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Abstract

We study the superreplication of contingent claims under model

uncertainty in discrete time. We show that optimal superreplicating

strategies exist in a general measure-theoretic setting; moreover, we

characterize the minimal superreplication price as the supremum over

all continuous linear pricing functionals on a suitable Banach space.

The main ingredient is a closedness result for the set of claims which

can be superreplicated from zero capital; its proof crucially relies on

medial limits.
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1 Introduction

We study the superreplication of contingent claims under model uncertainty
in discrete-time �nancial markets. Model uncertainty is formalized by a set
P of probability measures (�models�) on a measurable space (Ω,ℱ) and the
superreplication is required to hold simultaneously under all measures P ∈ P
(�P-q.s.�). More precisely, given an adapted process S and a random variable
f , we are interested in determining the minimal superreplication price

x∗(f) = inf
{
x ∈ ℝ : ∃H such that x+H ∙ ST ≥ f P-q.s.

}
;
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here H is a trading strategy (de�ned simultaneously under all P ∈ P) and
H ∙ ST is the terminal wealth resulting from trading in S at the discrete
times t = 1, . . . , T according to H. Moreover, and this is our main goal, we
want to show that an optimal superreplicating strategy exists; i.e., that the
in�mum is actually attained for some H.

Both problems are well understood in the absence of model uncertainty.
Indeed, when P contains only one probability measure P , then an optimal
strategy exists and

x∗(f) = sup
Q∈ℳe(P )

EQ[f ],

where ℳe(P ) denotes the set of all probability measures Q, equivalent to
P , such that S is a Q-martingale. This holds under a no-arbitrage condition
which by the fundamental theorem of asset pricing is equivalent to ℳe(P )
being nonempty, and embodies a fundamental duality between wealth pro-
cesses and the linear pricing functionals {EQ[ ⋅ ], Q ∈ ℳe(P )}. It is well
known that the price x∗(f) can be relatively large for practical purposes;
however, superreplication is of primal theoretical importance, for instance,
in the solution of portfolio optimization problems. We refer to [4] and the
references therein for the classical theory, and in particular to [14] for the
discrete-time case.

Our aim is to obtain similar results in the situation of model uncertainty;
i.e., when P can have many elements. If there exists a reference probability
measure P∗ with respect to which all P ∈ P are absolutely continuous, the
resulting problem can be reduced to the classical one. We are interested in
the case where this fails; i.e, P is nondominated. It is certainly reasonable to
suppose that each of the possible models P ∈ P is viable in the usual sense
and thus admits an equivalent martingale measure for S. As the superrepli-
cation problem depends only on the nullsets of the given measures, we may
replace each P ∈ P by one of its equivalent martingale measures and as a
result, we may assume directly that P itself consists of martingale measures.

For instance, we can take S to be the canonical process on the path space
Ω = ℝT and let P be the set of all probabilities P such that P -a.s., S is
positive and St+1/St is in a given interval I for all t; i.e., there is uncertainty
about the log-increments of S, only the bound I is given. (A similar setup
was used in [10] as a discrete approximation to the G-Brownian motion
of [26].) More generally, given a process S on some measurable space, we
can prescribe any collection N of sets and take P to be the family of all
martingale measures not charging N . In the special case where N is the
collection of nullsets of a given reference measure P∗, this yields the classical
set of absolutely continuous martingale measures, but generically, it yields a
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nondominated set.
Our main result (Theorem 5.4) states that optimal superreplicating strat-

egies exist in a general measure-theoretic setting. Moreover, x∗(f) is de-
scribed as the supremum over all continuous linear pricing functionals on a
certain Banach space.

The main mathematical novelty in this paper is a closedness result (The-
orem 4.1) for the cone ℭ of contingent claims which can be superreplicated
from initial capital x = 0. A natural space for this result is introduced;
namely, we consider the locally convex space L1 of measurable functions
with the seminorms given by {EP [∣ ⋅ ∣], P ∈ P}. Our result states that ℭ is
sequentially closed in L1 (which is not a sequential space in general), and its
proof makes crucial use of the so-called medial limits. These are measurable
Banach limits which exist under certain set-theoretic axioms, such as the
Continuum Hypothesis (see Section 2 for details). To have closedness rather
than sequential closedness, we move to a Banach space L1 ⊆ L1 whose
topology, given by the norm ∥f∥1 = supP∈P EP [∣f ∣], is stronger than the
one of L1. The main result is then obtained by a Hahn�Banach separation
argument resembling the classical theory.

There are at least two obvious questions which are not answered in this
paper. First, while x∗(f) is described as the supremum over all continuous
linear pricing functionals, we do not establish that (or when, rather) we have
the formula x∗(f) = supP∈P EP [f ]. This question will be studied in future
work; see also Remark 5.5. Second, we do not discuss the possible extension
of the present results to the case of continuous-time processes with jumps.

To the best of our knowledge, there are no previous existence results for
superreplication under model uncertainty in discrete time, and more gener-
ally for price processes S with jumps (except in the case where strategies are
constants; cf. [28]). There are, however, results for continuous processes S
with �volatility uncertainty� in speci�c setups; see [3, 13, 23, 25, 27, 29, 30, 31]
and the references therein. All these results have been obtained by control-
theoretic techniques which, as far as we have been able to see, cannot be
applied in the presence of jumps. A duality result (without existence) for a
speci�c topological setup in discrete time was obtained in [9], while [8] gave
a comparable result for the continuous case.

A related topic is the so-called model-free pricing introduced by [12, 18],
where superreplication is achieved by trading in the stock S and (statically)
in a given set of options. On the dual side, this is related to the set of
all martingale measures for S which are compatible with the prices of the
given options, and this set can also be nondominated. A survey can be
found in [19]; recent results are [1, 2] in discrete time and [11, 16, 17] in the
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continuous case. Once more, we are not aware of general existence results
in the case with jumps (but [2] contains a counterexample). It remains to
be seen if our techniques can be applied to this problem. Finally, it is worth
noting that in contrast to the present work, the mentioned papers consider
topological setups and contingent claims which are functions of S alone.

The remainder of this paper is organized as follows. Section 2 states
the necessary facts about medial limits; Section 3 introduces the space L1;
Section 4 contains the market model and the closedness result; Section 5
states the main superreplication result, and the concluding Section 6 provides
a counterexample showing that L1 is not sequential.

2 Medial Limits

In this section, we state some properties of Mokobodzki's medial limit (cf. [22]
or [6, Nos. X.3.55�57]), whose use in the framework of model uncertainty was
�rst introduced in [24]. In a nutshell, a medial limit is a Banach limit that
preserves (universal) measurability and commutes with integration. Medial
limits are usually constructed by a trans�nite induction that uses the Con-
tinuum Hypothesis (the axiom that ℵ1 = cardℝ). In fact, it is known that
medial limits exist under weaker hypotheses (e.g., Martin's Axiom, which is
compatible with the negation of the Continuum Hypothesis), cf. [15, 538S],
but not under ZFC alone [21]. In the remainder of the paper, we assume
that medial limits exist1. Moreover, since there are then many medial limits,
we choose one and denote it by lim med. It works as follows.

If {xn}n≥1 is a bounded sequence of real numbers, lim medxn is a number
between lim inf xn and lim supxn, and if {fn}n≥1 is a uniformly bounded
sequence of random variables on a measurable space (Ω,ℱ), f = lim med fn
is de�ned via f(!) := lim med fn(!). The �rst important property of the
medial limit is that f is then universally measurable; i.e., measurable with
respect to the �-�eld

ℱ∗ :=
∩

P∈M1(Ω,ℱ)

ℱ ∨NP ,

where M1(Ω,ℱ) is the set of all probability measures on ℱ and NP is the
collection of P -nullsets. In particular, if ℱ is universally complete (i.e.,
ℱ = ℱ∗), then the medial limit preserves ℱ-measurability. The second

1In fact, we see little reason not to follow the advice of Dellacherie and Meyer [5] and
�adopt the Continuum Hypothesis with the same standing as the Axiom of Choice.�
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important property is that lim med commutes with integration; that is,∫
(lim med fn) d� = lim med

∫
fn d�

whenever � is a �nite (possibly signed) measure on (Ω,ℱ). We refer to
[22, Theorem 2] for these results. The medial limit can be extended to
nonnegative sequences {xn}n≥1 via

lim medxn := sup
m∈ℕ

lim med(xn ∧m) ∈ [0,∞].

If {xn}n≥1 is a general sequence, we set

lim medxn := lim medx+
n − lim medx−n

provided that the limits on the right-hand side are �nite (or, equivalently,
that lim med ∣xn∣ < ∞). The following properties are consequences of the
fact that lim med commutes with integration; cf. the proofs of [22, Theo-
rems 3,4].

Lemma 2.1. Let {fn}n≥1 be a sequence of random variables on (Ω,ℱ) and
set

f :=

{
lim med fn if lim med ∣fn∣ <∞,
+∞ otherwise.

Moreover, let � be a �nite signed measure on (Ω,ℱ).

(i) We have
∫
∣f ∣ d∣�∣ ≤ supn

∫
∣fn∣ d∣�∣.

(ii) If {fn}n≥1 is �-uniformly integrable, then f is �-integrable and we have∫
f d� = lim med

∫
fn d�.

(iii) If {fn}n≥1 converges in measure � to some �-a.e. �nite random vari-
able g, then f = g �-a.e.

3 The Space L1

Let P be a collection of probability measures on a measurable space (Ω,ℱ).
A subset A ⊆ Ω is called P-polar if A ⊆ A′ for some A′ ∈ ℱ satisfying
P (A′) = 0 for all P ∈ P and a property is said to hold P-quasi surely or
P-q.s. if it holds outside a P-polar set. Consider the set of ℱ-measurable,
real-valued functions on Ω and identify any two functions which coincide P-
q.s. We denote by L0 = L0(Ω,ℱ ,P) the set of all such equivalence classes;
in the sequel, we shall often not distinguish between these classes and actual
functions.
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De�nition 3.1. The space L1(Ω,ℱ ,P) consists of all f ∈ L0(Ω,ℱ ,P) such
that ∥f∥L1(P ) := EP [∣f ∣] <∞ for all P ∈ P. We equip L1(Ω,ℱ ,P) with the
Hausdor�, locally convex vector topology induced by the family of seminorms
{∥ ⋅ ∥L1(P ) : P ∈ P}.

To wit, a net {f�} in L1 = L1(Ω,ℱ ,P) converges to f ∈ L1 if and
only if EP [∣f� − f ∣] → 0 for all P ∈ P; i.e., if convergence holds in each
of the spaces L1(P ). It is important that the closedness of a set in L1

is not determined by sequences in general (cf. Example 6.1); i.e., we have
to distinguish sequential closedness and topological closedness. This is at
the heart of certain di�culties that we have encountered in our study; for
instance, it is the reason why the problem mentioned in Remark 5.5(ii) is
nontrivial.

The space L1(Ω,ℱ ,Q) is de�ned similarly when Q is a family of �nite,
possibly signed measures. In accordance with the usual notion of bounded-
ness in a topological vector space, we shall say that a subset Θ ⊆ L1(Ω,ℱ ,Q)
is bounded if

sup
f∈Θ
∥f∥L1(Q) <∞ for all Q ∈ Q.

The following is easily deduced from Lemma 2.1.

Lemma 3.2. Let ℱ be universally complete and let {fn}n≥1 be a bounded
sequence in L1(Ω,ℱ ,Q). Then

{lim med ∣fn∣ =∞} is Q-polar

and f := lim med fn de�nes an element of L1(Ω,ℱ ,Q) satisfying

∥f∥L1(Q) ≤ sup
n
∥fn∥L1(Q) for all Q ∈ Q.

Moreover, if {fn}n≥1 has a limit g in L1(Ω,ℱ ,Q), then f = g Q-q.s.

4 Sequential Closedness of ℭ ⊆ L1

Let (Ω,ℱ) be a measurable space equipped with a �ltration (ℱt)t∈{0,1,...,T},
where T ∈ ℕ. We shall assume throughout that

ℱt is universally complete, for all t.

Moreover, let S be a scalar adapted process, the stock price process. We
consider a nonempty set P of martingales measures for S; i.e., probability
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measures under which S is a martingale. We shall denote byℋ the set of pre-
dictable processes, the trading strategies. Given H ∈ ℋ, the corresponding
wealth process (from initial capital zero) is the discrete-time integral process

H ∙ S = (H ∙ St)t∈{0,1,...,T}, H ∙ St =

t∑
u=1

HuΔSu,

where ΔSu = Su − Su−1 is the price increment.
The main result of this section is that the cone ℭ of all claims which

can be superreplicated from initial capital x = 0 is sequentially closed in
L1 = L1(Ω,ℱ ,P). We denote by L0

+ the set of (P-q.s.) nonnegative random
variables.

Theorem 4.1. Let P ∕= ∅ be a set of martingale measures for S and

ℭ :=
(
{H ∙ ST : H ∈ ℋ} − L0

+

)
∩ L1.

Then ℭ is sequentially closed in L1.

Before stating the proof of the theorem, we show the following �com-
pactness� property; it should be seen as a consequence of the �absence of
arbitrage� which is implicit in our setup because P consists of martingale
measures.

Lemma 4.2. Let {Wn = Hn ∙ ST − Kn}n≥1 ⊆ ℭ be a sequence which is
bounded in L1. Then for all t ∈ {1, . . . , T},

{Hn
t ΔSt}n≥1 is bounded in L1.

Proof. It su�ces to show that for each t ∈ {1, . . . , T},

{Hn ∙ St}n≥1 is bounded in L1. (4.1)

Since {Wn}n≥1 is bounded in L1 and Kn is nonnegative, it follows immedi-
ately that {(Hn ∙ ST )−}n≥1 is also bounded in L1. Now �x n and P ∈ P
and recall that P is a martingale measure for S. Therefore, the stochastic
integral Hn ∙ S is a local P -martingale, but since we already know that
EP [(Hn ∙ ST )−] < ∞, we even have that Hn ∙ S is a true martingale; cf.
[20, Theorems 1, 2]. As a result, EP [(Hn ∙ ST )+] = EP [(Hn ∙ ST )−] for all n
and P , and therefore, {(Hn ∙ ST )+}n≥1 is bounded in L1, like the sequence
of negative parts. So far, we shown that

{Hn ∙ ST }n≥1 is bounded in L1. (4.2)
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To obtain the same statement for t < T , we note that for every P ∈ P, the
martingale property of Hn ∙ S yields that

∥Hn ∙ St∥L1(P ) = ∥EP [Hn ∙ ST ∣ℱt]∥L1(P ) ≤ ∥Hn ∙ ST ∥L1(P )

since the conditional expectation is a contraction on L1(P ). Hence, (4.2)
implies the claim (4.1).

Proof of Theorem 4.1. Let Wn = Hn ∙ ST −Kn be a sequence in ℭ which
converges to someW ∈ L1; we need to �nd H ∈ ℋ such thatW−H ∙ ST ≤ 0
P-q.s. Indeed, being convergent in L1, the sequence {Wn}n≥1 is necessarily
bounded in L1; hence, by Lemma 4.2, {Hn

t ΔSt}n≥1 is bounded in L1 for
�xed t ∈ {1, . . . , T}. As S is a martingale and in particular integrable under
each P ∈ P, we can de�ne the �nite signed measures Qt,P by

dQt,P /dP = ΔSt.

Let Q = {Qt,P }P∈P , then the above means that the sequence {Hn
t }n≥1 is

bounded in L1(Ω,ℱt,Q). Thus, Lemma 3.2 implies that Ht := lim medHn
t

is �nite Q-q.s. Setting Ht = 0 on the set {lim med ∣Hn
t ∣ = +∞} ∈ ℱt, we

obtain a process H ∈ ℋ. It remains to check that K := H ∙ ST −W is
nonnegative P-q.s. Indeed, since Wn →W in L1, we know from Lemma 3.2
that W = lim medWn P-q.s. In view of

H ∙ ST =
T∑
t=1

(lim medHn
t )ΔSt = lim med

T∑
t=1

HtΔSt = lim med(Hn ∙ ST ),

we conclude that

K = H ∙ ST −W = lim med(Hn ∙ ST −Wn) = lim medKn.

As each Kn is nonnegative, the result follows.

Remark 4.3. (i) The extension to multivariate price processes is not imme-
diate. It requires a way to deal with �redundant assets� in our setting.

(ii) Presently, we do not know any general (and veri�able) su�cient con-
ditions for ℭ ⊆ L1 to be topologically closed.

5 Main Result

In this section, we show that optimal superreplicating strategies exist and
we characterize the minimal superreplication price in a dual way. As in the
preceding section, P is a nonempty set of martingale measures for the scalar
process S which is adapted to the universally complete �ltration (ℱt).
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De�nition 5.1. We introduce the normed vector space

L1 = {f ∈ L1 : ∥f∥1 <∞}, where ∥f∥1 = sup
P∈P

EP [∣f ∣].

An element f ∈ L1 is P-uniformly integrable if limn→∞ ∥f1{∣f ∣≥n}∥1 = 0.

We remark that if a nonnegative claim f ∈ L0 can be superreplicated
from some �nite initial capital, then necessarily f ∈ L1. Moreover, one can
check that the set of all P-uniformly integrable functions coincides with the
L1-closure of the set of bounded measurable functions, and that f ∈ L1 is P-
uniformly integrable as soon as there exists a superlinearly growing function
 such that ∥ (f)∥1 <∞; cf. the proofs of [7, Propositions 18, 28].

De�nition 5.2. We introduce the cone

C := ℭ ∩ L1 ≡
(
{H ∙ ST : H ∈ ℋ} − L0

+

)
∩ L1,

as well as the set of continuous linear pricing functionals,

Π =
{
ℓ ∈ (L1)∗ : ℓ(C) ⊆ ℝ− and ℓ(1) = 1

}
.

Note that Π is indeed the set of all continuous and linear pricing mech-
anisms which are consistent with obvious no-arbitrage considerations. As C
contains the nonpositive elements of L1, we see that ℓ(C) ⊆ ℝ− implies that
ℓ is positive; i.e., ℓ(f) ≥ 0 whenever f ≥ 0 P-q.s.

It is obvious that L1 ⊆ L1 and that the topology of L1 is stronger than
the one of L1. Since sequential closedness and topological closedness are
equivalent in a normed space (which is indeed the reason for moving from
L1 to L1), the following is then an immediate consequence of Theorem 4.1.

Corollary 5.3. Let P ∕= ∅ be a set of martingale measures for S. Then C
is closed in L1.

The following is our main result: the optimal superreplicating strategy
exists and the minimal superreplication price is given by the supremum over
all linear prices.

Theorem 5.4. Let P ∕= ∅ be a set of martingale measures for S and let
f ∈ L1 be such that f+ is P-uniformly integrable. Then

sup
ℓ∈Π

ℓ(f) = inf
{
x ∈ ℝ : ∃H ∈ ℋ such that x+H ∙ ST ≥ f P-q.s.

}
(5.1)

and the in�mum is attained whenever it is not equal to +∞.
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We emphasize that a priori, (5.1) is an identity in (−∞,∞], with the
usual convention inf ∅ = +∞. (As f ∈ L1, the value −∞ is clearly not
possible for the left-hand side.)

Proof. We �rst show the inequality �≤� in (5.1). To this end, let x ∈ ℝ and
H ∈ ℋ be such that

x+H ∙ ST ≥ f P-q.s.

As f ∈ L1, this implies that (H ∙ ST )− ≤ (f−x)− ∈ L1. On the other hand,
as in the proof of Lemma 4.2, we have EP [(H ∙ ST )+] = EP [(H ∙ ST )−] for
all P ∈ P, and so we deduce that (H ∙ ST )+ ∈ L1 as well. As a result,
we have that H ∙ ST ∈ C. Now let ℓ ∈ Π; then positivity and the de�ning
properties of Π yield that

ℓ(f) ≤ ℓ(x+H ∙ ST ) = x+ ℓ(H ∙ ST ) ≤ x,

which proves the desired inequality.
We turn to the inequality �≥� in (5.1) and the existence of an optimal

superreplicating strategy. Let x := supℓ∈Π ℓ(f) ∈ (−∞,∞]. If x = +∞,
nothing remains to be shown, so we may assume that x is �nite and show that
f ∈ x+C (which immediately yields both the inequality and the existence).
Suppose for contradiction that f /∈ x + C. Since the convex cone C is
closed in L1 by Corollary 5.3, the Hahn-Banach theorem yields a continuous
functional ℓ : L1 → ℝ such that

sup
W∈C

ℓ(W ) < ℓ(f − x) <∞. (5.2)

In fact, since C is a cone containing zero, supW∈ℭ ℓ(W ) <∞ implies that

sup
W∈C

ℓ(W ) = 0 (5.3)

and in particular (5.2) states that

sup
ℓ∈Π

ℓ(f) = x < ℓ(f). (5.4)

Of course, (5.3) shows that ℓ(C) ⊆ ℝ−; in particular, ℓ is positive. Using
that f+ is uniformly integrable, we see that f ∧ n→ f in L1 and hence

0 < ℓ(f − x) = lim
n→∞

ℓ((f − x) ∧ n) ≤ lim sup
n→∞

ℓ(n).

This shows that ℓ(1) = n−1ℓ(n) > 0. By a normalization, we may assume
that ℓ(1) = 1; but then ℓ ∈ Π, which contradicts (5.4).
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Remark 5.5. (i) It is not hard to see that the theorem is indeed a gen-
uine generalization of the classical superreplication duality mentioned in the
Introduction (apart from our assumption that the �-�elds are universally
complete).

(ii) It is interesting to �nd conditions guaranteeing that

sup
ℓ∈Π

ℓ(f) = sup
P∈P

EP [f ],

which, together with (5.1), would yield an even closer analogue of the classi-
cal duality. A partial answer (for a special case) can already be found in [9].
In the general case, this question seems to be surprisingly di�cult and will
be addressed in future work.

6 A Counterexample

The subsequent example features a �-convex set P of martingale measures for
the trivial process S ≡ 0 and shows that a positive, sequentially continuous
functional ℓ on L1 need not be continuous. (Note that ℭ = L1

− when S ≡ 0,
so that positivity and ℓ(ℭ) ⊆ ℝ− are equivalent.) In particular, the nullspace
of ℓ is then a sequentially closed set which is not topologically closed.

Example 6.1. Let Ω = [0, 1], let ℱ be its Borel �-�eld and let

P =

{∑
k≥1

�k�xk : {xk}k≥1 ⊆ [0, 1], 0 ≤ �k ≤ 1,
∑
k≥1

�k = 1

}
.

Then the Lebesgue measure � induces a sequentially continuous functional
on L1(Ω,ℱ ,P) which is not topologically continuous.

Proof. Any f ∈ L1 is bounded, for otherwise there exist xn ∈ [0, 1] such
that ∣f(xn)∣ ≥ 2n and therefore EP [∣f ∣] = +∞ for P :=

∑
n≥1 2−n�xn ,

contradicting that P ∈ P. Moreover, a sequence fn in L1 converges to zero
if and only if it is uniformly bounded and converges pointwise; i.e.,

sup
n≥1, x∈[0,1]

∣fn(x)∣ <∞ and fn(x)→ 0, x ∈ [0, 1]. (6.1)

Indeed, (6.1) implies the convergence in L1 by the bounded convergence
theorem (applied for each P ∈ P). Conversely, let fn converge to zero in
L1, then the pointwise convergence must hold since �x ∈ P for all x ∈ [0, 1].
Moreover, being convergent in L1, {fn}n≥1 must be bounded in L1(P ) for
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every P ∈ P. If {fn}n≥1 is not uniformly bounded, then after passing to a
subsequence, there exist xn ∈ [0, 1] such that ∣fn(xn)∣ ≥ n2n. Hence,

sup
n≥1

EP [∣fn∣] = +∞ for P :=
∑
n≥1

2−n�xn ,

which is again a contraction. Therefore, we have the characterization (6.1)
for sequential convergence in L1.

As a consequence, ℓ = E�[ ⋅ ] is a sequentially continuous linear functional
on L1 for any probability measure �. However, when � is the Lebesgue mea-
sure, it cannot be topologically continuous because otherwise E�[ ⋅ ] would
have to be dominated by �nitely many of the seminorms {EP [∣ ⋅ ∣], P ∈ P},
which is clearly not the case.
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