E
[ ∫ T

t
D�
s �
∘(ds)

∣∣∣ℱt]1−q/q0 (
k�−�01 L∗t (p0)

)q/q0
. (7.8)

Since almost every path of L∗(p0) is bounded, the right hand side P -a.s.
tends to �t uniformly in t as q → 0−. By localizing L∗(p0) to be prelocally
bounded, the same argument shows the prelocal convergence in ℛ∞.

We have proved that L∗(p) → � uniformly in t, P -a.s. In view of
Lemma 7.5, the convergence in ℛrloc follows by dominated convergence.

For the second claim, note that the �if� statement is shown exactly like
the prelocal ℛ∞ convergence and the converse holds by boundedness of �.
Of course, if L(p1) is (locally) bounded for some p1 ∈ (0, p0), then in fact
L(p) has this property for all p ∈ (0, p1], by Corollary 5.2(i).

We turn to the convergence of the martingale part. The major di�culty
will be that L(p) may have unbounded jumps; i.e., we have to prove the
convergence of quadratic BSDEs whose solutions are not locally bounded.

Proposition 7.7. Assume that S is continuous. As p→ 0+,

(i) ML(p) →M� in ℋ2
loc.

(ii) if there exists p1 ∈ (0, p0] such that L(p1) is locally bounded, then

ML(p) →M� in BMOloc.

(iii) if there exists p1 ∈ (0, p0] such that L(p1) is bounded, thenML(p) →M�

in BMO.

The following terminology will be useful in the proof. We say that real
numbers (x") converge to x linearly as "→ 0 if

lim sup
"→0+

1
" ∣x" − x∣ <∞.
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Lemma 7.8. Let x" → x linearly and y" → y linearly. Then

(i) lim sup"→0
1
" ∣x" − y"∣ <∞ if x = y,

(ii) x"y" → xy linearly,

(iii) if x > 0 and ' is a real function with '(0) = 1 and di�erentiable at 0,
then (x")

'(") → x linearly.

Proof. (i) This is immediate from the triangle inequality.
(ii) This follows from ∣x"y" − xy∣ ≤ ∣x"∣∣y" − y∣ + ∣y∣∣x" − x∣ because

convergent sequences are bounded.
(iii) Here we use

∣(x")'(") − x∣ ≤ ∣x"∣∣(x")'(")−1 − 1∣+ ∣x" − x∣;

as {x"} is bounded and x" → x linearly, the question is reduced to the
boundedness of "−1∣(x")'(")−1 − 1∣. Fix 0 < �1 < x < �2 and %(�, ") :=
∣�'(")−1 − 1∣. For " small enough, x" ∈ [�1, �2] and then

%(�1, ") ∧ %(�2, ") ≤ ∣(x")'(")−1 − 1∣ ≤ %(�1, ") ∨ %(�2, ").

For � > 0 we have lim" "
−1∣%(�, ")∣ =

∣∣ d
d"�

'(")∣"=0

∣∣ = ∣ log(�)'′(0)∣ < ∞.
Hence the upper and the lower bound above converge to 0 linearly.

Proof of Proposition 7.7. We �rst prove (ii) and (iii), i.e, we assume that
L(p1) is locally bounded (resp. bounded). Recall L(p) ≥ k1 from Lemma 4.1.
By Corollary 5.2(i) there exists a constant C > 0 independent of p such that
L(p) ≤ CL(p1) for all p ∈ (0, p1]. Hence L(p) is bounded uniformly in
p ∈ (0, p1] in the case (iii) and for (ii) this holds after a localization. Now
Lemma 5.11(ii) implies supp∈(0,p1] ∥ML(p)∥BMO < ∞ and we can proceed
exactly as in the proof of items (ii) and (iii) of Proposition 7.4.

(i) This case is more di�cult because we have to use prelocal bounds
and Lemma 5.11(ii) does not apply. Again, we want to imitate the proof
of Proposition 7.4(i), or more precisely, the arguments after (7.6). We note
that for the claimed ℋ2

loc-convergence those estimates are required only at
t = 0 and so the BMO-norms can be replaced by ℋ2-norms. Inspecting
that proof in detail, we see that we can proceed in the same way once we
establish:

∙ There exists a localizing sequence (�n) and constants Cn such that for
all n,

(a) (H1[0,�n]) ∙M
L(p) is a martingale for allH predictable and bound-

ed, and all p ∈ (0, p0),

(b) supp∈(0,p0]

(
L−(p) + L−1

− (p)
)
≤ Cn on [0, �n],

(c) lim supp→0+ ∥ZL(p)1[0,�n]∥L2(M) ≤ Cn.
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We may assume by localization that � ∙M ∈ ℋ2. We now prove (a)-(c);
instead of indicating (�n) explicitly, we write �by localization. . . � as usual.

(a) Fix p ∈ (0, p0). By Lemma 4.1 and Lemma 5.2(ii), L = L(p) is
a supermartingale of class (D). Hence its Doob-Meyer decomposition L =
L0 + ML + AL is such that AL is decreasing and nonpositive, and ML is a
true martingale. Thus

0 ≤ E[−ALT ] = E[L0 − LT ] <∞.

After localizing as in Lemma 7.5 (with r = 1), we have supt Lt ∈ L1(P ).
Hence supt ∣ML

t ∣ ≤ supt Lt − ALT ∈ L1(P ). Now (a) follows by the BDG
inequalities exactly as in the proof of Lemma 5.9.

(b) We have L−(p) ≥ k1 by Lemma 4.1. Conversely, by Corollary 5.2(i),
L−(p) ≤ CL−(p0) for p ∈ (0, p0] with some universal constant C > 0, and
L−(p0) is locally bounded by left-continuity.

(c) We shall use the rate of convergence obtained for L(p) and the
information about ZL contained in AL via the Bellman BSDE. We may
assume by localization that (a) and (b) hold with �n replaced by T . Thus
it su�ces to show that

lim sup
p→0+

∥∥∥∥√L−(p)�+
ZL(p)√
L−(p)

∥∥∥∥
L2(M)

<∞.

Suppressing again p in the notation, (a) and the formula (4.7) for AL imply

E[L0 − LT ] = E[−ALT ]

= E
[
(1− p)

∫ T

0
D�Lq− d�

]
− q

2
E
[ ∫ T

0
L−

(
�+

ZL

L−

)⊤
d⟨M⟩

(
�+

ZL

L−

)]
.

Recalling that LT = DT , this yields

1
2

∥∥∥√L−�+
ZL√
L−

∥∥∥
L2(M)

= 1
2E
[ ∫ T

0
L−

(
�+

ZL

L−

)⊤
d⟨M⟩

(
�+

ZL

L−

)]
= 1
∣q∣

(
E[L0 − LT ]− E

[
(1− p)

∫ T

0
D�Lq− d�

])
= 1
∣q∣

(
L0 − E

[
DT + (1− p)

∫ T

0
D�Lq− d�

])
= 1
∣q∣(L0 − Γ0),

where we have set Γ0 = Γ0(p) = E[DT +(1−p)
∫ T

0 D�Lq− d�]. We know that
both L0 and Γ0 converge to �0 = E

[ ∫ T
0 Ds �

∘(ds)
]
as p → 0+ (and hence

q → 0−). However, we are asking for the stronger result

lim sup
p→0+

1
∣q∣ ∣L0(p)− Γ0(p)∣ <∞.
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By Lemma 7.8(i), it su�ces to show that L0(p)→ �0 linearly and Γ0(p)→ �0

linearly. Using L∗ = L� , inequalities (7.7) and (7.8) evaluated at t = 0 read

�∘[0, T ]−p�0 ≤ L0(p) ≤ E
[ ∫ T

0
D�
s �
∘(ds)

]1/�+p/q0 (
k

1−�0/�
1 L0(p0)

)q/q0
.

Recalling the bound (2.4) for D, items (ii) and (iii) of Lemma 7.8 yield that
L0(p)→ �0 linearly. The second claim, that Γ0(p)→ �0 linearly, follows from
the de�nitions of Γ0(p) and �0 using again (2.4) and the uniform bounds for
L− from (b). This ends the proof.

V.7.3 Proof of Theorem 3.4 and Other Consequences

Lemma 7.9. Assume that S is continuous and that there exists p0 > 0 such

that up0(x0) <∞. As p→ 0,

ZL(p)

L−(p)
→ Z�

�−
in L2

loc(M) and
1

L−(p)
∙ N(p)→ 1

�−
∙ N� in ℋ2

loc. (7.9)

For a sequence p → 0− the convergence ZL(p)

L−(p) →
Z�

�−
in L2

loc(M) holds also

without the assumption on p0.

Proof. By localization we may assume that L−(p) is bounded away from zero
and in�nity, uniformly in p (Lemma 7.3 and Lemma 4.1 and the preceding
proof); we also recall (7.2). We have∣∣∣ ZL(p)

L−(p)
− Z�

�−

∣∣∣ ≤ ∣∣∣ 1

L−(p)

(
ZL(p) − Z�

)∣∣∣+
∣∣∣(�− − L−(p)

) Z�

L−(p)�−

∣∣∣.
Let up0(x0) < ∞. The �rst part of (7.9) follows from the L2

loc(M) and
prelocal ℛ∞ convergences obtained in Propositions 7.4, 7.7 and Proposi-
tions 7.1, 7.6, respectively. The proof of the second part of (7.9) is analogous.

Now drop the assumption that up0(x0) < ∞ and consider a sequence
pn → 0−. Then Proposition 7.1 only yields Lt(pn) → �t P -a.s. for each t,
rather than the convergence of Lt−(pn) to �t−. Consider the optional set
Λ :=

∩
n{L−(pn) = L(pn)} ∩ {� = �−}. Because L(pn) and � are càdlàg,

{t : (!, t) ∈ Λc} ⊂ [0, T ] is countable P -a.s. and asM is continuous is follows
that

∫ T
0 1Λc d⟨M⟩ = 0 P -a.s. Now dominated convergence for stochastic

integrals yields that {(�−−L−(pn))Z�} ∙M = {(�−L(pn))1ΛZ
�} ∙M → 0

in ℋ2
loc and the rest is as before.

Proof of Theorem 3.4 and Remark 3.5. The convergence of the optimal con-
sumption is contained in Propositions 7.1 and 7.6 by the formula (4.2). The
convergence of the portfolios follows from Lemma 7.9 in view of (4.8).

For p ∈ (0, p0] we have the uniform bound �̂(p) ≤ (k2/k1)�0 by Lemma 4.1
and (4.2); while for p ∈ [p1, 0), �̂(p) is prelocally uniformly bounded by
Lemma 7.3 and (4.2). Hence the convergence of the wealth processes follows
from Corollary 8.4(i).
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We complement the convergence in the primal problem by a result for
the solution Ŷ (p) of the dual problem (4.3).

Proposition 7.10. Assume that S is continuous and that there exists p0 > 0
such that up0(x0) <∞ holds. Moreover, assume that there exists p1 ∈ (0, p0]
such that L(p1) is locally bounded. As p→ 0,

Ŷ (p)→ �0

x0
ℰ
(
− � ∙M +

1

�−
∙ N�

)
in ℋrloc for all r ∈ [1,∞).

If � and L(p) are continuous for p < 0, the convergence for a limit p→ 0−
holds in the semimartingale topology without the assumptions on p0 and p1.

Proof. (i) If L(p1) is locally bounded, then L(p)→ � in ℛ∞loc by Remark 7.2
and Proposition 7.6. Moreover,ML(p) →M� in BMOloc by Propositions 7.4
and 7.7. This implies NL(p) → N� in BMOloc by orthogonality of the KW
decompositions. It follows that

−� ∙M +
1

L−(p)
∙ NL(p) → −� ∙M +

1

�−
∙ N� in BMOloc.

This implies that the corresponding stochastic exponentials converge in ℋrloc
for r ∈ [1,∞) (see Theorem 3.4 and Remark 3.7(2) in Protter [63]). In view
of the formula (4.9) for Ŷ (p), this ends the proof of the �rst claim.

(ii) Using Lemma 7.9 and Lemma 8.2(ii), the proof of the second claim
is similar.

Note that in the standard case D ≡ 1 the normalized limit in Propo-
sition 7.10 is ℰ(−� ∙ M), i.e., the �minimal martingale density� (cf. [71]).
We conclude by an additional statement concerning the convergence of the
wealth processes in Theorem 3.4.

Proposition 7.11. Let the conditions of Theorem 3.4(ii) hold and assume

in addition that there exists p1 ∈ (0, p0] such that L(p1) is locally bounded.

Then the convergence of the wealth processes in Theorem 3.4(ii) takes place

in ℋr
loc

for all r ∈ [1,∞).

Proof. Under the additional assumption, the results of this section yield the
convergence of �̂(p) in ℛ∞loc and the convergence of �̂(p) ∙ M in BMOloc
(and hence in ℋ!loc) by the same formulas as before. Corollary 8.4(ii) yields
the claim.

V.8 Appendix A: Convergence of Stochastic Expo-

nentials

This appendix provides some continuity results for stochastic exponentials of
continuous semimartingales in an elementary and self-contained way. They
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are required for the main results of Section V.3 because our wealth processes
are exponentials. We also use a result from the (much deeper) theory of
ℋ!-di�erentials; but this is applied only for re�nements of the main results.

Lemma 8.1. Let Xn = Mn+An, n ≥ 1 be continuous semimartingales with

continuous canonical decompositions and assume that
∑

n ∥Xn∥ℋ2 < ∞.

Then Mn, [Mn] and
∫
∣dAn∣ are locally bounded uniformly in n.

Proof. Let �k = inf{t > 0 : supn ∣Mn
t ∣ > k} ∧ T . We use the notation

Mn★
t = sups≤t ∣Mn

s ∣, then the norms ∥Mn★
T ∥L2 and ∥Mn∥ℋ2 are equivalent

by the BDG inequalities. Now

P
[

sup
n
Mn★
T > k

]
≤ k−2

∑
n

∥Mn★
T ∥L2

shows P [�k < T ] → 0. Similarly, P
[

supn[Mn]T > k
]
≤ k−1

∑
n ∥Mn∥ℋ2

and P
[

supn
∫ T

0 ∣dA
n∣ > k

]
≤ k−2

∑
n ∥An∥ℋ2 yield the other claims.

We sometimes write �in S0� to indicate convergence in the semimartingale
topology.

Lemma 8.2. Let Xn = Mn + An, n ≥ 1 and X = M + A be continuous

semimartingales with continuous canonical decompositions.

(i)
∑

n ∥Xn −X∥ℋ2 <∞ implies ℰ(Xn)→ ℰ(X) in ℋ2
loc.

(ii) Xn → X in ℋ2
loc implies ℰ(Xn)→ ℰ(X) in S0.

(iii) Xn → X in S0 implies ℰ(Xn)→ ℰ(X) in S0.

Proof. (i) By localization we may assume that M and
∫
∣dA∣ are bounded

and, by Lemma 8.1, that ∣Mn∣ and
∫
∣dAn∣ are bounded by a constant C

independent of n. Note that Xn → X in ℋ2; we shall show ℰ(Xn)→ ℰ(X)
in ℋ2. Since this is a metric space, no loss of generality is entailed by passing
to a subsequence. Doing so, we have Mn → M , [Mn] → [M ], and An → A
uniformly in time, P -a.s. In view of the uniform bound

Y n := ℰ(Xn) = exp
(
Xn − 1

2 [Mn]
)
≤ e2C

we conclude that Y n → Y := ℰ(X) = exp(X − 1
2 [M ]) in ℛ2. By de�nition

of the stochastic exponential we have Y − Y n = Y ∙ X − Y n ∙ Xn, where

∥Y ∙ X − Y n ∙ Xn∥ℋ2 ≤ ∥(Y − Y n) ∙ X∥ℋ2 + ∥Y n ∙ (X −Xn)∥ℋ2 .

The �rst norm tends to zero by dominated convergence for stochastic inte-
grals and for the second we use that ∣Y n∣ ≤ e2C and Xn → X in ℋ2.

(ii) Consider a subsequence of (Xn). After passing to another subse-
quence, (i) shows the convergence in ℋ2

loc and Proposition 2.2 yields (ii).
(iii) This follows from (ii) by using Proposition 2.2 twice.
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We return to the semimartingale R of asset returns, which is assumed to
be continuous in the sequel. We recall the structure condition (2.6) and de�ne
L!(M) := {� ∈ L(M) : ∥�∥L!(M) < ∞}, where ∥�∥L!(M) := ∥� ∙ M∥ℋ!
and ℋ! was introduced at the end of Section V.2.2.

Lemma 8.3. Let R be continuous, r ∈ {2, !}, and �, �n ∈ Lrloc(M). Then

�n → � in Lrloc(M) if and only if �n ∙ R→ � ∙ R in ℋrloc.

Proof. By (2.6) we have � ∙ R = � ∙M+
∫
�⊤ d⟨M⟩�. Let � :=

∫
�⊤ d⟨M⟩�

denote the mean-variance tradeo� process. The inequality

E
[( ∫ T

0
∣�⊤ d⟨M⟩�∣

)2]
≤ E

[( ∫ T

0
�⊤ d⟨M⟩�

)(∫ T

0
�⊤ d⟨M⟩�

)]
implies ∥� ∙ M∥ℋ2 ≤ ∥� ∙ R∥ℋ2 ≤ (1 + ∥�T ∥L∞)∥� ∙ M∥ℋ2 . As � is locally
bounded due to continuity, this yields the result for r = 2. The proof for
r = ! is analogous.

Corollary 8.4. Let R be continuous and (�, �), (�n, �n) ∈ A.
(i) Assume that �n → � in L2

loc(M), that (�n) is prelocally bounded uni-

formly in n, and that �nt → �t P -a.s. for each t ∈ [0, T ]. Then

X(�n, �n)→ X(�, �) in the semimartingale topology.

(ii) Assume �n → � in L!loc(M) and �n → � in ℛ∞loc. Then X(�n, �n) →
X(�, �) in ℋrloc for all r ∈ [1,∞).

Proof. (i) By continuity of �, �ns ∙ �(ds)t = �ns ∙ �(ds)t− for all t. After
localization, bounded convergence yields

∫ T
0 ∣�

n
t − �t∣�(dt) → 0 P -a.s. and

in L2(P ). Using Lemma 8.3, we have �n ∙ R+�n ∙ �(dt)→ � ∙ R+� ∙ �(dt)
in ℋ2

loc. In view of (2.2) we conclude by Lemma 8.2(ii).
(ii) With Lemma 8.3 we obtain �n ∙ R+ �n ∙ �(dt)→ � ∙ R+ � ∙ �(dt)

in ℋ!loc. Thus the stochastic exponentials converge in ℋrloc for all r ∈ [1,∞)
(see Theorem 3.4 and Remark 3.7(2) in [63]).

V.9 Appendix B: Proof of Lemma 6.12

In this section we give the proof of Lemma 6.12. As mentioned above, the
argument is adapted from the Brownian setting of [48, Proposition 2.4].

We use the notation introduced before Lemma 6.12, in particular, re-
call (6.8). We �x k throughout and let � := �k. For �xed integers m ≥ n
we abbreviate �L = Ln − Lm, moreover, �M , �Z, �N have the analogous
meaning. Note that �L ≥ 0 as m ≥ n. The technique consists in applying
Itô's formula to Φ(�L), where, with K := 6Ck,

Φ(x) =
1

8K2

(
e4Kx − 4Kx− 1

)
.
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On ℝ+ this function satis�es

Φ(0) = Φ′(0) = 0, Φ ≥ 0, Φ′ ≥ 0, 1
2Φ′′ − 2KΦ′ ≡ 1.

Moreover, Φ′′ ≥ 0 and hence ℎ(x) := 1
2Φ′′(x) − KΦ′(x) = 1 + KΦ′(x) is

nonnegative and nondecreasing.
(i) By Itô's formula we have

Φ(�L0) = Φ(�L� )−
∫ �

0
Φ′(�Ls)

[
fn(s, Lns , Z

n
s )− fm(s, Lms , Z

m
s )
]
d⟨M⟩s

−
∫ �

0

1
2Φ′′(�Ls) d ⟨�M⟩s −

∫ �

0
Φ′(�Ls) d�Ms.

By elementary inequalities we have for all m and n that

∣fn(t, Ln, Zn)− fm(t, Lm, Zm)∣� ≤ � +K
(
∣Zn −Zm∣2 + ∣Zn − Z̃∣2 + ∣Z̃∣2

)�
,

where the index t was omitted. Hence

Φ(�L0) ≤ Φ(�L� ) +

∫ �

0
Φ′(�Ls)

[
�s +K

(
∣�Zs∣2 + ∣Zns − Z̃s∣2 + ∣Z̃s∣2

)]
d⟨M⟩s

−
∫ �

0

1
2Φ′′(�Ls) d ⟨�M⟩s −

∫ �

0
Φ′(�Ls) d�Ms.

The expectation of the stochastic integral vanishes since �L is bounded and
�M ∈ ℋ2. We deduce

E

∫ �

0

[
1
2Φ′′(�Ls)−KΦ′(�Ls)

]
∣�Zs∣2 d⟨M⟩s + E

∫ �

0

1
2Φ′′(�Ls) d⟨�N⟩s (9.1)

− E
∫ �

0
KΦ′(�Ls)∣Zns − Z̃s∣2 d⟨M⟩s + Φ(�L0) (9.2)

≤ E
[
Φ(�L� )

]
+ E

∫ �

0
Φ′(�Ls)

[
�s +K∣Z̃s∣2

]
d⟨M⟩s. (9.3)

We let m tend to in�nity, then �Lt = Lnt − Lmt converges to Lnt − L̃t P -a.s.
for all t and with a uniform bound, so (9.3) converges to

E
[
Φ(Ln� − L̃� )

]
+ E

∫ �

0
Φ′(Lns − L̃s)

[
�s +K∣Z̃s∣2

]
d⟨M⟩s;

while (9.2) converges to

−E
∫ �

0
KΦ′(Lns − L̃s)∣Zns − Z̃s∣2 d⟨M⟩s + Φ(Ln0 − L̃0).

We turn to (9.1). The continuous function ℎ(x) = 1
2Φ′′(x)−KΦ′(x) occurs

in the �rst integrand. We recall that ℎ is nonnegative and nondecreasing
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and note that Φ′′ has the same properties. Moreover, as Lmt is monotone
decreasing in m,

ℎ(�Ls) = ℎ(Lns −Lms ) ↑ ℎ(Lns −L̃s); Φ′′(�Ls) = Φ′′(Lns −Lms ) ↑ Φ′′(Lns −L̃s)

P -a.s. for all s. Hence we have for any �xed m0 ≤ m that

E

∫ �

0
ℎ(Lns − Lms )∣Zns − Zms ∣ d⟨M⟩s ≥ E

∫ �

0
ℎ(Lns − Lm0

s )∣Zns − Zms ∣ d⟨M⟩s;

E

∫ �

0
Φ′′(Lns − Lms ) d⟨Nn −Nm⟩s ≥ E

∫ �

0
Φ′′(Lns − Lm0

s ) d⟨Nn −Nm⟩s.

The right hand sides are convex lower semicontinuous functions of Zm ∈
L2(M) and Nm ∈ ℋ2, respectively, hence also weakly lower semicontinuous.
We conclude from the weak convergences Zm → Z̃ and Nm → Ñ that

lim inf
m→∞

E

∫ �

0
ℎ(Lns − Lms )∣Zns − Z̃ms ∣ d⟨M⟩s

≥ E
∫ �

0
ℎ(Lns − Lm0

s )∣Zns − Z̃s∣ d⟨M⟩s;

lim inf
m→∞

E

∫ �

0
Φ′′(Lns −Lms ) d⟨Nn −Nm⟩s ≥ E

∫ �

0
Φ′′(Lns −Lm0

s ) d⟨Nn − Ñ⟩s

for allm0. We can now letm0 tend to in�nity, then by monotone convergence
the �rst right hand side tends to E

∫ �
0 ℎ(Lns − L̃s)∣Zns − Z̃s∣ d⟨M⟩s and the

second one tends to

E

∫ �

0
Φ′′(Lns − L̃s) d⟨Nn − Ñ⟩s ≥ 2E

∫ �

0
d⟨Nn − Ñ⟩s = 2E

[
⟨Nn − Ñ⟩�

]
,

where we have used that Ln − L̃ ≥ 0 and Φ′′(x) = 2e4Kx ≥ 2 for x ≥ 0.
Altogether, we have passed from (9.1)�(9.3) to

E

∫ �

0

(
1
2Φ′′ − 2KΦ′

)
(Lns − L̃s) ∣Zns − Z̃s∣2 d⟨M⟩s + E

[
⟨Nn − Ñ⟩�

]
≤ EΦ(Ln� − L̃� )− Φ(Ln0 − L̃0) + E

∫ �

0
Φ′(Lns − L̃s)

[
�s +K∣Z̃s∣2

]
d⟨M⟩s.

As 1
2Φ′′ − 2KΦ′ ≡ 1, the �rst integral reduces to E

∫ �
0 ∣Z

n
s − Zs∣2 d⟨M⟩s. If

we let n tend to in�nity, the right hand side converges to zero by dominated
convergence, so that we conclude

E

∫ �

0
∣Zns − Z̃s∣2 d⟨M⟩s → 0; E

[
⟨Nn − Ñ⟩�

]
→ 0

as claimed.
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(ii) For all m and n we have

∣Lnt∧� − Lmt∧� ∣ ≤ ∣Ln� − Lm� ∣+
∫ �

t∧�
∣fn(s, Lns , Z

n
s )− fm(s, Lms , Z

m
s )∣ d⟨M⟩s

+
∣∣(Mn

� −Mm
� )− (Mn

t∧� −Mm
t∧� )

∣∣. (9.4)

The sequence Mm = Zm ∙ M + Nm is Cauchy in ℋ2
� . We pick a fast

subsequence, still denoted by Mm, such that ∥Mm − Mm+1∥ℋ2
�
≤ 2−m.

This implies that

M∗ := sup
m
∣Mm∣ ∈ ℋ2

� ; Z∗ := sup
m
∣Zm∣ ∈ L2

� (M)

and that Zm converges P⊗⟨M � ⟩-a.e. to Z̃. Therefore, limn f
m(t, Lmt , Z

m
t ) =

f(t, L̃t, Z̃t) P⊗⟨M � ⟩-a.e. Moreover, ∣fm(t, Lmt , Z
m
t )� ∣ ≤ �t+C∣Z∗t ∣2 and this

bound is in L1
� (M). Passing to a subsequence if necessary, we have

lim
m→∞

∫ �

0
∣fn(s, Lns , Z

n
s )− fm(s, Lms , Z

m
s )∣ d⟨M⟩s

=

∫ �

0
∣fn(s, Lns , Z

n
s )− f(s, L̃s, Z̃s)∣ d⟨M⟩s P -a.s.

As Mm → M̃ in ℋ2
� , we have E

[
supt≤T ∣Mm

t∧� − M̃t∧� ∣
]
→ 0 and, after

picking a subsequence, supt≤T ∣Mm
t∧� − M̃t∧� ∣ → 0 P -a.s. We can now take

m→∞ in (9.4) to obtain

sup
t≤T
∣Lnt∧� − L̃t∧� ∣ ≤ ∣Ln� − L̃� ∣+

∫ �

0
∣fn(s, Lns , Z

n
s )− f(s, L̃s, L̃s)∣ d⟨M⟩s

+ sup
t≤T

∣∣(Mn
� − M̃� )− (Mn

t∧� − M̃t∧� )
∣∣.

With exactly the same arguments, extracting another subsequence if nec-
essary, the right hand side converges to zero P -a.s. as n → ∞. We have
shown that limn supt≤T ∣Lnt∧� − L̃t∧� ∣ = 0, along a subsequence. But by
monotonicity, we obtain the result for the whole sequence. □



132 V Risk Aversion Asymptotics



Bibliography

[1] C. D. Aliprantis and K. C. Border. In�nite Dimensional Analysis: A Hitch-
hiker's Guide. Springer, Berlin, 3rd edition, 2006.

[2] J. P. Ansel and C. Stricker. Décomposition de Kunita-Watanabe. In Séminaire
de Probabilités XXVII, volume 1557 of Lecture Notes in Math., pages 30�32,
Springer, Berlin, 1993.

[3] O. E. Barndor�-Nielsen and N. Shephard. Non-Gaussian Ornstein-Uhlenbeck-
based models and some of their uses in �nancial economics. J. R. Stat. Soc.
Ser. B Stat. Methodol., 63(2):167�241, 2001.

[4] D. Becherer. Bounded solutions to backward SDE's with jumps for utility
optimization and indi�erence hedging. Ann. Appl. Probab., 16(4):2027�2054,
2006.

[5] C. Bender and C. R. Niethammer. On q-optimal martingale measures in
exponential Lévy models. Finance Stoch., 12(3):381�410, 2008.

[6] F. E. Benth, K. H. Karlsen, and K. Reikvam. Optimal portfolio management
rules in a non-Gaussian market with durability and intertemporal substitution.
Finance Stoch., 5(4):447�467, 2001.

[7] S. Biagini and M. Frittelli. Utility maximization in incomplete markets for
unbounded processes. Finance Stoch., 9(4):493�517, 2005.

[8] S. Biagini and M. Frittelli. The supermartingale property of the optimal wealth
process for general semimartingales. Finance Stoch., 11(2):253�266, 2007.

[9] P. Briand and Y. Hu. Quadratic BSDEs with convex generators and un-
bounded terminal conditions. Probab. Theory Related Fields, 141:543�567,
2008.

[10] L. Carassus and M. Rásonyi. Convergence of utility indi�erence prices to the
superreplication price. Math. Methods Oper. Res., 64(1):145�154, 2006.

[11] A. �erný and J. Kallsen. On the structure of general mean-variance hedging
strategies. Ann. Probab., 35(4):1479�1531, 2007.

[12] T. Choulli and C. Stricker. Comparing the minimal Hellinger martingale mea-
sure of order q to the q-optimal martingale measure. Stochastic Process. Appl.,
119(4):1368�1385, 2009.

[13] C. Czichowsky and M. Schweizer. On the Markowitz problem under convex
cone constraints. In preparation.

[14] C. Czichowsky and M. Schweizer. Closedness in the semimartingale topology
for spaces of stochastic integrals with constrained integrands. To appear in
Sém. Probab., 2009.

[15] C. Czichowsky, N. Westray, and H. Zheng. Convergence in the semimartingale



134 BIBLIOGRAPHY

topology and constrained portfolios. To appear in Sém. Probab., 2008.

[16] F. Delbaen, P. Monat, W. Schachermayer, M. Schweizer, and C. Stricker.
Weighted norm inequalities and hedging in incomplete markets. Finance
Stoch., 1(3):181�227, 1997.

[17] F. Delbaen and W. Schachermayer. The fundamental theorem of asset pricing
for unbounded stochastic processes. Math. Ann., 312:215�250, 1998.

[18] C. Dellacherie and P. A. Meyer. Probabilities and Potential B. North Holland,
Amsterdam, 1982.

[19] C. Doléans-Dade and P. A. Meyer. Inégalités de normes avec poids. In Sémi-
naire de Probabilités XIII (1977/78), volume 721 of Lecture Notes in Math.,
pages 313�331. Springer, Berlin, 1979.

[20] M. Émery. Une topologie sur l'espace des semimartingales. In Séminaire
de Probabilités XIII, volume 721 of Lecture Notes in Math., pages 260�280,
Springer, Berlin, 1979.

[21] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity
Solutions. Springer, New York, 2nd edition, 2006.

[22] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete
Time. W. de Gruyter, Berlin, 2nd edition, 2004.

[23] C. Frei and M. Schweizer. Exponential utility indi�erence valuation in a gen-
eral semimartingale model. In F. Delbaen, M. Rásonyi, and C. Stricker, ed-
itors, Optimality and Risk - Modern Trends in Mathematical Finance. The
Kabanov Festschrift, pages 49�86. Springer, 2009.

[24] T. Goll and J. Kallsen. Optimal portfolios for logarithmic utility. Stochastic
Process. Appl., 89(1):31�48, 2000.

[25] T. Goll and J. Kallsen. A complete explicit solution to the log-optimal portfolio
problem. Ann. Appl. Probab., 13(2):774�799, 2003.

[26] T. Goll and L. Rüschendorf. Minimax and minimal distance martingale
measures and their relationship to portfolio optimization. Finance Stoch.,
5(4):557�581, 2001.

[27] C. Gollier. The Economics of Risk and Time. MIT Press, Cambridge, 2001.

[28] P. Grandits. On martingale measures for stochastic processes with independent
increments. Theory Probab. Appl., 44(1):39�50, 2000.

[29] P. Grandits and T. Rheinländer. On the minimal entropy martingale measure.
Ann. Probab., 30(3):1003�1038, 2002.

[30] P. Grandits and C. Summer. Risk averse asymptotics and the optional de-
composition. Theory Probab. Appl., 51(2):325�334, 2007.

[31] M. Grasselli. A stability result for the HARA class with stochastic interest
rates. Insurance Math. Econom., 33(3):611�627, 2003.

[32] J. M. Harrison and S. R. Pliska. Martingales and stochastic integrals in the
theory of continuous trading. Stochastic Process. Appl., 11(3):215�260, 1981.

[33] Y. Hu, P. Imkeller, and M. Müller. Utility maximization in incomplete mar-
kets. Ann. Appl. Probab., 15(3):1691�1712, 2005.

[34] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes.
Springer, Berlin, 2nd edition, 2003.

[35] M. Jeanblanc, S. Klöppel, and Y. Miyahara. Minimal fq-martingale measures
for exponential Lévy processes. Ann. Appl. Probab., 17(5/6):1615�1638, 2007.



BIBLIOGRAPHY 135

[36] E. Jouini and C. Napp. Convergence of utility functions and convergence of
optimal strategies. Finance Stoch., 8(1):133�144, 2004.

[37] Yu. Kabanov and C. Stricker. On the optimal portfolio for the exponen-
tial utility maximization: Remarks to the six-author paper. Math. Finance.,
12:125�134, 2002.

[38] J. Kallsen. Optimal portfolios for exponential Lévy processes. Math. Methods
Oper. Res., 51(3):357�374, 2000.

[39] J. Kallsen. �-localization and �-martingales. Theory Probab. Appl., 48(1):152�
163, 2004.

[40] J. Kallsen and J. Muhle-Karbe. Utility maximization in a�ne stochastic
volatility models. To appear in Int. J. Theoretical Appl. Finance, 2008.

[41] I. Karatzas and C. Kardaras. The numéraire portfolio in semimartingale �-
nancial models. Finance Stoch., 11(4):447�493, 2007.

[42] I. Karatzas and S. E. Shreve. Methods of Mathematical Finance. Springer,
New York, 1998.

[43] I. Karatzas and G. �itkovi¢. Optimal consumption from investment and
random endowment in incomplete semimartingale markets. Ann. Probab.,
31(4):1821�1858, 2003.

[44] C. Kardaras. No-free-lunch equivalences for exponential Lévy models under
convex constraints on investment. Math. Finance, 19(2):161�187, 2009.

[45] C. Kardaras and G. �itkovi¢. Stability of the utility maximization problem
with random endowment in incomplete markets. To appear in Math. Finance.

[46] N. El Karoui and M.-C. Quenez. Dynamic programming and pricing of contin-
gent claims in an incomplete market. SIAM J. Control Optim., 33(1):29�66,
1995.

[47] T. S. Kim and E. Omberg. Dynamic nonmyopic portfolio behavior. Rev. Fin.
Studies, 9(1):141�161, 1996.

[48] M. Kobylanski. Backward stochastic di�erential equations and partial di�er-
ential equations with quadratic growth. Ann. Probab., 28(2):558�602, 2000.

[49] D. Kramkov and W. Schachermayer. The asymptotic elasticity of utility func-
tions and optimal investment in incomplete markets. Ann. Appl. Probab.,
9(3):904�950, 1999.

[50] D. Kramkov and W. Schachermayer. Necessary and su�cient conditions in the
problem of optimal investment in incomplete markets. Ann. Appl. Probab.,
13(4):1504�1516, 2003.

[51] K. Larsen. Continuity of utility-maximization with respect to preferences.
Math. Finance, 19(2):237�250, 2009.

[52] J. P. Laurent and H. Pham. Dynamic programming and mean-variance hedg-
ing. Finance Stoch., 3(1):83�110, 1999.

[53] M. Mania and M. Schweizer. Dynamic exponential utility indi�erence valua-
tion. Ann. Appl. Probab., 15(3):2113�2143, 2005.

[54] M. Mania and R. Tevzadze. A uni�ed characterization of the q-optimal and
minimal entropy martingale measures. Georgian Math. J., 10(2):289�310,
2003.

[55] R. C. Merton. Lifetime portfolio selection under uncertainty: the continuous-
time case. Rev. Econom. Statist., 51:247�257, 1969.



136 BIBLIOGRAPHY

[56] R. C. Merton. Optimum consumption and portfolio rules in a continuous-time
model. J. Econ. Theory, 3:373�413, 1971.

[57] J. Mossin. Optimal multiperiod portfolio policies. J. Bus., 41(2):215�229,
1968.

[58] J. Muhle-Karbe. On Utility-Based Investment, Pricing and Hedging in Incom-
plete Markets. PhD thesis, TU München, 2009.

[59] M. Nutz. The Bellman equation for power utility maximization with semi-
martingales. Preprint arXiv:0912.1883v1, 2009.

[60] M. Nutz. Power utility maximization in constrained exponential Lévy models.
To appear in Math. Finance, 2009.

[61] M. Nutz. The opportunity process for optimal consumption and investment
with power utility. Math. Financ. Econ., 3(3):139�159, 2010.

[62] M. Nutz. Risk aversion asymptotics for power utility maximization. Preprint
arXiv:1003.3582v1, 2010.

[63] P. Protter. An extension of Kazamaki's results on BMO di�erentials. Ann.
Probab., 8(6):1107�1118, 1980.

[64] R. T. Rockafellar. Integral functionals, normal integrands and measurable
selections. In Nonlinear Operators and the Calculus of Variations, volume 543
of Lecture Notes in Math., pages 157�207, Springer, Berlin, 1976.

[65] P. A. Samuelson. Lifetime portfolio selection by dynamic stochastic program-
ming. Rev. Econ. Statist., 51(3):239�246, 1969.

[66] P. A. Samuelson. Why we should not make mean log of wealth big though
years to act are long. J. Banking Finance, 3:305�307, 1979.

[67] M. Santacroce. On the convergence of the p-optimal martingale measures to
the minimal entropy martingale measure. Stoch. Anal. Appl., 23(1):31�54,
2005.

[68] K.-I. Sato. Lévy Processes and In�nitely Divisible Distributions. Cambridge
University Press, Cambridge, 1999.

[69] W. Schachermayer. Optimal investment in incomplete markets when wealth
may become negative. Ann. Appl. Probab., 11(3):694�734, 2001.

[70] W. Schoutens. Lévy Processes in Finance: Pricing Financial Derivatives.
Wiley, Chichester, 2003.

[71] M. Schweizer. On the minimal martingale measure and the Föllmer-Schweizer
decomposition. Stochastic Anal. and Appl., 13:573�599, 1995.

[72] S. Stoikov and T. Zariphopoulou. Dynamic asset allocation and consumption
choice in incomplete markets. Australian Econ. Pap., 44(4):414�454, 2005.

[73] M. Tehranchi. Explicit solutions of some utility maximization problems in
incomplete markets. Stochastic Process. Appl., 114(1):109�125, 2004.

[74] T. Zariphopoulou. A solution approach to valuation with unhedgeable risks.
Finance Stoch., 5(1):61�82, 2001.

[75] G. �itkovi¢. A �ltered version of the bipolar theorem of Brannath and
Schachermayer. J. Theoret. Probab., 15:41�61, 2002.



Curriculum Vitae

Marcel Fabian Nutz
born October 2, 1982
Swiss citizen

Education

Ph.D. Studies in Mathematics, ETH Zurich 10/2007�09/2010

Diploma in Mathematics, ETH Zurich 10/2002�03/2007
(Medal of ETH, diploma with distinction)

High School Gymnasium Münchenstein (BL) 08/1998�12/2001
(Matura with distinction)

Academic Employment

Teaching assistant in Mathematics, ETH Zurich 10/2007�09/2010

Tutor in Mathematics, ETH Zurich 03/2004�02/2007


