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Abstract

We propose a continuous-time model of trading with heterogeneous
beliefs. Risk-neutral agents face quadratic costs-of-carry on positions
and thus their marginal valuations decrease with the size of their po-
sition, as it would be the case for risk-averse agents. In the equilib-
rium models of heterogeneous beliefs that followed Harrison–Kreps,
investors are risk-neutral, short-selling is prohibited and agents face
constant marginal costs of carrying positions. The resulting resale op-
tion guarantees that the price exceeds the price of the asset when spec-
ulation is ruled out; the difference is identified as a bubble. In our model
increasing marginal costs entail that the price depends on asset sup-
ply. Second, agents also value an option to delay, and this may cause
the market to equilibrate below the buy-and-hold price. Third, we in-
troduce the possibility of short-selling. A Hamilton–Jacobi–Bellman
equation of a novel form quantifies precisely the influence of the costs-
of-carry on the price. An unexpected decrease in shorting costs may
lead to the collapse of a bubble; this links the financial innovations
that facilitated shorting of MBSs to the subsequent collapse of prices.
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1 Introduction

As Kindleberger and Aliber (2005) elaborate, many classical economists ar-
gued that the purchase of securities for re-sale rather than for investment
income was the engine that generated asset price bubbles. To explain such
speculation in a dynamic equilibrium model, Harrison and Kreps (1978)
study risk-neutral agents with fluctuating heterogeneous beliefs. In their
model, long positions can be financed at a constant interest rate and short-
selling is ruled out. The buyer of an asset thus acquires both a stream of
future dividends and an option to resell which in combination with fluctuat-
ing beliefs guarantees that speculators are willing to pay more for an asset
than they would pay if they were forced to hold the asset to maturity; that
is, risk-neutral investors would pay to be allowed to speculate. Scheinkman
and Xiong (2003) considered a model where heterogeneous beliefs result from
agents’ overconfidence on different public signals and added trading costs,
and showed that these models generate a correlation between trading volume
and overpricing,1 a characteristic of several major bubble episodes in the last
three centuries.2

Another stylized fact is that bubble implosions often follow increases in
supply. For instance, the implosion of the dotcom bubble was preceded by
a vast increase in the float of internet shares.3 The South Sea bubble lasted
less than one year, but in that period the amount of outstanding shares of the
South Sea Company more than doubled, and many other joint-stock com-
panies were established.4 However, the assumption of risk-neutral investors
facing constant marginal costs in the earlier literature on disagreement and
bubbles implies that supply is irrelevant for pricing.5 Hong et al. (2006)

1See also Berestycki et al. (2019).
2See e.g. Carlos et al. (2006) on the South Sea bubble, Hong and Stein (2007) on

the Roaring Twenties, Ofek and Richardson (2003) and Cochrane (2002) on the internet
bubble, Xiong and Yu (2011) on the Chinese warrant bubble.

3See Ofek and Richardson (2003).
4The directors of the SSC understood that bubble companies competed with the SSC’s

conversion scheme and could deflate its own bubble. Harris (1994) documents that the
Bubble Act of 1720, which banned joint-stock companies except if authorized by Royal
Charter, was produced at the behest of the company to limit the competition for capital.

5Except for the assumption of positive net supply, issues concerning supply of the asset
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analyzed a two-period model with risk-averse investors where unexpected in-
creases in supply could deflate bubbles. The economics is straightforward—
when agents are risk-averse, their marginal valuation for a risky asset de-
creases with the amount they hold.

Short-selling an asset can be seen as a source of additional supply. The
collapse of prices for mortgage backed securities in 2007 was preceded by
a series of financial innovations that facilitated shorting: the creation of a
standardized CDS for MBS in 2005, the introduction of traded indexes for
subprime mortgage backed credit derivatives in 2006, and the use of CDS
to construct synthetic CDOs that allowed Wall Street to satisfy the global
demand for US AAA mortgage bonds without going through the relatively
slow process of originating new mortgages.6 The amounts shorted were sub-
stantial; Cordell et al. (2011) estimate that synthetic CDOs, mostly issued
after 2005H2, more than doubled the amount of BBB Home Equity Bonds
placed in CDOs during 1998–2007.7 It is unlikely that this supply would
have been absorbed without any price impact. In any case, starting in the
second half of 2007, prices seem to exhibit substantial discounts relative to
fundamentals.8

In this paper we propose a finite-horizon continuous-time model with n
types of investors trading a single asset and aiming to maximize expected
cumulative net gains from trade. These investors are risk-neutral, face a
constant interest rate, and have fluctuating heterogeneous beliefs about the
evolution of a Markov state that determines the asset’s payoff. In contrast

subject to bubbles are also ignored in the rational bubbles literature (Santos and Woodford
(1997)).

6See Scheinkman (2014) for a summary or Lewis (2015) for an excellent detailed ac-
count.

7BBB tranches of Home Equity Bonds were an essential fuel to the CDO machine that
transformed subprime mortgages into AAA rated bonds.

8Beltran et al. (2017) provide a methodology to calculate the intrinsic value of a
CDO and apply it to market data (see their Appendix A). They attribute the low prices
to the increase in asymmetric information between buyers and sellers that followed the
downgrades of MBS securities by rating agencies in summer 2007. Analyzing the pricing of
index credit default swaps post-crisis, Stanton and Wallace (2011) suggest that the pricing
reflected a limited supply of insurance of asset backed securities, presumably relative to
demand.
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to the previous literature, shorting is allowed. Investors pay costs which are
proportional to the square of their positions but the constant of proportional-
ity that defines the cost of going short may be larger than the corresponding
constant for going long. This asymmetry between costs of going short and
long is a well-known feature of financial markets, see e.g. D’Avolio (2002),
and the assumptions in the earlier literature correspond to an infinite cost for
short positions and constant marginal costs for long positions. On the one
hand, the costs in our model reflect monetary costs of holding a position (in
particular increasing costs of capital). On the other hand, they stand in for
risks that we do not explicitly model, such as market-wide liquidity shocks
that would force agents to liquidate their positions at unfavorable prices or
the recall-risk faced by short-sellers.

Indeed, since costs are quadratic, an agent’s marginal valuation of the
asset will decrease as their position increases, as it would be the case for
risk-averse agents. Thus we view our setup as an alternative to a much less
tractable model with risk aversion, with many of the same forces present.9

In particular, we show below that an increase in aggregate supply of the
asset lowers equilibrium prices. Importantly, using the two cost coefficients
as separate parameters allows us to impose asymmetric costs and study the
impact of changes in relative costs on prices. By contrast, traditional models
with risk aversion either treat longs and shorts symmetrically or completely
rule out shorts by imposing portfolio constraints.

We examine the equilibrium price for the asset, given by a function of
time and current state. Types that expect prices to increase on average over
the next instant choose to go long; the size of their position depends on
the difference between their expected price changes and the marginal cost
of carrying long positions. The other types choose to go short, by amounts
that depend on their expected price changes and the cost of carrying short
positions. Equilibrium requires that the longs absorb the shorts plus an
exogenous supply. Theorem 2.1 below shows that there is a unique equilib-

9One difference from models of disagreement that use risk aversion to avoid no-shorting
constraints is that the presence of holding costs allows for equilibrium to exist even when
agents disagree about perceived arbitrage opportunities.
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rium price function and that it can be characterized by a partial differential
equation (PDE). This equation is of Hamilton–Jacobi–Bellman-type with a
novel form where the optimization runs over the ways to divide the agents
into two groups at any time and state; at the optimum, these are the op-
timists (holding long positions in equilibrium) and the pessimists (holding
shorts). A noteworthy feature is that the supply enters mathematically as
a running cost (i.e., like intermediate consumption in Merton’s problem).
Theorem 2.1 also quantifies precisely how these costs amplify or diminish
the impact of optimists’ and pessimists’ views; for instance, as shorting gets
more expensive relative to being long, optimists have a larger impact on the
price.

We show that an increase in supply decreases the equilibrium price and
that a decrease (increase) in the cost for long (short) positions increases
the price. We also establish that as the cost for long positions converges to
zero, the equilibrium price function converges to a function that does not
depend on the cost of holding a short position or the amount supplied. On
the other hand, as the cost of shorting becomes prohibitive, the equilibrium
price converges to a function that does depend on the cost of carrying long
positions as well as the exogenous supply of the asset.

To discuss the impact of speculation we first characterize the static equi-
librium price; that is, the price that prevails when re-trading is not allowed
and agents are forced to use buy-and-hold strategies. The difference between
the dynamic price (where re-trading is possible) and the static price has been
identified as the size of a bubble in the previous literature. A buyer of the
asset today may forecast that at some future date she would be able to sell
at a price that would exceed her own valuation of the asset at that date.
Because of this resale option, she may be willing to pay more than what she
believes is the discounted value of the payoff of an asset. In the classical
models, this option causes equilibrium prices to exceed the price that would
prevail if re-trading is ruled out. In addition, there is also an option to delay
which has not been highlighted in the earlier literature on heterogeneous
beliefs. A speculator that buys y units today may plan to buy additional
units of the asset in future states of the world where there would be a larger
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difference between the asset price and her marginal valuation for the asset if
she holds y units. However, if the marginal cost of holding a long position
is constant, this delay option has no impact in equilibrium. The intuition is
that, since agents are risk-neutral and the marginal cost-of-carry is constant,
a buyer of a positive amount of the asset must be indifferent as to the amount
of the asset she buys. Hence, the delay option has no value for this buyer,
and in particular, the dynamic equilibrium price cannot be smaller than the
static price. We prove that this comparison holds even if shorting is allowed
(see Proposition 4.3). We show through an example that in the presence of
increasing marginal costs of going long, the option to delay may outweigh
the resale option and cause the dynamic price to be lower than the static
one, even when shorting is prohibited. Thus the crucial assumption in the
earlier literature that delivers the result that speculative prices exceed static
prices is not the prohibition of short-sales, but the assumption of constant
marginal costs for carrying long positions.

When shorting is allowed, the short party also has corresponding op-
tions. An agent that acquires a short position today may forecast that at
some future date he would be able to repurchase the asset at a price that
would be below his own valuation at that date. This option to resell a short
position, that is the option to cover shorts, in turn, decreases the minimum
amount pessimists would be willing to receive for shorting the asset, putting
downward pressure on prices. The short party also enjoys an option to delay.
In Example 4.8 we show that when the cost of holding a short position is
close to the cost of holding a long position, the equilibrium price may be less
than the static price. We argue that this happens because the long party
values the resale option less than the short party values the repurchase op-
tion. Example 4.8 can also be used to illustrate that an unexpected decrease
of the cost of shorting can lead to a collapse of an asset price bubble, thus
rationalizing a link between the decrease of the cost of shorting in the MBS
market in 2005–07 and the collapse of CDO prices.

The equilibrium in our model is not first-best except in the limit case
of homogeneous beliefs. We show that the equilibrium price and allocations
obtain as solutions to the problem of a time-consistent planner who subsi-
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dizes and taxes the cost-of-carry to maximize the initial price. We use this
planner’s problem to explain the structure of the PDE that characterizes
equilibrium prices.

Our paper connects to a number of other contributions in the litera-
ture. In a pioneering paper allowing for short-sales and risk aversion in a
continuous-time setting of heterogeneous beliefs, Dumas et al. (2009) con-
sider a “complete markets” model with two classes of agents, one of which is
overconfident about a public signal. Overconfident-investors’ reaction to the
signal introduces a risk factor—sentiment risk—which carries a risk-premium
and causes stock prices to be excessively volatile. In their model, the delay
option must be valuable and supply affects equilibrium prices, but these
questions are not explicitly analyzed. Instead, Dumas et al. (2009) focus on
the important question of identifying the trading strategy that would allow
a rational investor to take advantage of excessive stock price volatility and
sentiment fluctuations and show that rational investors choose a conserva-
tive portfolio that is sensitive to their predictions about future realization
of sentiment. The related paper by David (2008) assumes the existence of
distinct processes for output and dividends of a zero-net-supply stock. The
drifts of these processes are given by an unobserved, finite state, continuous-
time Markov chain. Agents agree to disagree on the probabilities of transi-
tions across states and use the zero-supply stock to speculate against each
other—creating an additional source of risk. The focus of David (2008) is the
relationship between the equity premium and the time variation in agents’
consumption. In these papers there is a cost symmetry between going short
and long (the short party receives the equilibrium price and must pay the
dividends that accumulate until the position is closed). Thus one cannot
examine the effect of changes in shorting costs, which is the main motivation
for our paper.

The literature on asset pricing with search frictions that follows Duffie
et al. (2005) assumes that agents have fluctuating private benefits from hold-
ing an asset and that opportunities for trading are randomly distributed.
Strict concavity of private benefits implies that the supply of the asset af-
fects equilibrium prices. Our assumption of quadratic costs of holding a
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position could be similarly motivated as private benefits (but in our case
the differences come from heterogeneity of beliefs rather than benefits). The
fluctuating private benefits also generate options to resell and to delay trad-
ing which are discussed in Lagos and Rocheteau (2006), Feldhütter (2012)
and Hugonnier et al. (2018). These authors point out that depending on
the curvature of private benefits an increase in trading opportunities may
decrease or increase the price of the asset. In particular the comparison
between prices that would prevail when re-trading opportunities are more
or less frequent is ambiguous. However, short-selling or changes in shorting
costs are not emphasized in this literature.

Duffie et al. (2002)10 highlight the mechanics of shorting that prevails
in markets where shorts pay a fee to borrow assets from longs.11 Agents
disagree on the expected final payoff of an asset but there is no fluctuation
of beliefs and hence no speculative behavior; all purchases are buy-and-hold.
The dynamics arises because pessimists must meet longs and borrow their
shares and these meetings occur with an intensity λ per unit of time. In
the model of Duffie et al. (2002) an increase in supply decreases equilibrium
prices (see Proposition 5). There are no explicit costs of shorting, but an
increase in the intensity of meetings, λ, has an ambiguous effect on prices; it
lowers prices because the supply by shorts increases but it increases prices
because longs are more likely to lend their shares.

Cvitanić and Malamud (2011) also study heterogeneous agents in an
equilibrium model, with a focus on survival and market impact. They find
that long-run price and portfolio impact are equivalent to the survival of
an agent under different measures. Again, there is no fluctuation of beliefs;
agents are optimists or pessimists because they over- or underestimate the
(constant) drift parameter of dividends. By contrast, in our model, the
notion of optimism is endogenous and state-dependent.

Fostel and Geanakoplos (2012) study a collateral equilibrium12 in a model
10See also Vayanos and Weill (2008).
11Synthetic CDOs allowed pessimists to short CDOs without borrowing the underlying

securities.
12Geanakoplos and Zame (1997)
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of financial innovation with heterogeneous beliefs. The introduction of a CDS
leads to a fall in the price of the underlying security, the fall being more dra-
matic if tranching of the security is already present. The introduction of
this new derivative affects equilibrium prices but in the model of Fostel and
Geanakoplos (2012) the initial beneficiaries of the new contract are the op-
timists, who in their language benefit from “tranching cash.” By contrast,
in our model the initial beneficiaries of this cost decrease are the pessimists.
Lewis (2015) reports how starting in early 2005 a small group of traders who
had pessimistic views on the housing market lobbied ISDA—the trade organi-
zation of over-the-counter market participants—to create standardized CDS
contracts on mortgage-market securities that facilitated shorting.13 Oehmke
and Zawadowski (2016) also examine the effect of introducing a CDS, in a
model where traders differ on their horizons and beliefs. They postulate a
per-unit cost for trading bonds which affects equally long and short posi-
tions, while CDS trading is free. Thus the introduction of a CDS lowers
the cost for both longs and shorts. It leads former bond buyers to switch
to protection selling and former bond shorters to buying protection. More-
over long-horizon traders now hold a long position on the bond while buying
protection. The net effect may be an increase of bond prices. Although the
mechanism described in Oehmke and Zawadowski (2016) may have played a
role in the CDO market, the sharp drop in prices of CDO-tranches suggests
that it was overwhelmed by the lowering of the cost of shorting.

The paper is organized as follows. Section 2 contains the formulation
of the problem and the characterization of the equilibrium as the solution
to a Hamilton–Jacobi–Bellman equation. Section 3 presents comparative
statics and limiting results. Section 4 discusses the role of speculation, while
Section 5 deals with the planner’s problem. Section 6 concludes, and the
Appendix details proofs and several extensions of our model.

13See e.g. Lewis (2015) pp. 48–50 on the creation of standardized CDS on MBS.
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2 Equilibrium Price

In this section, we detail our formal setup and show that it leads to a unique
equilibrium. The equilibrium price is described by a partial differential equa-
tion of the Hamilton–Jacobi–Bellman type.

2.1 Definition of the Equilibrium Price

We consider n ≥ 1 types, each with a unit measure of agents, who trade a
security over a finite time interval [0, T ]. For brevity, we will often refer to a
type as an agent. The security has a single payoff f(X(T )) at the horizon,
where f : Rd → R is a bounded continuous function and X(ω), ω ∈ Ω is
the d-dimensional state process.14 While there is no ambiguity about f , the
agents agree to disagree on the evolution of the state process. The views of
agent i are represented by a probability measure Qi on Ω under which X

follows the stochastic differential equation (SDE)

dX(t) = bi(t,X(t)) dt+ σi(t,X(t)) dWi(t), X(0) = x, (2.1)

where Wi is a Brownian motion of dimension d′ and the functions

bi : [0, T ]× Rd → Rd, σi : [0, T ]× Rd → Rd×d
′

are deterministic. We assume15 throughout that (the components of) bi
and σi are in C1,2

b , the set of all bounded continuous functions g : [0, T ] ×
Rd → R whose partial derivatives ∂tg, ∂xig, ∂xixjg exist and are continuous
and bounded on [0, T ) × Rd. Moreover, we assume that16 σ2

i is uniformly
parabolic; that is, its eigenvalues are uniformly bounded away from zero.
These conditions imply in particular that the SDE (2.1) has a unique (strong)
solution.

14More precisely we take X to be the coordinate-mapping process on the space Ω =
C([0, T ],Rd) of continuous, d-dimensional paths, equipped with the canonical filtration
and sigma-field. In what follows all processes are assumed to be progressively measurable.

15These conditions could be relaxed considerably. The present form allows for a simple
exposition avoiding issues of technical nature.

16Given a matrix A, we write A2 for the product AA> of A with its transpose A>.
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Notice that we allow for the differences in beliefs to affect both drift
and diffusion coefficients. As the volatility is more amenable to statistical
estimation than the rate of return, the differences on drifts will typically
be more significant. While much of the literature on disagreement in asset
markets deals with constant volatility processes and thus naturally assumes
perfect agreement on volatilities, there is plenty of evidence that more com-
plex processes involving stochastic and time-varying volatility are necessary
to understand empirical features of asset prices. In this context, it is quite
plausible, as argued by Epstein and Ji (2013), that agents may also dif-
fer in their forecasts17 for the volatility. In particular, it seems worthwhile
to establish that our equilibrium is robust with respect to such differences.
Nonetheless all our results have interest and all our examples are valid when
agents disagree only about drifts.

Agents trade the security throughout the interval [0, T ], at a time t price
P (t) to be determined in equilibrium. The agents are subject to an instan-
taneous cost-of-carry c which is different for long and short positions,18

c(y) =

 1
2α+

y2, y ≥ 0,

1
2α−

y2, y < 0.
(2.2)

17Note that while the past trajectory of σ(t,X(t)) can be inferred from the observation
of X(t), agents may very well differ in their forecasts. This is obvious if σ depends on
time t, but even if not, the past observation of σ(t,X(t)) will typically reveal little of
the function σ when X is non-recurrent (e.g., of dimension larger than 2). We will see
in Theorem 2.1 that the pricing of the security indeed depends on the future volatility
over the entire time interval. This is quite natural as the same would be true in standard
risk-neutral pricing when f is a derivative on a stock, for instance.

18The assumption that costs are proportional to the square of the position does not
accommodate the fact that borrowers of stock may pay a fee quoted as an annualized
percentage of the value of the loaned securities (the rebate rate). This assumption is
made to simplify the exposition and allow us to concentrate on the effects of the size of a
position on an agent’s marginal valuation. In Appendix A we discuss how our results can
be generalized if an additional linear term is added to the costs-of-carry. In addition, for
tractability, we assume that costs are a function of the size rather than the value of the
position. See Appendix C for a discussion of costs as a function of position values.
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Here the (inverse) cost coefficients α± are given constants19 satisfying

0 < α− ≤ α+,

meaning that the cost of shorting is higher than the cost of going long. An
admissible portfolio for an agent is a bounded20 process Φ, and we write A
for the collection of all these portfolios. The value Φ(t) indicates the number
of units of the security held by the agent at time t, and this number can
be negative in the case of a short position. Given a (semimartingale) price
process P , agent i seeks to maximize the expected net payoff21

Ei

[∫ T

0
Φ(t) dP (t)−

∫ T

0
c(Φ(t)) dt

]
; (2.3)

here the first integral represents the profit-and-loss from trading and the
second integral is the cumulative cost-of-carry incurred. Criterion (2.3) can
be rationalized by assuming that agents have access to borrowing and lending
at a zero interest rate and that the cost function c is measured in the unit
of account but it can also be taken as a primitive utility function. We take
interest rates as exogenous because most bubbles affect only part of the
capital markets and have limited effect on rates.The assumption that this
exogenous rate equals zero is made to simplify the notation. We account for
that in our discussions by referring for instance to the case where c(y) = 0

for y ≥ 0 as a constant (rather than zero) marginal cost of being long.
An admissible portfolio Φi will be called optimal for agents of type i if it
maximizes (2.3) over all Φ ∈ A. We will examine symmetric equilibria in
which agents of the same type choose the same portfolio.

As the final input of our model, we introduce a nonnegative supply func-
19We examine in Appendix B how the model is altered if costs of going long and/or

short vary across agents.
20Boundedness could be replaced by suitable integrability conditions without altering

our results.
21To ensure that the expectation is well-defined a priori, we set Ei[Y ] := −∞ whenever

Ei[min{0, Y }] = −∞, for any random variable Y . For the processes P that occur in our
results below, (2.3) will be finite for any Φ ∈ A.
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tion s ∈ C1,2
b .22 The supply S(t) = s(t,X(t)) is owned by third parties that

supply the asset inelastically.23 Notice that this formalism allows for the
payoff f(X(T )) to depend on S(T ). An equilibrium price is a process24 P

satisfying P (T ) = f(X(T )) a.s. under all Qi for which there exist admissi-
ble portfolios Φi, i ∈ {1, . . . , n} such that Φi is optimal for agent i and the
market clearing condition

n∑
i=1

Φi(t) = S(t)

holds. We are interested in Markovian equilibria; that is, equilibrium prices
of the form P (t) = v(t,X(t)) for a function v which we refer to as an equi-
librium price function.

2.2 Existence and PDE for the Equilibrium Price

The following notation will be useful to state our first result. Given v ∈ C1,2
b ,

we define the function Liv by

Liv(t, x) = ∂tv(t, x) + bi∂xv(t, x) +
1

2
Trσ2

i ∂xxv(t, x). (2.4)

Here ∂xv denotes the gradient vector, ∂xxv the Hessian matrix, and Trσ2
i ∂xxv

is the trace of the matrix σ2
i ∂xxv; that is, the sum of the entries on the

diagonal. One can interpret Liv(t, x) as the change in v which agents of
type i expect over an infinitesimal time interval after t.

Before stating the general characterization of equilibria in Theorem 2.1
below, we develop the heuristics in two particular cases. We suppose that X
is one-dimensional and the coefficients bi and σi are constant.

We first derive the first-order conditions for the portfolios. Suppose that
22Our results could be extended to a discontinuous supply shock as in Hong et al. (2006)

using backward induction.
23Since the utility function in (2.3) is separable, the equilibrium price is invariant to

endowments. Hence, we could have alternatively assumed an arbitrary ownership structure
for the endowment across the types of investors—we opted for the simpler presentation.

24More precisely, P is a continuous semimartingale, which ensures that the integrals of
Φi are well-defined. This is automatically satisfied for the processes considered below.
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we are in an equilibrium with price P (t) = v(t,X(t)). Itô’s formula states
that under Qi,

dP (t) = ∂tv(t, x) dt+ bi∂xv(t, x) dt+ 1
2σ

2
i ∂xxv(t, x) dt+ σi∂xv(t, x) dWi(t)

= Liv(t, x) dt+ σi∂xv(t, x) dWi(t).

Thus, the expected final payoff (2.3) for a portfolio Φ is

Ei

[∫ T

0
Φ(t) dP (t)−

∫ T

0
c(Φ(t)) dt

]
= Ei

[∫ T

0
{Φ(t)Liv(t,X(t))− c(Φ(t))} dt

]
where we have used that the dW -integral has zero expectation. To optimize
this quantity, we simply maximize the integrand with respect to Φ(t) at
every t; that is, we set the marginal expected gain Liv(t,X(t))−c′(Φ(t)) = 0.
The latter formula shows that the equilibrium holding premium for type i,
which equals the expected price change Liv since the interest rate is zero, is
generated by the holding cost. Using the quadratic form (2.2) of c, we derive
the optimal portfolio

Φi(t) = φi(t,X(t)), where φi(t, x) = αsign(Liv(t,x))Liv(t, x).

In particular, agents are myopic given the price function and its derivatives
(whereas the price itself will incorporate agents’ expectations about the fu-
ture of the state process X).

Next, we derive an equation for v in two special cases. First, in the ho-
mogeneous case where all agents have the same views: bi = b and σi = σ.
Thus, Liv(t, x) = Lv(t, x) is also independent of i and the optimal positions
are identical across agents; in particular, there is no short-selling in equilib-
rium and the first-order condition becomes Φi(t) = α+Lv(t,X(t)). Market
clearing requires that α+Lv(t,X(t)) = S(t)/n or

∂tv(t, x) + b∂xv(t, x) +
1

2
σ2∂xxv(t, x)− s(t, x)

nα+
= 0.

This PDE is linear and supply enters as a running cost: the equilibrium price
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must compensate for the cost-of-carry.
Second, consider n = 2 types of agents that disagree on the drift coef-

ficient µi but agree on the volatility σ := σ1 = σ2. To further simplify the
derivation, consider the case of zero net supply. Market clearing requires
φ1 + φ2 = 0, thus one type must be long and the other must be short.
Therefore, there are two possibilities at every (t, x):

L1v(t, x) ≤ 0 and L2v(t, x) ≥ 0, thus α−L1v(t, x) + α+L2v(t, x) = 0; or

L1v(t, x) ≥ 0 and L2v(t, x) ≤ 0, thus α+L1v(t, x) + α−L2v(t, x) = 0.

Recalling that α− ≤ α+, it follows that

if L1v(t, x) ≤ 0 and L2v(t, x) ≥ 0, then α+L1v(t, x) + α−L2v(t, x) ≤ 0;

if L1v(t, x) ≥ 0 and L2v(t, x) ≤ 0, then α−L1v(t, x) + α+L2v(t, x) ≤ 0.

Hence, in all cases:

max
{
α−L1v(t, x) + α+L2v(t, x); α+L1v(t, x) + α−L2v(t, x)

}
= 0.

Next, divide the above equation by (α−+α+) and plug in the definitions of
L1 and L2. After rearranging terms, one obtains

∂tv(t, x)+ max
(i,j)=(1,2),(2,1)

{(
α−

α−+α+
bi + α+

α−+α+
bj

)
∂xv(t, x)

}
+

1

2
σ2∂xxv(t, x) = 0.

Disagreement about drifts caused a non-linearity in the first-order term.
Similarly, disagreement about volatilities would have caused a non-linearity
in the second-order term. The next theorem states that an analogous PDE
uniquely characterizes the equilibrium price function in our model. In gen-
eral, the above maximization over two possibilities is replaced by a maximiza-
tion over “groups” I ⊆ {1, . . . , n} of agents; we denote by |I| the number of
agents in I and by Ic = {1, . . . , n} \ I the complementary group.

Theorem 2.1. (i) There exists a unique equilibrium price function v ∈
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C1,2
b . The corresponding optimal portfolios are unique25 and given by Φi(t) =

φi(t,X(t)), where

φi(t, x) = αsign(Liv(t,x))Liv(t, x). (2.5)

(ii) The function v ∈ C1,2
b can be characterized as the unique solution of

the PDE

∂tv(t, x)+ sup
I⊆{1,...,n}

(
µI(t, x)∂xv(t, x)+ 1

2 Tr Σ2
I(t, x)∂xxv(t, x)−κI(t, x)

)
= 0

(2.6)
on [0, T )× Rd with terminal condition v(T, x) = f(x), where the supremum
is taken over all subsets I ⊆ {1, . . . , n} and the coefficients are defined as

µI(t, x) = α−
|I|α−+|Ic|α+

∑
i∈I

bi(t, x) + α+

|I|α−+|Ic|α+

∑
i∈Ic

bi(t, x), (2.7)

Σ2
I(t, x) = α−

|I|α−+|Ic|α+

∑
i∈I

σ2
i (t, x) + α+

|I|α−+|Ic|α+

∑
i∈Ic

σ2
i (t, x), (2.8)

κI(t, x) =
s(t, x)

|I|α− + |Ic|α+
. (2.9)

Moreover, a maximizer for the supremum in (2.6) is given by

I∗(t, x) = {i ∈ {1, . . . , n} : Liv(t, x) < 0}. (2.10)

In equilibrium, the group I∗ of (2.10) corresponds to the more pessimistic
agents (holding shorts) whereas Ic∗ are the optimists (holding long positions).
The formulas (2.7) and (2.8) for µI and ΣI can be seen as a weighted average
of the drift and volatility coefficients of the agents. The weights entail that
when shorting is more expensive than being long (i.e., α− is small relative to
α+), optimists have a larger impact on the equilibrium price. In Section 3
we show that when α− → 0 or α+ → ∞, the more pessimistic views are
not reflected in the equilibrium price at all. The running cost κI of (2.9)
depends linearly on the exogenous supply s which is divided by a weighted

25Uniqueness is understood up to (Qi × dt)-nullsets.
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sum of the cost coefficients, the weights being the size of the set I and its
complement Ic, respectively. Since α− ≤ α+, the cost increases with the
number |I| of types in the group I.

We will see in Section 5 that the precise form of the PDE (2.6) with a
supremum can be explained through the problem of a planner with limited
instruments. To obtain an initial intuition, note that using (2.4), the left-
hand side of the PDE can be read as the difference of two quantities. The first
one is a weighted average over the instantaneous holding premia. The second
quantity is related to the instantaneous marginal cost of carrying positions.
The PDE equates this difference to zero when the weights correspond to the
particular group I = I∗.

Mathematically, the PDE (2.6) is of Hamilton–Jacobi–Bellman type,
which entails that v can be represented as the value function of a stochastic
optimal control problem. This is useful for our derivation of comparative
statics and limiting results presented below but has no obvious economic
interpretation. The control problem is detailed in Appendix D.

Remark 2.2. The equilibrium price v(t, x) is 0-homogeneous in (α−, α+, s),
indicating that supply and costs are closely linked in our model. That is, if
these parameters are replaced by (λα−, λα+, λs) for some λ > 0, the price
does not change. This follows from Theorem 2.1 (ii) after observing that the
coefficients µI , ΣI and κI are invariant under this substitution. In the special
case s = 0, the homogeneity entails that the price depends on (α−, α+) only
through the ratio α+/α−.

3 Comparative Statics and Limiting Cases

In the first part of this section we establish comparative statics with respect
to the supply and cost parameters. In the second part we analyze the limit
α+ → ∞ when there is no cost-of-carry for long positions, as well as the
limit α− → 0 when short positions are ruled out.
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3.1 Comparative Statics

We start with the dependence on the supply.

Proposition 3.1. The equilibrium price function v is monotone decreasing
with respect to the supply function s: prices decrease with an increase in
supply.

Next, we turn to the cost parameters α− and α+. The following shows
that the equilibrium price is decreasing with respect to the cost-of-carry for
long positions and increasing with respect to the cost for short positions.

Proposition 3.2. The equilibrium price function v is

(i) increasing with respect to α+,

(ii) decreasing with respect to α−,

(iii) increasing with respect to the quotient α+/α− if s ≡ 0.

The proof uses our PDE characterization of the price and a comparison
theorem from the theory of parabolic partial differential equations.26

The following is a partial extension of (iii) to the case of non-zero supply
which is useful if α− and α+ are varied simultaneously.

Remark 3.3. Let α− ≤ α+ and α′− ≤ α′+ be two pairs of cost coefficients
and let v and v′ be the corresponding equilibrium price functions. If the
coefficients satisfy α+/α− ≤ α′+/α′− and α− ≤ α′−, then v ≤ v′.

For instance, it follows that if the costs-of-carry for long and short posi-
tions are increased by a common factor, then the price decreases.

26Comparison theorems are useful to show that two functions satisfy an inequality on
their domain if they are known to satisfy an (in)equality on the boundary. In our context,
we may think of the equilibrium price function as satisfying a PDE F (v, β) = 0 where β
is a parameter. If v1 and v2 are price functions corresponding to different parameters β1
and β2, we know that they are equal at the boundary t = T since they satisfy the same
terminal condition f . If v2 is a subsolution of the PDE for v1, that is F (v2, β1) ≥ 0, the
comparison theorem implies that v1 ≥ v2. See e.g. Fleming and Soner (2006).
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3.2 Limiting Models

We discuss two limits for the cost coefficients which help to understand
the relationship between our model and the earlier ones discussed in the
Introduction. To make the dependence on the parameters explicit, we denote
by vα−,α+(t, x) the equilibrium price function v(t, x) for α−, α+.

3.2.1 Zero Cost for Long Positions

We first consider the limit α+ →∞ when the cost-of-carry for long positions
tends to zero.

Proposition 3.4. As α+ →∞, the function vα−,α+ converges to the unique
solution v∞ ∈ C1,2

b of the PDE

∂tv + sup
i∈{1,...,n}

(
bi∂xv + 1

2 Trσ2
i ∂xxv

)
= 0 (3.1)

with terminal condition v(T, x) = f(x); in particular, v∞ is independent
of α− and s. The convergence is locally uniform in (t, x), and monotone
increasing as α+ ↑ ∞.

We now discuss the limiting model that arises in Proposition 3.4; that
is, with no cost-of-carry for long positions. We state these results without
proofs since these would be very similar to the proof of Theorem 2.1.

The limiting model has an equilibrium price function v := v∞ that is
unique and independent of the supply s and the cost coefficient α− for short
positions. Thus, we retrieve the results of previous models with risk-neutral
agents in this limiting regime. The intuition for Equation (3.1) is straight-
forward. In any equilibrium, if j is one of the most optimistic types, we
must have Ljv(t, x) ≥ 0. However if the marginal cost of going long is zero,
Ljv(t, x) = 0 necessarily holds. In particular, j is indifferent with respect to
nonnegative positions and equilibrium prices are independent of the supply
for the asset or the demand for shorting. However, the optimal portfolios
Φi(t) = φi(t,X(t)) in equilibrium do depend on s and α−. Given (t, x), if i
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is not a maximizer, Liv(t, x) < 0 and

φi(t, x) = α−Liv(t, x)

as in (2.5); in particular, agent i holds a short position. In equilibrium, the
aggregate amount held by the most optimistic types is set by the market
clearing condition—they must hold the sum of the exogenous supply and
all amounts shorted. If there is more than one maximizer i, then any dis-
tribution of the available amount (supply plus short positions) over these
maximizers gives an optimal allocation.27

The properties described above for α+ =∞ continue to hold if in addition
α− = 0; i.e., when there is no cost for long positions and short positions are
prohibited. In particular, all but the most optimistic agents hold a flat posi-
tion, and only the most optimistic characteristics play a role in determining
the price. Thus, we retrieve the results of previous models with risk-neutral
agents in this limiting regime.

Remark 3.5. The results for α+ =∞ may be contrasted with the opposite
extreme case where the cost coefficients α+ and α− are equal. Then, the
drift and volatility coefficients

µ := µI =
1

n

n∑
i=1

bi, Σ2 := Σ2
I =

1

n

n∑
i=1

σ2
i

are independent of I and equal to the arithmetic average of the coefficients in
the agents’ models, meaning that all agents contribute equally to the price.
The running cost is κ := κI = s/(nα+). Thus, (2.6) becomes the linear PDE

∂tv +
1

n

n∑
i=1

bi∂xv(t, x) +
1

2n

n∑
i=1

Trσ2
i ∂xxv −

s

nα+
= 0

27See Muhle-Karbe and Nutz (2018) for an analysis of this case when shorting is con-
strained.
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and then by the Feynman–Kac formula, the equilibrium price is

v(t, x) = E

[
f(Xt,x(T ))−

∫ T

t
s(r,Xt,x(r))/(nα+) dr

]
where Xt,x is a diffusion with drift µ, volatility Σ and initial condition
Xt,x(t) = x (cf. Appendix D). That is, the equilibrium price is simply the
expected value of the security under the averaged coefficients of the agents,
minus a cost term related to the supply.

3.2.2 Infinite Cost for Short Positions

We now discuss the limit α− → 0; that is, the cost-of-carry for short positions
tends to infinity.

Proposition 3.6. As α− → 0, the function vα−,α+ converges to the unique
solution v0,α+ ∈ C1,2

b of the PDE

∂tv + sup
∅6=J⊆{1,...,n}

(
1
|J |

∑
i∈J

bi∂xv + 1
2 Tr 1

|J |

∑
i∈J

σ2
i ∂xxv −

s

|J |α+

)
= 0 (3.2)

with terminal condition v(T, x) = f(x). In the special case where s = 0, this
PDE coincides with (3.1) and in particular the solution v0,α+ = v∞ is inde-
pendent of α+. The convergence is locally uniform in (t, x), and monotone
increasing if α− ↓ 0.

The limiting model that arises in Proposition 3.6 corresponds to a pro-
hibition of shorting. This model has a unique equilibrium price function
v := v0,α+ which depends on the supply s and the cost coefficient α+ for
long positions. At every state (t, x), we can think of the types as being
divided into a group J = {i ∈ {1, . . . , n} : Liv(t, x) ≥ 0} of relatively op-
timistic agents and the complement Jc of pessimists. We have J 6= ∅ by
market clearing. While the agents in J hold positions α+Liv(t, x) of dif-
ferent magnitude depending on how optimistic they are, the entire group
J determines the price. Agents in Jc, however, hold zero units and their
precise characteristics do not enter the formation of the price. For instance,
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if we replace a pessimistic type i ∈ Jc by an even more pessimistic type, the
equilibrium price will not change.

4 Speculation

In this section we highlight the impact of non-linear costs-of-carry and short-
selling on the pricing mechanism by comparing the above “dynamic” equi-
librium price at time t = 0 with a “static” equilibrium price; that is, an
equilibrium without speculation. We shall see that, as in previous models,
the dynamic price dominates the static price when cost-of-carry and short-
selling are removed from our model. This can be attributed to the resale
option. However, we show that the cost-of-carry (i.e., risk aversion) gives
rise to a delay option that may act in opposition to the resale option and
reverse the order of the prices in extreme cases—even if short-selling is pro-
hibited. Moreover, we illustrate that the possibility of short-selling tends
to depress the dynamic price as it gives rise to a repurchase option for pes-
simists.

4.1 Equilibrium without Speculation

Consider a situation where trading occurs only at the initial time t = 0;
that is, agents are forced to use buy-and-hold strategies and speculation is
ruled out. The agents use the same models Qi for the dynamics (2.1) of the
state process X and maximize the same expected net payoff (2.3). However,
the admissible portfolios Φ are restricted to be constant, and we will use
the letter q to denote a generic portfolio. This market can only clear if the
exogenous supply S ≡ s is constant, so we restrict our attention to that
case. A static equilibrium price is defined like the dynamic equilibrium price
above, except that we only look for a constant psta ∈ R at time t = 0 at
which the trading happens.

Proposition 4.1. (i) There exists a unique static equilibrium price and it

22



is given by

psta = max
I⊆{1,...,n}

(
α−

|I|α−+|Ic|α+

∑
i∈I

ei + α+

|I|α−+|Ic|α+

∑
i∈Ic

ei − sT
|I|α−+|Ic|α+

)
,

(4.1)
where ei = Ei[f(X(T ))]. The corresponding optimal static portfolios are
unique and given by

qi = αsign(ei−psta)T
−1(ei − psta). (4.2)

The formula for the static price is the direct analogue of the PDE (2.6)
for the dynamic price. Indeed, the PDE considers the difference between
a weighted average of instantaneous holding premia and the instantaneous
marginal cost of carrying positions. Formula (4.1) can be read in the same
way, after bringing psta to the right-hand side: it considers the difference
between the weighted average of the holding premia ei−psta = Ei[f(X(T ))]−
psta over the whole interval and the marginal cost of carrying positions over
that same interval. Informally, we may think of the PDE as describing a
repeated version of the static problem over infinitesimal intervals.

In parallel with our analysis above, we can consider limiting cases for the
cost coefficients in the static case. We denote by pα−,α+

sta the static equilibrium
price for cost parameters α−, α+ and initial value X(0) = x as given by (4.1).

Proposition 4.2. (i) In the limit α+ →∞ with zero cost for long positions,
the price pα−,α+

sta converges to

p∞sta = max
i∈{1,...,n}

Ei[f(X(T ))]. (4.3)

(ii) In the limit α− → 0 with infinite cost for short positions, the price pα−,α+
sta

converges to

p
0,α+
sta = max

∅6=J⊆{1,...,n}

(
1
|J |

∑
i∈J

Ei[f(X(T ))]− sT

|J |α+

)
. (4.4)

The intuition is the same as in Section 3.2. Without a cost for holding
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long positions, optimists are indifferent with respect to nonnegative portfolios
and the price is solely determined by the most optimistic agents. Whereas
when shorting is ruled out, the price is determined as an average over a group
of relatively more optimistic agents while the complementary group of more
pessimistic agents does not influence the price directly. We omit the proof
of Proposition 4.3 since it is analogous to Section 3.2.

4.2 Resale and Delay Options

Next, we compare the dynamic equilibrium price pdyn := P (0) at time t = 0

with the static equilibrium price psta. For the latter to be well-defined, we
assume throughout that the supply s is constant. We discuss two options
that are present under dynamic trading and are valued by agents—the resale
and delay options—and the effect on prices of eliminating these options by
forcing agents to trade only at time zero. In particular, we shall see that the
ordering of pdyn and psta may be different than in the earlier models.

Previous papers, starting with Harrison and Kreps (1978), considered
models with risk-neutral agents that face a constant marginal cost-of-carry
for long positions (the interest rate) and cannot sell short. In such models, it
is known that the dynamic equilibrium price exceeds the static one, and the
difference is attributed to the “resale option.” The possibility of reselling the
asset increases the price—agents may want to buy today in order to resell to
agents that are more optimistic tomorrow. In these “classical” models, agents
may also plan to buy additional units of the asset in some future states of
the world. This possibility however does not alter the ranking between the
dynamic and static equilibrium prices. Indeed, since agents are risk-neutral
and the marginal cost of carrying a long position is independent of the size of
the position, we may assume generically that only one type i would acquire
the asset in the static equilibrium and pay its marginal valuation at time
zero. When re-trading is allowed, i’s marginal valuation for holding the
full supply of the asset at time zero is at least as large, since an agent can
always choose a buy-and-hold strategy. As the market price must exceed the
marginal valuation of any type, the dynamic equilibrium price must exceed
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the static equilibrium price.
The next two results confirm this intuition by showing how this mecha-

nism carries over to limiting cases of our model. First, we show that when
the marginal cost of long positions is constant, the dynamic price exceeds the
static one. This holds even when shorting is allowed, because in this extreme
case, only the most optimistic agents contribute to the price formation, just
like in the classical models (see also Propositions 3.4 and 4.2).

Proposition 4.3. In the limit α+ → ∞, the dynamic equilibrium price
dominates the static price: p∞dyn ≥ p∞sta.

Next, we show that if short-sales are prohibited and if in the static equi-
librium only one type holds the asset,28 the dynamic equilibrium price again
exceeds the static price, even when longs face an increasing marginal cost-
of-carry.

Proposition 4.4. In the limit α− → 0 with no short-selling, suppose type
i holds the entire market in the static equilibrium; that is, qj = 0 for j 6= i.
Then, the dynamic equilibrium price dominates the static price: p

0,α+

dyn ≥
p

0,α+
sta .

We now turn to the case when both marginals costs are increasing and fi-
nite. Here, the same options to resell and to delay are present, but the effects
are more subtle. The option to delay now affects equilibrium prices because
the marginal valuation of buyers varies with the size of their position. More
importantly, trading may occur in the dynamic equilibrium even though one
type remains the most optimistic. Indeed, in the classical models (and the
limiting model of Proposition 3.4) the most optimistic type always holds the
full supply and trading requires that relative optimism changes sign. When
the marginal cost-of-carry for long positions is increasing, the magnitude
of relative optimism determines equilibrium holdings—it is no longer true
that a less optimistic type would always hold a non-positive amount. Exam-
ple 4.6 below illustrates that the delay option may have an important impact
on prices and even reverse the ordering of dynamic and static prices.

28Only one type will hold the asset if that type is sufficiently more optimistic than the
others and the supply is small enough.
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If shorting is allowed, buying today in order to resell needs to be com-
pared with entering a short position tomorrow. The choice will depend,
among other factors, on the costs-of-carry for long and short positions. The
option to resell a short position—that is, the option to cover shorts—in
turn, decreases the minimum amount pessimists would be willing to receive
for shorting the asset, putting downward pressure on prices. Shorts also
may exercise the option to delay by building up a short position over time.
Example 4.8 below illustrates how the ordering of dynamic and static prices
can be reversed if the cost of shorting is sufficiently low.

Remark 4.5. In the remainder of this section, we use a quadratic payoff
function f to obtain explicit formulas. This violates our assumption that f
is bounded but our results still apply with the appropriate modifications; in
particular, the equilibrium price function v and the admissible portfolios φi
exhibit polynomial growth instead of being bounded. The formulas in our
examples can also be verified by direct calculation.

4.3 Illustrating the Effect of the Delay Option

In this section, we show that the static price may dominate the dynamic
price even when short-selling is prohibited. This cannot be explained with
a resale option; instead, it highlights the delay option. Consider first the
dynamic equilibrium and suppose that type i expects with high probability
that their portfolio Φi(t) will increase over time. If only buy-and-hold strate-
gies are allowed, an agent of type i would consider anticipating the increase
of the portfolio at time t = 0, and if the additional expected gains outweigh
the additional costs-of-carry, the agent would have a higher buy-and-hold
demand at the previous equilibrium price pdyn. Other types may reduce
their positions at the price pdyn, because they are anticipating a decrease in
position or because they are indifferent to the amount they are holding (see
also Example E.2 in the Appendix).

To show that the static price may exceed the dynamic price, even when
short-selling is prohibited (α− = 0), we impose a positive cost for long po-
sitions (α+ = 1) and construct an example where some agents expect to
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increase their positions over time but no agent expects to decrease their
position.29 To obtain explicit formulas despite the nonlinear context, we
consider the limiting case of zero volatility but show later (Proposition 4.7)
that this is indeed the continuous limit for equilibria with small volatility
coefficients σi. In particular, the qualitative conclusions of the example ex-
tend to examples with diffusion risk. The zero-volatility case violates our
assumption of uniformly parabolic coefficients (and indeed v is not smooth
in this example) but the formulas can be verified by direct calculation.

Example 4.6. Consider n = 2 types with volatility coefficients σi = 0 and
constant, opposing drifts

b1 = 1, b2 = −1.

The payoff function is f(y) = y2 and the supply s > 0 is constant. Moreover,
α− = 0 and α+ = 1. Then, as we show in Appendix E, the static equilibrium
price exceeds the dynamic price; more precisely,

psta − pdyn =


T 2, |x| ≤ s/4− T/2,

(s/2− 2|x|)T, s/4− T/2 < |x| < s/4,

0, |x| ≥ s/4.

In the regimes s/4 − T/2 < |x| < s/4 and |x| ≤ s/4 − T/2, at least
one of the types has a dynamic portfolio that is increasing in time. These
agents are exercising the delay option when re-trading is allowed and have
an anticipatory motive when they can only trade at t = 0. A price increase is
necessary to clear the static market, leading to psta > pdyn. In Appendix E
we discuss in detail the asset allocation in all regimes and show how the
delay option explains the difference psta − pdyn.

It remains to prove that the conclusions of the example also hold when
volatilities are small but positive, rather than vanishing.

29Since types disagree, it may indeed happen that all agents expect to increase their
positions over time in the dynamic case, without contradicting the market clearing condi-
tion.
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Proposition 4.7. Consider the setting of Example 4.6 with constant volatil-
ities σ := σ1 = σ2 ≥ 0 and denote the corresponding static and dynamic equi-
librium prices by pσsta and pσdyn, respectively. Then, p

σ
sta ↓ p0

sta and pσdyn ↓ p0
dyn

as σ ↓ 0. As a consequence, we have

pσsta − pσdyn →


T 2, |x| ≤ s/4− T/2,

(s/2− 2|x|)T, s/4− T/2 < |x| < s/4,

0, |x| ≥ s/4.

The above example of the delay option effect should be contrasted with
Proposition 4.3 where we have seen that when there is no cost-of-carry for
long positions (α+ =∞), the dynamic equilibrium price always exceeds the
static one, even if short-selling is possible. Example E.2 illustrates the me-
chanics of the delay option in the latter situation. In Example E.2, pessimists
plan to close their short position over time in the dynamic equilibrium. When
forced to buy-and-hold, they decrease their initial short position; however,
in contrast to Example 4.6, this has no effect on the static price because, as
we have argued, optimists are indifferent to the size of their own position in
the absence of increasing marginal costs.

4.4 Illustrating the Effect of Shorting

The following example illustrates that when shorting is allowed, the static
price may exceed the dynamic price—this is quite natural once we observe the
symmetry between optimists and pessimists in the extreme case α− = α+.
The difference between the dynamic price and the static price has been
identified as the size of the “speculative bubble” in the previous literature.
If we maintain this identification, the example can be used to illustrate how
lowering the cost of shorting can lead not only to a bubble implosion but
even to a negative bubble.

Example 4.8. To facilitate computations, we assume symmetric costs-of-
carry α− = α+ = 1. Consider n = 2 types with constant coefficients bi ∈ R
and σi > 0, and an asset in zero aggregate supply with payoff f(y) = y2.

28



Writing Σ2 := (σ2
1 + σ2

2)/2 and µ := (b1 + b2)/2, the dynamic and static
equilibrium prices at t = 0 for the initial value X(0) = x are

pdyn = x2 + 2xµT + Σ2T +

(
b1 + b2

2

)2

T 2,

psta = x2 + 2xµT + Σ2T +
b21 + b22

2
T 2;

see Appendix F for the calculations. In particular,

pdyn − psta =

[(
b1 + b2

2

)2

− b21 + b22
2

]
T 2 ≤ 0.

The optimal dynamic and static portfolios are given by

φi(t, x) = x(bi − bj) + 1
2(T − t)(b2i − b2j ) + 1

2(σ2
i − σ2

j ),

qi = x(bi − bj) + 1
2T (b2i − b2j ) + 1

2(σ2
i − σ2

j ),

where j = 2 if i = 1 and vice versa; in particular, the demands at t = 0

coincide. In the special case b1 = b2 where all agents agree on the drift, we
have pdyn = psta and the demands coincide at all times. Whenever b1 6= b2, a
continuity result similar to the results established in Section 3.2 guarantees
that pdyn < psta for cost parameters close to α− = α+ = 1.

To obtain some intuition for this example, consider the case were σ1 = σ2,

b1 > 0 and b2 = 0. Then if x > 0, type 1 is long and type 2 is short
when re-trading is allowed. Notice that an agent who is short expects on
average to cover some of her shorts in the future. When re-trading is ruled
out, she prefers to cut her short position at time zero. This would place
upward pressure on the static price. The long party also expects to reduce
his position if X(t) would stay constant, but because b1 > 0, he expects
the state X(t) to grow, thus dampening his need to anticipate the reduction
when re-trading is ruled out. In other words, the long party values the resale
option less than the short party values the repurchase option. As a result,
the static market presents excess demand at price pdyn and thus the static
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price must rise to clear the market.

5 A Planner with Limited Instruments

In this section we show that our equilibrium can be explained through a
planner’s problem which sheds light on the PDE for the equilibrium in The-
orem 2.1. We first explain why this requires a planner with limited instru-
ments. Consider a planner that can allocate the supply arbitrarily across
types at any time and state. In addition, she can make arbitrary lump-
sum numeraire transfers θi(T, ω) to agents of type i = 1, . . . , n as well as
a transfer θ0(T, ω) to the agents that are originally endowed with the sup-
ply provided these transfers add up to zero. Criterion (2.3) implies that
the traders’ utility functions are separable and linear in numeraire transfers.
Hence the convexity of the cost function for holding assets guarantees that
the supply is equally distributed across types in any Pareto optimum; i.e.,
yi(t, x) = s(t,x)

n . This property of the asset allocation holds in the equilibrium
of Theorem 2.1 when traders have homogeneous beliefs (Q1 = · · · = Qn).
In this case, it is clear that the equilibrium allocation is actually a Pareto
optimum; the functional form of the utility function compensates for the lack
of complete markets. However, this optimality does not hold when traders
are heterogeneous and hold different asset positions in equilibrium: gambling
using the asset has real costs and a social planner would like to rule them
out. This general non-optimality of our equilibrium also holds if we use the
“belief neutral” Pareto inefficiency criteria in Brunnermeier et al. (2014).

Although our equilibrium is not Pareto optimal, we can characterize the
equilibrium price as the optimal value for a planner with limited instruments
and the equilibrium allocations as the associated allocations induced by this
planner. Consider a planner that can use two instruments. The first is to
assign “total cost coefficients” αi(t, x) ∈ [α−, α+] for each type i at each date
and state (t, x). If agent i decides to go short y units, she will be subsidized
so that her effective cost is ci(t, x, y) = 1

2αi(t,x)y
2, whereas if she goes long,

she will be taxed to have the same effective cost. The second instrument
is to give lump-sum numeraire subsidies or charge lump-sum taxes θi(T, ω),
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i = 1, . . . , n to each type. The planner must break even so that any aggregate
taxes collected must equal the net subsidies provided.

Given the assigned cost coefficients and lump-sum transfers, agents choose
asset positions taking prices as given and the market settles on prices that
equilibrate supply and demand. Since the objective function is separable
in the numeraire, the optimal positions are independent of the lump-sum
transfers: agent i maximizes the expected net payoff Ei

[ ∫ T
0 Φ(t) dP (t) −∫ T

0 ci(t,X(t),Φ(t)) dt
]
from trading which is analogous to (2.3) except that

the cost is now given by ci. Recall that I∗ denotes the group of agents who
go short in the equilibrium of Theorem 2.1; cf. (2.10).

Theorem 5.1. (i) For any sufficiently regular 30 assignment α = (α1, . . . , αn)

of the planner, there exists a unique equilibrium with a price function vα ∈
C1,2
b . This function can be characterized by a linear PDE and by a Feynman–

Kac representation; cf. (F.12) and (F.13) in the Appendix.
(ii) The planner can maximize the initial price by choosing αi(t, x) = α−

when i ∈ I∗(t, x) and αi(t, x) = α+ when i ∈ Ic∗(t, x). Under this assign-
ment, the price and the asset allocation coincide with the equilibrium of The-
orem 2.1. Agents assigned α+ choose to go long and agents assigned α−

choose to go short, so that no taxes, subsidies or transfers are collected.

This theorem states that a planner facing the constraint αi ∈ [α−, α+] on
the total cost coefficients and who wishes to maximize the initial price of the
asset31 would assign αi = α− to the agents that in our original equilibrium
choose to go short and α+ to the remaining agents. Given the assignment,
equilibrium prices will be identical to the ones obtained in our original equi-
librium. This confirms the intuition from Proposition 3.2 which states that
the price is increased if costs for optimists (longs) are reduced and costs for
pessimists (shorts) are increased: within the constraint, this allocation is the
most favorable for the optimists and the least favorable for the pessimists. If
the planner were not constrained to the interval [α−, α+], she could typically

30See Section F.4 in the Appendix for further details. In particular, the assignment
defined in (ii) is sufficiently regular in this sense.

31Or, when s > 0, maximize the welfare of the initial asset holders.
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attain an even higher initial price: she would put a tax on the pessimists
and subsidize the optimists. In fact, Example 5.3 below shows that unless
the planner is constrained to [α−, α+], she can make all agents, including
the initial asset holders, better off.

We show in the proof that the assertion of the theorem holds not only
for the initial price but also for the price v(t, x) at any time and state: the
planner is time-consistent ; there is no need for a commitment device.

Remark 5.2. The planner’s problem helps explain the PDE for the equi-
librium in Theorem 2.1. Indeed, (2.6) can be seen as a supremum of linear
PDEs parametrized by the groups I. The linear PDE for a fixed group I is
exactly the equation for the equilibrium price vα resulting from the assign-
ment given by αi = α− when i ∈ I and α∗i = α− when i ∈ Ic. Thus, (2.6)
can be understood as an optimization over assignments of α− and α+ to the
different types.

The following example shows that without the constraint αi ∈ [α−, α+],
the planner may be able to improve the utility of all agents relative to the
equilibrium utility.

Example 5.3. Consider n = 2 types in a market with constant supply
s = 0. The equilibrium portfolios satisfy φ1 = −φ2 by market clearing,
and we may assume that they are not identically equal to zero. The precise
views and costs are not important for this example; for instance, we can take
b1 = −b2 > 0, σ1 = σ2 > 0 and α := α+ = α− > 0.

Consider a planner who can charge a tax on all types so that the agents
face an effective cost coefficient α̃ = α/2. It follows from Remark 2.2 that
the equilibrium price is unaffected by this symmetric scaling: ṽ = v. In
particular, the portfolios are related by φ̃i = α̃Liṽ = (α/2)Liv = φi/2. As a
consequence, the trading gains of type i, Xi =

∫ T
0 Φi(t) dP (t), become X̃i =

Xi/2 in the new equilibrium. Moreover, as c̃(φ̃i) = 1
2α̃ φ̃

2
i = 1

2
1

2αφ
2
i = c(φi)/2,

the holding costs are also cut by half. As φ1 = −φ2, have thatX1 = −X2 and
X̃1 = −X̃2; in particular, the difference ∆i = Xi − X̃i satisfies ∆1 = −∆2.
As a result, the planner can transfer ∆i to agent i at a zero net cost. After
taking this transfer into account, the utility of both types is increased since
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the total gains are the same as before but the holding costs are cut by half.
Moreover, the planner is left with the revenue from the taxes. She may, e.g.,
distribute the revenue to the agents as an additional lump sum.

Using a continuity argument, a similar example can be constructed with
a supply s > 0. Then, the planner may distribute some of the revenue to the
agents initially endowed with the supply to ensure that their utility is also
increased.

6 Conclusion

In this paper we considered a continuous-time model of trading among risk-
neutral agents with heterogeneous beliefs. Agents face quadratic costs-of-
carry and as a consequence, their marginal valuation of the asset decreases
when the magnitude of their position increases, as it would be the case
for risk-averse agents. In previous models of heterogeneous beliefs, it was
assumed that agents face a constant marginal cost-of-carry for a positive
position and an infinite cost for a negative position. As a result, buyers
benefit from a resale option and are willing to pay for an asset in excess
of their own valuation of the dividends of that asset. Moreover, the supply
does not affect the equilibrium price. We show that when buyers face an
increasing marginal cost-of-carry, in equilibrium, they may also value an
option to delay. We illustrate with an example that even when shorting is
impossible, this delay option may cause the market to equilibrate below the
price that would prevail if agents were restricted to buy-and-hold strategies.
Moreover, we introduce the possibility of short-selling and show how this
gives pessimists the analogous options. In our model, the price depends on
the supply.

We characterize the unique equilibrium of our model as the solution to
a Hamilton–Jacobi–Bellman of a novel form and use this to derive several
comparative statics: the price decreases with an increase in the supply of
the asset, with an increase in the cost of carrying long positions, and with
a decrease in the cost of carrying short positions. The conclusions of earlier
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models are shown to hold in a limiting case of the model when the quadratic
cost-of-carry for long positions converges to zero. An example shows that a
decrease in the cost of shorting and the consequent increase in the supply of
shorts can deflate the bubble.

In our model the demand for the asset is satisfied by the sum of two
components—the exogenous supply and the short positions of the market
participants. While the shorts are determined endogenously, supply is inde-
pendent of the current price and the beliefs of agents. The data in Cordell
et al. (2011) suggests that shorting played the overwhelming role in pricking
the CDO bubble, but there are other episodes, such as the internet bubble,
where investments in projects underlying the asset-class and sales by insiders
played an important role in satisfying the demand by optimists. For such
episodes one would need to supplement the theory in this paper with an
equilibrium model of supply.

Critics have indicted synthetic CDOs for the inordinate damage created
by the subprime implosion, but it is not obvious what would have happened
if synthetics had not been created. The spreads in the “safe” tranches of cash
CDOs would have been even more compressed. More ominously, the numbers
reported in Cordell et al. (2011) suggest that generating the amount of BBB
Home Equity bonds referenced in the synthetic CDOs would have required
making an additional 2.5 trillion dollars of subprime mortgage loans. This
would have probably resulted in substantially more new house construction
and mortgage defaults. The model in this paper suggests that if a mechanism
for shorting BBB HE bonds and CDO tranches had been created earlier, the
subprime bubble would have been smaller.

A Adding Linear Costs

In this section, we generalize the cost-of-carry by adding linear terms and
discuss the corresponding changes in our main results. Broadly speaking,
the generalized model does not alter the economic conclusions.
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Indeed, let

c(y) =

 1
2α+

y2 + β+y, y ≥ 0,

1
2α−

y2 + β−|y|, y < 0,
(A.1)

where β−, β+ ≥ 0 are constants; as discussed in the Introduction, the main
case of interest is β− > 0 and β+ = 0. While this cost function is still strictly
convex, it fails to be differentiable at y = 0 unless β− = β+ = 0.

Following the proof of Lemma F.2, the optimal portfolio (F.1) then be-
comes

φi(t, x) =


α+(Liv(t, x)− β+), Liv(t, x) ≥ β+,

α−(Liv(t, x) + β−), Liv(t, x) ≤ −β−,

0, else.

(A.2)

That is, there is an interval [−β−, β+] of values of Liv(t, x) where it is optimal
to have a zero position, due to the kink in the function c.

The main PDE (2.6) needs to be adapted correspondingly. Indeed, in-
stead of considering only the group I of agents holding a short position, we
now need to distinguish a group J of agents holding a (strict) long position—
the group J may be smaller than the complement Ic. More precisely, the
generalized PDE (2.6) reads as follows (the proof is analogous to Theo-
rem 2.1).

Theorem A.1. The unique equilibrium price function v ∈ C1,2
b can be char-

acterized as the unique solution of the PDE

∂tv(t, x)+ sup
I∩J=∅

(
µI,J(t, x)∂xv(t, x)+1

2 Tr Σ2
I,J(t, x)∂xxv(t, x)−κI,J(t, x)

)
= 0

(A.3)
on [0, T )× Rd with terminal condition v(T, x) = f(x), where the supremum
is taken over all disjoint subsets I, J ⊆ {1, . . . , n} and the coefficients are
defined as

µI,J(t, x) = α−
|I|α−+|J |α+

∑
i∈I

bi(t, x) + α+

|I|α−+|J |α+

∑
i∈J

bi(t, x),
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Σ2
I,J(t, x) = α−

|I|α−+|J |α+

∑
i∈I

σ2
i (t, x) + α+

|I|α−+|J |α+

∑
i∈J

σ2
i (t, x),

κI,J(t, x) =
s(t, x)− |I|α−β− + |J |α+β+

|I|α− + |J |α+
.

In particular, the additional constants β−, β+ enter only through the
running cost κI,J . It follows that the results on the comparative statics
in Propositions 3.1 and 3.2 remain valid; in addition, the equilibrium price
function v is increasing with respect to β− and decreasing with respect to β+.

In the limiting case of zero cost for long positions, we now need to send
α+ →∞ and β+ → 0. Then, the result of Proposition 3.4 is unchanged; i.e.,
the limiting equilibrium price function is the solution of

∂tv + sup
i∈{1,...,n}

(
bi∂xv + 1

2 Trσ2
i ∂xxv

)
= 0.

On the other hand, for the limit α− → 0 of infinite cost for shorting, the re-
sult of Proposition 3.6 changes slightly because the long positions are subject
to β+ which becomes an additional running cost in the limiting equation

∂tv + sup
∅6=J⊆{1,...,n}

(
1
|J |

∑
i∈J

bi∂xv + 1
2 Tr 1

|J |

∑
i∈J

σ2
i ∂xxv −

s

|J |α+
− β+

)
= 0.

The results for the static equilibrium problem can be generalized with anal-
ogous changes.

B Heterogeneous Costs

In this section, we show how the equilibrium of Theorem 2.1 changes if the
cost coefficients α−, α+ depend on the type rather than being the same for all
agents. We write αi−, αi+ for the coefficients of type i. The following result
shows that while the structure of the equilibrium remains similar, agents
with lower costs have a larger influence on the coefficients of the PDE that
determines the equilibrium price.
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Theorem B.1. The unique equilibrium price function v ∈ C1,2
b can be char-

acterized as the unique solution of the PDE (2.6) with coefficients

µI(t, x) =
1∑

i∈I α
i
− +

∑
i∈Ic α

i
+

(∑
i∈I

αi−bi(t, x) +
∑
i∈Ic

αi+bi(t, x)

)
,

Σ2
I(t, x) =

1∑
i∈I α

i
− +

∑
i∈Ic α

i
+

(∑
i∈I

αi−σ
2
i (t, x) +

∑
i∈Ic

αi+σ
2
i (t, x)

)
,

κI(t, x) =
s(t, x)∑

i∈I α
i
− +

∑
i∈Ic α

i
+

.

The proof is analogous to Theorem 2.1. As in Lemma F.2, the optimal
portfolios are given by αi±Liv(t, x). Thus, as expected, types with lower
costs hold larger positions.

C Quadratic Costs on Values of Positions

In this section, we briefly explain what changes if costs are quadratic in the
monetary value of the portfolio rather than the size; i.e., the instantaneous
cost-of carry is

c(P (t)Φ(t)) instead of c(Φ(t))

where c is quadratic as in (2.2). If the price P (t) becomes zero, these costs
become zero which leads to infinite demands by the agents and thus to non-
existence of equilibria. Therefore, this discussion pertains to assets with a
strictly positive price.

Similarly as in Lemma F.2 we can derive the first-order condition of
optimality for the portfolio function φi of agent i as

φi(t, x) =
αsign(Liv(t,x))

v(t, x)2
Liv(t, x),

a similar expression as in Lemma F.2 except for the additional division by v2.
Using market clearing as in the proof of Theorem 2.1 then produces a PDE
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where the term κI of (2.9) receives an additional factor v2. This new term
can no longer be interpreted as a running cost and in general, the PDE
cannot be written as an HJB equation similar to (2.6) because in such an
equation the maximization is necessarily carried out over terms which are
linear in the v-variable. Thus, we do not expect to have an interpretation
of equilibria through a stochastic control problem or a social planner. A
remarkable exception is κI ≡ 0 which occurs in the case of zero net supply.
Then, the PDE is exactly the same as (2.6) and hence the equilibrium price
is also the same. The actual portfolios of the agents are not identical, but
they only differ by the factor v2. (To ensure a priori that equilibrium prices
are positive, it suffices to assume that the payoff f is positive and bounded
away from zero. The comparison principle then shows that prices remain
bounded away from zero at all times.)

D Optimal Control Representation

The PDE (2.6) is the Hamilton–Jacobi–Bellman equation of a stochastic op-
timal control problem where the controller can choose a subset I ⊆ {1, . . . , n}
at any time and state, and that choice determines the instantaneous drift
and volatility coefficients µI and ΣI as well as the running cost κI .

To formulate this problem precisely, consider a filtered probability space
carrying a d′-dimensional Brownian motion W and let Θ be the collection
of all (progressively measurable) processes I with values in the family of all
subsets of {1, . . . , n}.32 For each I ∈ Θ, let Xt,x

I (r), r ∈ [t, T ] be the solution
of the SDE

dX(r) = µI(r)(r,X(r)) dr + ΣI(r)(r,X(r)) dW (r), X(t) = x (D.1)

on the time interval [t, T ]. It follows from the assumptions on the coefficients
bi, σi that this SDE with random coefficients has a unique strong solution.33

32While this collection of control processes appears somewhat non-standard, there is no
difficulty involved in defining it—this family of subsets is simply a discrete set with 2n

elements; it can be identified with {0, 1}n.
33The coefficients µI and ΣI may be quite irregular as stochastic processes but the
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Therefore, we may consider the control problem

V (t, x) = sup
I∈Θ

E

[
f(Xt,x

I (T ))−
∫ T

t
κI(r)(r,X

t,x
I (r)) dr

]
(D.2)

for (t, x) ∈ [0, T ]× Rd, which gives rise to a second characterization for the
equilibrium price function v.

Proposition D.1. The equilibrium price function v from Theorem 2.1 co-
incides with the value function V of (D.2). Moreover, an optimal control
for (D.2) is given by I∗(t) = I∗(t,X(t)), where, as in (2.10),

I∗(t, x) = {i ∈ {1, . . . , n} : Liv(t, x) < 0}. (D.3)

Proof. By Theorem 2.1, the function v ∈ C1,2
b is a solution of the PDE (2.6)

which is the Hamilton–Jacobi–Bellman equation of the control problem (D.2).
Moreover, I∗(t, x) maximizes the Hamiltonian as noted after (F.4). Thus,
the verification theorem of stochastic control, cf. (Fleming and Soner, 2006,
Theorem IV.3.1, p. 157), shows that v is the value function and I∗ is an
optimal control.

E Examples

In this section we discuss two examples in more detail. The calculations are
carried out in Appendix F, together with the rest of the proofs.

The first example, already outlined in Example 4.6, shows that the static
price may exceed the dynamic price, even when short-selling is prohibited.

Example E.1. Consider n = 2 types with volatility coefficients σi = 0 and
constant, opposing drifts

b1 = 1, b2 = −1.

dependence with respect to the x-variable is Lipschitz continuous. See (Krylov, 1980,
Theorem 2.5.7, p. 82) for a general result on existence and uniqueness under Lipschitz
conditions.
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The payoff function is f(y) = y2 and the supply s > 0 is constant. Moreover,
α− = 0 and α+ = 1. Then, the dynamic equilibrium price is

pdyn =

x2 − sT/2, |x|+ T/2 ≤ s/4,

(|x|+ T )2 − sT, |x|+ T/2 > s/4,

and corresponding optimal portfolios in feedback form are given by

φ1(t, x) =


0, |x|+ (T − t)/2 > s/4, x < 0,

s/2 + 2x, |x|+ (T − t)/2 ≤ s/4,

s, |x|+ (T − t)/2 > s/4, x > 0,

φ2(t, x) =


s, |x|+ (T − t)/2 > s/4, x < 0,

s/2− 2x, |x|+ (T − t)/2 ≤ s/4,

0, |x|+ (T − t)/2 > s/4, x > 0.

The static equilibrium price is

psta =

x2 + T 2 − sT/2, |x| ≤ s/4,

x2 + T 2 + 2|x|T − sT, |x| > s/4,

and corresponding optimal portfolios are given by

q1 =


0, x < −s/4,

s/2 + 2x, |x| ≤ s/4,

s, x > s/4,

q2 =


s, x < −s/4,

s/2− 2x, |x| ≤ s/4,

0, x > s/4.

The static equilibrium price exceeds the dynamic price; more precisely,

psta − pdyn =


T 2, |x| ≤ s/4− T/2,

(s/2− 2|x|)T, s/4− T/2 < |x| < s/4,

0, |x| ≥ s/4.
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Next, we discuss in more detail how the delay option effect explains the
difference psta−pdyn in this example. To that end, it will be useful to record
the portfolios as expected by the agents: since X(t) = x + bit Qi-a.s. and
Φi(t) = φi(t,X(t)), we have

Q1-a.s., Φ1(t) =


0, |x+ t|+ (T − t)/2 > s/4, x+ t < 0,

s/2 + 2t+ 2x, |x+ t|+ (T − t)/2 ≤ s/4,

s, |x+ t|+ (T − t)/2 > s/4, x+ t > 0,

Q2-a.s., Φ2(t) =


s, |x− t|+ (T − t)/2 > s/4, x− t < 0,

s/2 + 2t− 2x, |x− t|+ (T − t)/2 ≤ s/4,

0, |x− t|+ (T − t)/2 > s/4, x− t > 0.

Below, we abuse this notation and simply write Φ1(t) and Φ2(t) for the ex-
pressions on the right hand side. We consider various intervals for the initial
value x; by symmetry, we may focus on x ≥ 0 without loss of generality. We
also assume that s > T , mainly to avoid distinguishing even more cases.

Case 1: x ≥ s/4 + T . In this regime, the expected dynamic portfolios
Φ1 and Φ2 are constant, and thus the delay option is never exercised. The
static portfolios coincide with their initial values, q1 = s = Φ1(0) and q2 =

0 = Φ2(0), and the static and dynamic prices are equal: psta = pdyn.
Case 2: s/4 ≤ x < s/4 + T . As before, q1 = s = Φ1(0) and Φ1 is

constant. However, Φ2(t) equals zero initially but may become positive for
t close to T (for suitable parameter values). Nevertheless, type 2 does not
choose to anticipate her trading in the static case, because the cost-of-carry
outweighs the expected gains—we still have q2 = 0 = Φ2(0) and psta = pdyn.

Case 3: (s/4 − T/2)+ < x < s/4. Once again, Φ1 ≡ s is constant,
Φ2(0) = 0, and Φ2 increases for some t > 0. Furthermore, the increase in
type 2’s position is larger for smaller x. Type 2 now does anticipate some of
that increase in the static case and for this reason pdyn is now too low to be
an equilibrium price. The increase in price changes the optimal portfolio for
agents of type 1. We are in the mixed case where portfolios and prices adjust.
Type 1 decreases his initial position to q1 = s/2+2x < s = Φ1(0) and type 2
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increases her position to q2 = s/2− 2x > 0 = Φ2(0). At the same time, the
static equilibrium price is augmented, psta − pdyn = (2x − s/2)T > 0. As
x decreases from s/4 to s/4 − T/2, this difference increases linearly from 0

to T 2, and the portfolios (q1, q2) change linearly from (s,0) to (s − T, T ).
In summary, the elimination of the delay option in the static case results in
portfolio adjustments and a price increase.

Case 4: 0 ≤ x ≤ s/4 − T/2. In this last regime, both Φ1 and Φ2

are increasing in time, so both types are exercising the delay option when
re-trading is allowed and have an anticipatory motive when they can only
trade at t = 0. The initial dynamic portfolios are Φ1(0) = s/2 + 2x > 0 and
Φ2(0) = s/2 − 2x > 0. Since both types want to anticipate in the static
case, the static price must be higher. More precisely, the aggregate excess
demand at price pdyn equals 2T 2 and thus is independent of x. Since we are
in the region where both types have positive demand, the marginal effect of
an increase in price is −1, for each type. Thus, the price adjustment that is
necessary to clear the static market is exactly T 2 for every value of x in this
region.

The next example illustrates the mechanics of the delay option when
there is no cost-of-carry for long positions: the most optimistic agent holds
the entire market and the dynamic equilibrium price always exceeds the
static one.

Example E.2. Let α+ = ∞ and α− = 1. We consider n = 2 types with
drift coefficients

b1 = 1, b2 = 0

and volatility coefficients σ1 = σ2 = 0. The payoff is f(y) = y2 and the
initial value is x = 0, so that the first type is more optimistic at any time.

As in Proposition 4.2, the static equilibrium price is given by the op-
timist’s expectation e1 = E1[f(X(T ))] = T 2. Following Proposition 3.4,
the same holds for the dynamic price, so that psta = pdyn. The static and
dynamic portfolios of the pessimist are given by

q2 = T−1(e2 − psta) = −T, φ2(t, x) = ∂tv(t, x) = −2(x+ T − t).
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Under Q2, the state process X ≡ 0 is constant, so that Φ2(t) = φ2(t,X(t)) =

−2(T − t) a.s. Thus, the static position q2 = −T anticipates some of the
increase from Φ2(0) = −2T to Φ2(T ) = 0. However, this does not affect
the static equilibrium price because an optimistic agent is indifferent to the
size of her (nonnegative) position—the absence of a cost-of-carry for long
positions allows the portfolios to adjust without affecting the prices.

F Proofs

This appendix collects the proofs for Sections 2–5 and Appendix E.

F.1 Proofs for Section 2

Before proving the main result of Theorem 2.1, we record two lemmas for
later reference. The first one guarantees the passage from almost-sure to
pointwise identities.

Lemma F.1. For all i ∈ {1, . . . , n} and all t ∈ (0, T ], the support of X(t)

under Qi is the full space Rd.

Proof. Recall thatX is the coordinate-mapping process on Ω = C([0, T ],Rd).
Since bi is bounded and σ2

i is uniformly parabolic, the support of Qi in is
the set of all paths ω with ω(0) = x; see (Stroock and Varadhan, 1972,
Theorem 3.1). The claim is a direct consequence.

The second lemma provides an expression for the optimal portfolios.

Lemma F.2. Let v ∈ C1,2
b and consider the (price) process P (t) = v(t,X(t)).

The portfolio defined by Φi(t) = φi(t,X(t)), where

φi(t, x) = αsign(Liv(t,x))Liv(t, x), (F.1)

is the unique34 optimal portfolio for type i.
34We recall that uniqueness is understood up to (Qi × dt)-nullsets.
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Proof. We note that Φi is admissible since v ∈ C1,2
b . Let Φ be any admissible

portfolio. By Itô’s formula,∫ T

0
Φ(t) dP (t)−

∫ T

0
c(Φ(t)) dt =

∫ T

0
{Φ(t)Liv(t,X(t))−c(Φ(t))} dt+Mi(T )

where Mi(T ) is the terminal value of a (true) martingale with vanishing
expectation; recall that σi and ∂xv are bounded. Thus, the expected final
payoff (2.3) is given by

Ei

[∫ T

0
{Φ(t)Liv(t,X(t))− c(Φ(t))} dt

]
.

As a result, Φ is optimal if and only if it maximizes the above integrand (up
to (Qi × dt)-nullsets). The unique maximizer is given by Φi, and the claim
follows.

We can now prove the main result on the pricing PDE.

Proof of Theorem 2.1. (a) We first show that a given equilibrium price func-
tion v ∈ C1,2

b solves the PDE. Since v(T,X(T )) = f(X(T )) Qi-a.s. for all i,
the terminal condition v(T, ·) = f follows from Lemma F.1. At any state
(t, x), we introduce the set

I∗(t, x) = {i ∈ {1, . . . , n} : Liv(t, x) < 0}. (F.2)

Next, we recall the unique optimal portfolios Φi from Lemma F.2. Using
again Lemma F.1, the market clearing condition

∑
i Φi = S can be stated as

α−
∑
i∈I∗

Liv + α+

∑
i∈Ic∗

Liv = s. (F.3)

If i ∈ I∗, then Liv ≤ 0 and α− ≤ α+ implies α−Liv ≥ α+Liv. Conversely, if
i ∈ Ic∗, then Liv ≥ 0 and α+Liv ≥ α−Liv. It follows that the set I∗ of (F.2)
maximizes the left hand side of (F.3) among all subsets I ⊆ {1, . . . , n}. That
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is,

max
I⊆{1,...,n}

(
α−
∑
i∈I
Liv + α+

∑
i∈Ic
Liv − s

)
= 0 (F.4)

and the set I∗ is a maximizer, or equivalently,

max
I⊆{1,...,n}

1
|I|α−+|Ic|α+

(
α−
∑
i∈I
Liv + α+

∑
i∈Ic
Liv − s

)
= 0. (F.5)

After plugging in the definition of Liv and using the definitions of µI , ΣI

and κI in (2.7)–(2.9), this is the desired PDE (2.6).

(b) Conversely, let v ∈ C1,2
b be a solution of the PDE (2.6) with termi-

nal condition f and define Φi, φi as in part (i) of Theorem 2.1. Then, the
terminal condition v(T,X(T )) = f(X(T )) is satisfied and Φi are optimal by
Lemma F.2. Since v is a solution of the equivalent PDE (F.4) and I∗ of (F.2)
is a maximizer, we have that∑

1≤i≤n
φi = α−

∑
i∈I∗

Liv + α+

∑
i∈Ic∗

Liv = s;

that is, the market clears. This shows that v is an equilibrium price function.

(c) Since (a) and (b) established a one-to-one correspondence between
equilibria and solutions of the PDE (2.6) with terminal condition f , it re-
mains to observe that the latter has a unique solution in C1,2

b . Indeed,
existence holds by35 (Krylov, 1987, Theorem 6.4.3, p. 301); the conditions in
the cited theorem can be verified as in (Krylov, 1987, Example 6.1.4, p. 279).

Uniqueness holds by the comparison principle for parabolic PDEs; see
(Fleming and Soner, 2006, Theorem V.9.1, p. 223).

35The gist of this rather technical result is that a second-order parabolic PDE of HJB-
type has a solution in C1,2

b as soon as the second-order term is uniformly parabolic and
all coefficients and boundary conditions are sufficiently smooth and bounded.
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F.2 Proofs for Section 3

We start with the comparative statics for the dependence of the price on the
supply.

Proof of Proposition 3.1. Since the function s enters linearly in the running
cost (2.9) of the control problem (D.2) and nowhere else, it follows imme-
diately that the value function V is monotone decreasing in s, and now the
claim follows from Proposition D.1.

Next, we consider the dependence on the cost coefficients.

Proof of Proposition 3.2 and Remark 3.3. Let α− ≤ α+ and α′− ≤ α′+ be
two pairs of cost coefficients and let v and v′ be the corresponding equilibrium
price functions. Let I∗ be the optimal feedback control for α± as defined
in (F.2), then by (F.4) we have

α−
∑
i∈I∗

Liv + α+

∑
i∈Ic∗

Liv − s = 0.

If α′− ≤ α− and α′+ ≥ α+, then
∑

i∈I∗ L
iv ≤ 0 and

∑
i∈Ic∗ L

iv ≥ 0 yield that

α′−
∑
i∈I∗

Liv + α′+
∑
i∈Ic∗

Liv − s ≥ 0.

In the special case where s ≡ 0, this conclusion also holds under the weaker
condition that α+/α− ≤ α′+/α

′
−, which covers the case (iii), and the same

holds under the conditions of Remark 3.3. It then follows that

max
I⊆{1,...,n}

(
α′−
∑
i∈I
Liv + α′+

∑
i∈Ic
Liv − s

)
≥ 0,

which is a version of (F.4) with inequality instead of equality, for the coeffi-
cients α′±. Following the same steps as after (F.4), we deduce that

∂tv + sup
I⊆{1,...,n}

(
µ′I∂xv + 1

2 Tr Σ
′2
I ∂xxv − κ′I

)
≥ 0,
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where µ′I ,Σ
′
I , κ
′
I are defined as in (2.7)–(2.9) but with α′± instead of α±.

In other words, v is a subsolution36 of the PDE satisfied by v′. As v and
v′ satisfy the same terminal condition f , the comparison principle (Fleming
and Soner, 2006, Theorem V.9.1, p. 223) implies that v ≤ v′.

We continue with our result on the limit α+ →∞.

Proof of Proposition 3.4. We first notice that since s ≥ 0, the optimal set I∗
of (F.2) for the Hamiltonian of the PDE (2.6) must satisfy |I∗| < n due to
the market clearing condition—at least one agent has to hold a nonnegative
position. As a result, the PDE (2.6) remains the same if the supremum is
taken only over sets I with |Ic| > 0.

Taking that into account, the limiting PDE for (2.6) as α+ →∞ is

∂tv + sup
∅6=J⊆{1,...,n}

1
|J |

∑
i∈J

(
bi∂xv + 1

2 Trσ2
i ∂xxv

)
= 0. (F.6)

Notice that given a set of real numbers, the largest average over a subset is
in fact equal to the largest number in the set. As a result, (F.6) coincides
with (3.1). Using again (Krylov, 1987, Theorem 6.4.3, p. 301) and (Fleming
and Soner, 2006, Theorem V.9.1, p. 223), this equation has a unique solution
v∞ ∈ C1,2

b for the terminal condition f , and the solution is independent of
α− and s since these quantities do not appear in (3.1).

To see that vα−,α+(t, x) → v∞(t, x), one can apply a PDE technique
called the Barles–Perthame procedure to the equations under consideration;
see (Fleming and Soner, 2006, Section VII.3). Alternately, and to give a
more concise proof, we may use the representation (D.2) of vα−,α+ as a value
function as well as the corresponding representation for v∞. Then, a result
on the stability of value functions, cf. (Krylov, 1980, Corollary 3.1.13, p. 138),
shows that vα−,α+ → v∞ locally uniformly; that is,

sup
(t,x)∈[0,T ]×K

|vα−,α+(t, x)− v∞(t, x)| → 0

36Note that the sign convention chosen here is opposite to the one of Fleming and Soner
(2006), so that a subsolution corresponds to the inequality ≥ 0 in the PDE.
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for any compact set K ⊆ Rd. The monotonicity property of the limit follows
from Proposition 3.2.

Finally, we turn to the limit α− → 0.

Proof of Proposition 3.6. The arguments are similar to the ones for Propo-
sition 3.4. In this case, the limiting PDE for (2.6) as α− → 0 is (3.2). As
in the proof of Proposition 3.4 we have that the limiting PDE has a unique
solution v0,α+ ∈ C1,2

b and vα−,α+(t, x) → v0,α+(t, x) locally uniformly, with
monotonicity in α−. In the special case where s = 0, the PDE (3.2) coincides
with (F.6), and thus with (3.1) as shown in the proof of Proposition 3.4.

F.3 Proofs for Section 4 and Appendix E

We first prove our formula for the static equilibrium price.

Proof of Proposition 4.1. We set ei = Ei[f(X(T ))]. Given any price p, the
expected net payoff for agent i using portfolio q is

q(ei − p)− T
2αsign(q)

q2

and the unique maximizer is qi = αsign(ei−p)T
−1(ei − p) as stated in (4.2).

Let p be a static equilibrium price. Setting I∗ = {i ∈ {1, . . . , n} : ei < p},
the market clearing condition

∑
i qi = s for these optimal portfolios yields

α−
∑
i∈I∗

(ei − p) + α+

∑
i∈Ic∗

(ei − p) = sT (F.7)

and we observe that I∗ maximizes the left hand side; that is,

max
I⊆{1,...,n}

(
α−
∑
i∈I

(ei − p) + α+

∑
i∈Ic

(ei − p)− sT

)
= 0.

This is equivalent to the claimed representation (4.1) for p.
Conversely, define p by (4.1) and qi by (4.2), then qi is optimal for agent i

as mentioned in the beginning of the proof. Moreover, reversing the above,
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p satisfies (F.7) and thus

n∑
i=1

qi = α−
∑
i∈I∗

T−1(ei − p) + α+

∑
i∈Ic∗

T−1(ei − p) = s,

establishing market clearing.

We can now deduce the formulas for the limiting cases of the static equi-
librium.

Proof of Proposition 4.2. Formula (4.3) follows by taking the limit α+ →∞
in (4.1). Similarly, (4.4) is obtained by taking the limit α− → 0 in (4.1).

Next, we show that in the limit α+ →∞ with no cost on long positions,
the dynamic price exceeds the static one.

Proof of Proposition 4.3. By the formula (4.3) for p∞sta, it suffices to verify
that Ei[f(X(T ))] ≤ p∞dyn for fixed i ∈ {1, . . . , n}. Indeed, let u = ui ∈ C1,2

b

be the unique solution of

∂tu+ bi∂xu+ 1
2 Trσ2

i ∂xxu = 0, u(T, ·) = f.

Then, by the Feynman–Kac formula (Karatzas and Shreve, 1991, Theo-
rem 5.7.6, p. 366), we have u(0, x) = Ei[f(X(T ))]. Moreover, u is clearly
a subsolution of the PDE (3.1) for v∞, and now the comparison principle
(Fleming and Soner, 2006, Theorem V.9.1, p. 223) yields that Ei[f(X(T ))] =

u(0, x) ≤ v∞(0, x) = p∞dyn as claimed.

In what follows, we show that in the limit α− → 0 where short-selling is
prohibited, the same inequality holds, provided one agents holds the static
market.

Proof of Proposition 4.4. In view of (4.4), we have p0,α+
sta = Ei[f(X(T ))]− sT

α+

since the maximizing set is J = {i}. Using again the Feynman–Kac formula
(Karatzas and Shreve, 1991, Theorem 5.7.6, p. 366), we deduce that p0,α+

sta =
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u(0, x) where u ∈ C1,2
b is the solution of

∂tu+ bi∂xu+ 1
2 Trσ2

i ∂xxu−
sT

α+
= 0, u(T, ·) = f.

In particular, u is a subsolution of the PDE (3.2) for v0,α+ , and now the com-
parison principle (Fleming and Soner, 2006, Theorem V.9.1, p. 223) yields
that p0,α+

sta = u(0, x) ≤ v0,α+(0, x) = p
0,α+

dyn as desired.

We turn to our example where the static price exceeds the dynamic one
due to the delay option effect.

Proofs for Example 4.6 (Example E.1). We begin with the static case. For
later use, we consider the more general situation where σ := σ1 = σ2 may be
positive (but constant). We have ei = Ei[f(X(T ))] = x2 +2xbiT +T 2 +σ2T

and thus, as in (4.4), the static price psta is

psta = max
∅6=J⊆{1,2}

(
1
|J |

∑
i∈J

ei −
sT

|J |

)
= x2 + σ2T + max

{
T 2 − sT/2, T 2 + 2|x|T − sT

}
or

psta =

x2 + σ2T + T 2 − sT/2, |x| ≤ s/4,

x2 + σ2T + T 2 + 2|x|T − sT, |x| > s/4
(F.8)

and the portfolios qi are as stated in Example E.1.
We turn to the dynamic case and restrict to σ = 0. The limiting equation

for (3.2) is

∂tv + max (|∂xv| − s,−s/2) = 0, v(T, ·) = f. (F.9)

In analogy to Proposition D.1, this can be seen as the Hamilton–Jacobi
equation of a deterministic control problem where the drift µ of the controlled
state dX(t) = µ(t,X(t)) dt can be chosen to be ±1 or 0 and the running cost
is s or s/2, respectively. We can check directly that an optimal control for
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this problem is

µ(t, x) =

sign(x), |x|+ (T − t)/2 > s/4,

0, |x|+ (T − t)/2 ≤ s/4,

and then the value function is found to be

v(t, x) =

(|x|+ T − t)2 − s(T − t), |x|+ (T − t)/2 > s/4,

x2 − s(T − t)/2, |x|+ (T − t)/2 ≤ s/4.

Indeed, v is continuous and the unique viscosity37 solution of (F.9). The
indicated formulas for pdyn−psta = v(0, x)−psta and for the optimal controls
φi follow.

Next, we prove the continuity of the prices in the small volatility limit.

Proof of Proposition 4.7. For the static case, the formula for pσsta stated
in (F.8) shows that pσsta − p0

sta = σ2T ↓ 0. Turning to the dynamic case,
we first show that pσdyn = vσ(0, x) is monotone with respect to σ. Since f is
convex, x 7→ vσ(t, x) is convex and thus ∂xxvσ ≥ 0. Given σ1 ≥ σ2 > 0, it
follows that vσ2 is a subsolution to the equation (3.2) for vσ1 , and thus the
comparison principle for parabolic PDEs implies that vσ1 ≥ vσ2 . To see that
vσ(t, x)→ v0(t, x) and in particular pσdyn → p0

dyn, we may again use a general
result on the stability of value functions; cf. (Krylov, 1980, Corollary 3.1.13,
p. 138).

It remains to provide the calculations for our symmetric example with
α− = α+ = 1.

Proofs for Example 4.8. Following Remark 3.5, the equilibrium price func-
tion in the dynamic case is

v(t, x) = E[f(x+ µτ + ΣBτ )], where τ := T − t
37As is often the case for deterministic control problems, the value function is not C1,1

and (F.9) has no classical solution.
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and Bτ is a centered Gaussian with variance τ . As f(y) = y2,

v(t, x) = x2 + 2xµτ + µ2τ2 + Σ2τ

and the optimal portfolios in feedback form are given by

φi(t, x) = Liv(t, x) = x(bi − bj) + 1
2τ(b2i − b2j ) + 1

2(σ2
i − σ2

j ).

For the static case, we have

ei = x2 + 2xbiT + b2iT
2 + σ2

i T

and thus

psta =
e1 + e2

2
= x2 + 2xµT +

b21 + b22
2

T 2 + Σ2T

as well as

qi = T−1(ei − psta) = T−1 ei − ej
2

= x(bi − bj) + 1
2T (b2i − b2j ) + 1

2(σ2
i − σ2

j ).

F.4 Proofs for Section 5

In this section we discuss the planner’s problem.

Proof of Theorem 5.1. Let A be the set of all assignments; that is, all mea-
surable functions α(t, x) = (α1(t, x), . . . , αn(t, x)) with α− ≤ αi ≤ α+.

(i) Fix α ∈ A and denote ‖α‖ =
∑n

i=1 αi. Suppose first that w ∈ C1,2
b

is a given equilibrium price function for α. As in Lemma F.2, the unique
optimal portfolio for agent i is Φi(t) = φi(t,X(t)) where

φi(t, x) = αi(t, x)Liw(t, x). (F.10)

The market clearing condition then implies
∑n

i=1 αiLiw = s which is equiv-
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alent to
1

‖α‖

(
n∑
i=1

αiLiw − s

)
= 0 (F.11)

or

∂tw +
1

‖α‖

n∑
i=1

αibi∂xw +
1

2
Tr

1

‖α‖

n∑
i=1

αiσ
2
i ∂xxw −

s

‖α‖
= 0. (F.12)

Together with the terminal condition w(T, ·) = f , this implies by Itô’s for-
mula that w has the Feynman–Kac representation

w(t, x) = E

[
f(Xt,x

α (T ))−
∫ T

t
κα(r,Xt,x

α (r)) dr

]
(F.13)

where κα = s/‖α‖ and Xt,x
α is a diffusion with initial condition Xt,x(t) = x,

drift µα = 1
‖α‖
∑n

i=1 αibi and volatility σα = 1
‖α‖
∑n

i=1 αiσi.
Conversely, suppose that α is sufficiently regular so that (F.12) has a

solution w ∈ C1,2
b , then reversing the above arguments shows that w is an

equilibrium price function given the assignment α. For examples of sufficient
regularity conditions on α see e.g. (Friedman, 1975, p. 147).

(ii) Consider the nonlinear PDE

sup
α∈A

n∑
i=1

αiLiw = s.

Noting that the supremum is attained for αi = αsign(Liw), we observe that
this is the same PDE as (F.3). To wit, after stating it in the equivalent form

sup
α∈A

1

‖α‖

(
n∑
i=1

αiLiw − s

)
= 0 (F.14)

we see that this is just a rewriting of (2.6). In particular, for the terminal
condition f , the unique solution of (F.14) in C1,2

b is given by the equilibrium
price function v of Theorem 2.1 and the stated assignment associated with
I∗ attains that price. (As v ∈ C1,2

b , this assignment is indeed “sufficiently
regular” in the sense used in (i) above.)
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To see that any other assignment leads to a lower price, consider a fixed
(and sufficiently regular) assignment α = (α1, . . . , αn) and its equilibrium
price vα. As vα solves (F.11),

sup
α′∈A

1

‖α′‖

(
n∑
i=1

α′iLivα − s

)
≥ 1

‖α‖

(
n∑
i=1

αiLivα − s

)
= 0.

This shows that vα is a subsolution of (2.6) and hence vα ≤ v by the com-
parison principle of (Fleming and Soner, 2006, Theorem V.9.1, p. 223).

Remark F.3. The difference for a general (measurable) α is that the smooth-
ness of the solution to the PDE (F.12) is not clear. However, one may substi-
tute the classical solution of the PDE by a suitable weaker concept to derive
the conclusions of Theorem 5.1. We sketch this for the case when the types
disagree on the drift but agree on the volatility σ := σi.

Let Q0 be a probability under which

dX(t) = σ(t,X(t)) dW 0(t)

where W 0 is a Q0-Brownian motion. For 1 ≤ i ≤ n, let Qi be an equiva-
lent probability such that dW i(t) := dW 0(t)− σ−1(t,X(t))bi(t,X(t)) dt is a
Brownian motion underQi and thus dX(t) = bi(t,X(t)) dt+σ(t,X(t)) dW i(t)

under Qi as desired for type i. Consider under Q0 the linear backward
stochastic differential equation (BSDE)

dY (t) = g(t,X(t), Z(t)) dt+ Z(t) dW 0(t), Y (T ) = f(X(T ))

where
g(t, x, z) = κα(t, x)− µα(t, x)σ(t, x)−1z.

This equation has a unique square-integrable solution (Y, Z), cf. (El Karoui
et al., 1997, Proposition 2.2), and in fact Y is bounded in the present
case. We remark that this solution corresponds to (F.12) in the sense
that if (F.12) has a smooth solution w then Y (t) = w(t,X(t)) and Z(t) =
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σ(t,X(t))∂xw(t,X(t)). Under the measure Qi of agent i we have

dY (t) = [g(t,X(t), Z(t)) + Z(t)σ−1(t,X(t))bi(t,X(t))] dt+ Z(t) dW i(t).

(F.15)
Similarly as in (F.10), this implies that if Y is the price process, the optimal
portfolio for agent i is

Φi(t) = αi(t,X(t))[g(t,X(t), Z(t)) + Z(t)σ−1(t,X(t))bi(t,X(t))].

Moreover, the definition of g yields that these portfolios satisfy the market
clearing condition

∑
i Φi(t) = S(t); that is, P := Y is an equilibrium price

process. Conversely, any bounded equilibrium price process P ′ induces a
square-integrable solution of (F.15) and hence P ′ = Y by uniqueness.

Since the BSDE is Markovian, one can show that the process Y is neces-
sarily of the form Y (t) = vα(t,X(t)) for a deterministic function vα. Even if
vα is not necessarily smooth, it is still a viscosity solution of the related PDE
and that is sufficient to apply the comparison principle as in part (ii) of the
above proof in order to see that the equilibrium price of Theorem 2.1 domi-
nates Y (0). Alternately, one can apply the comparison principle of BSDEs;
cf. El Karoui et al. (1997).
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