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Abstract

We give a general formulation of the utility maximization problem
under nondominated model uncertainty in discrete time and show that
an optimal portfolio exists for any utility function that is bounded from
above. In the unbounded case, integrability conditions are needed as
nonexistence may arise even if the value function is �nite.
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1 Introduction

We study a robust utility maximization problem of the form

u(x) = sup
H∈ℋx

inf
P∈P

EP [U(x+H ∙ ST )] (1.1)

in a discrete-time �nancial market. Here S is the stock price process and x+H ∙ ST
is the agent's wealth at the time horizon T resulting from the given initial capital
x ≥ 0 and trading according to the portfolio H. Moreover, U is a utility function
de�ned on the positive half-line and P is a set of probability measures. Hence, the
agent attempts to choose a portfolio H from the set ℋx of all admissible strategies
such as to maximize the worst-case expected utility over the set P of possible
models. A distinct feature of our problem is that P may be nondominated in the
sense that there exists no reference probability measure with respect to which all
P ∈ P are absolutely continuous.

We show in a general setting that an optimal portfolio Ĥ ∈ ℋx exists for any
utility function that is bounded from above. In the classical theory where P is
a singleton, existence holds also in the unbounded case, under the condition that
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u(x) < ∞. This is not true in our setting; we exhibit counterexamples for any
utility function unbounded from above. Positive results can be obtained under
suitable integrability assumptions.

Our basic model for the �nancial market is the one proposed in [6]; in particular,
we use their no-arbitrage condition NA(P). It states that for any portfolio H which
is riskless in the sense that H ∙ ST ≥ 0 holds P-quasi-surely (P -a.s. for all P ∈ P),
it follows that H ∙ ST = 0 P-quasi-surely. While this is not the only possible
choice of a viability condition (see e.g. [1, 8]), an important motivation for our
study is to show that NA(P) implies the existence of optimal portfolios in a large
class of utility maximization problems, which we consider a desirable feature for
a no-arbitrage condition. Thus, to state a clear message in this direction, we aim
at a general result in an abstract setting. (It will be clear from the examples
that the possible nonexistence for unbounded U has little to do with no-arbitrage
considerations.)

The main di�culty in the nondominated case is the failure of the so-called
Komlos-type arguments that are used extensively e.g. in [9, 20]. We shall instead
use dynamic programming, basically along the lines of [28, 29] but of course without
a reference measure, to reduce to the case of a one-period market with deterministic
initial data. Such a market is still nondominated, but the set of portfolios is a subset
of a Euclidean space where it is easy to obtain compactness from the no-arbitrage
condition. The passage from the one-period markets to the original market is
achieved via measurable selections and in particular the theory of lower semianalytic
functions; it draws from [6, 24, 25, 33].

The utility maximization problem for a singleton P has a long and rich history
in mathematical �nance; we refer to [16, Section 2] or [19, Section 3] for back-
ground and references. In the discrete-time case, the most general existence result
was obtained in [29]; it establishes the existence of an optimal portfolio under the
standard no-arbitrage condition NA (which is the same as our NA(P) when P is
a singleton) for any concave nondecreasing function U , under the sole assumption
that u(x) < ∞. Robust or �maxmin�-criteria as in (1.1) are classical in decision
theory; the systematic analysis goes back at least to Wald (see the survey [36]). A
solid axiomatic foundation was given in modern economics; a landmark paper in
this respect is [18]. Most of the literature on the robust utility maximization in
mathematical �nance, starting with [27] and [31], assumes that the set P is domi-
nated by a reference measure P∗; we refer to [31] for an extensive survey. While this
assumption has no clear foundation from an economic or decision-theoretic point
of view, it is mathematically convenient and in particular allows to work within
standard probability theory. The nondominated problem is quite di�erent in sev-
eral respects; for instance, �nding a worst-case measure does not lead to an optimal
portfolio in general.

To the best of our knowledge, there are two previous existence results for op-
timal portfolios in the nondominated robust utility maximization problem, both in
the context of price processes with continuous paths and restricted to speci�c util-
ity functions (power, logarithm or exponential). In [35], a factor model is studied
and the model uncertainty extends over a compact (deterministic) set of possible
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drift and volatility coe�cients, which leads to a Markovian problem that is tack-
led by solving an associated Hamilton�Jacobi�Bellman�Isaacs partial di�erential
equation under suitable conditions. In [22], the uncertainty is over a compact set
of volatility coe�cients whereas the drift is known, but possibly non-Markovian.
The problem is tackled by solving an associated second order backward stochastic
di�erential equation under suitable conditions. We mention that in both cases,
the involved set of measures is relatively compact and the volatilities are supposed
to be uniformly nondegenerate, which acts as an implicit no-arbitrage condition.
In [10], the authors consider a more general form of uncertainty about drift and
volatility over a compact set of measures and a general (bounded) utility function.
They establish a minimax result and the existence of a worst-case measure under
the assumption that each P ∈ P admits an equivalent martingale measure. Turn-
ing to di�erent but related nondominated problems in the mathematical �nance
literature, [3] studies robust maximization of asymptotic growth under covariance
uncertainty, [15] analyzes optimal arbitrage under model uncertainty and [7] and
[34] consider risk management under model uncertainty. The robust superhedging
problem has been studied in several settings; see [1, 4, 6, 11, 13, 17, 23, 26, 32, 33],
among others.

The remainder of this note is organized as follows. In Section 2, we study in
detail the case of a one-period market, establish existence under an integrability
condition for U+, and discuss how nonexistence can arise when U is unbounded
from above. In Section 3, consider the multi-period case and mainly focus on the
case where U is bounded from above (Theorem 3.1), as this seems to be the only case
allowing for a general theory without implicit assumptions. The case of unbounded
U+ is discussed in a restricted setting (Example 3.2).

2 The One-Period Case

Let (Ω,ℱ) be a measurable space. We consider a stock price process given by
a deterministic vector S0 ∈ ℝd and an ℱ-measurable, ℝd-valued random vector
S1; we write ΔS for S1 − S0. In this setting, a portfolio is a deterministic vector
ℎ ∈ ℝd and the corresponding gain from trading is given by the inner product
ℎΔS =

∑d
i=1 ℎ

iΔSi. We are given a nonempty convex set P of probability measures
on ℱ . A subset A ⊆ Ω is called P-polar if A ⊆ A′ for some A′ ∈ ℱ satisfying
P (A′) = 0 for all P ∈ P, and a property is said to hold P-quasi surely or P-q.s. if it
holds outside a P-polar set. Given some initial capital x ≥ 0, the set of admissible
portfolios is de�ned by

Dx := {ℎ ∈ ℝd : x+ ℎΔS ≥ 0 P-q.s.}.
We shall work under the no-arbitrage condition NA(P) of [6]; that is, given ℎ ∈ ℝd,

ℎΔS ≥ 0 P-q.s. implies ℎΔS = 0 P-q.s. (2.1)

As a preparation for the analysis of the multi-period case, we consider a utility
function U that can be random. The following condition is in force throughout this
section.
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Assumption 2.1. The function U : Ω× [0,∞)→ [−∞,∞) is such that

(i) ! 7→ U(!, x) is ℱ-measurable and bounded from below for each x > 0,

(ii) x 7→ U(!, x) is nondecreasing, concave and continuous for each ! ∈ Ω.

In particular, U is �nite-valued on Ω × (0,∞), while U(!, 0) = limx↓0 U(!, x)
may be in�nite. We shall sometimes omit the �rst argument and write U(x) for
U(!, x). Moreover, we de�ne U(x) := −∞ for x < 0 and note that U is ℱ ⊗ℬ(ℝ)-
measurable as a consequence of a standard result on Carathéodory functions [2,
Lemma 4.51, p. 153]. We can now state the main result of this section.

Theorem 2.2. Let NA(P) hold and x ≥ 0. Assume that

EP [U+(x+ ℎΔS)] <∞ for all ℎ ∈ Dx and P ∈ P. (2.2)

Then
u(x) := sup

ℎ∈Dx

inf
P∈P

EP [U(x+ ℎΔS)] <∞

and there exists ℎ̂ ∈ Dx such that infP∈P EP [U(x+ ℎ̂ΔS)] = u(x).

The proof is stated below. Due to the in�mum over P, the optimal portfolio ℎ̂
is not unique in general, even if U is strictly concave and there are no redundant
assets. The following counterexample shows that the integrability condition (2.2)
cannot be dropped: existence of an optimal portfolio may fail even if u(x) <∞.

Example 2.3. Let d = 2 and let U be a deterministic function which is strictly
concave and unbounded from above. Moreover, let x > 0, Ω = ℝ2, S0 ≡ (1, 1) and
ΔS(!) = ! for all ! ∈ ℝ2. Let P1 be the probability measure on ℝ2 such that ΔS1

and ΔS2 are independent and

P1{ΔS1 = −1} = P1{ΔS1 = 1} = 1/2,

P1{ΔS2 = −1} = P1{ΔS2 = 2} = 1/2.

Moreover, let P2 be a second probability such that ΔS1 and ΔS2 are independent
under P2 and

P2{ΔS1 = −1} = 1/2, P2{ΔS1 ≥ 0} = 1/2, EP2
[U+((ΔS1)+)] =∞,

P2{ΔS2 = 0} = 1.

Let P be the convex hull of {P1, P2}. Then NA(P) holds and u(x) <∞, but there

exists no optimal portfolio ℎ̂ ∈ Dx.

Proof. We consider the case U(0) > −∞; the case U(0) = −∞ is similar with
minor modi�cations. It is elementary to check that NA(P) holds. We observe that
S1 is a martingale under P1, whereas S

2 has a strictly positive rate of return. It
then follows that the problem

u1(x) := sup
ℎ∈ℝ2

EP1
[U(x+ ℎΔS)]
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admits a unique optimal portfolio ĝ of the form ĝ = (0, ĝ2) for some ĝ2 > 0.

Moreover, we have u(x) ≤ u1(x) < ∞. Suppose that ℎ̂ = (ℎ̂1, ℎ̂2) ∈ Dx is an

optimal portfolio for P. As ΔS1 is unbounded from above under P2, ℎ̂ ∈ Dx implies
ℎ̂1 ≥ 0. Moreover, using that EP2

[U(x + ℎΔS)] = ∞ whenever ℎ = (ℎ1, ℎ2) ∈ Dx

satis�es ℎ1 > 0, we see that

inf
P∈P

EP [U(x+ ℎΔS)] =

{
EP1

[U(x+ ℎΔS)] if ℎ1 > 0,

EP1
[U(x+ ℎ2ΔS2)] ∧ U(x) if ℎ1 = 0.

Since EP1
[U(x+ℎΔS)] > U(x) if ℎ1 > 0 is close to zero and ℎ2 = ĝ2, we must have

ℎ̂1 > 0. However, a direct calculation shows that the function

ℎ1 7→ EP1
[U(x+ ℎ1ΔS1 + ℎ̂2ΔS2)]

is strictly decreasing in ℎ1 ≥ 0, so that the maximum cannot be attained at a
strictly positive number.

Remark 2.4. In the notation of Example 2.3 and its proof, de�ne the random util-
ity function Ũ(!, x) := U(x+ ĝ2ΔS2(!)) and consider only S1 as a tradable asset.
Then the above arguments again imply the nonexistence of an optimal portfolio.

The previous discussion leaves open the case where U is deterministic and d = 1.
Somewhat curiously, we have the following positive result; the proof is stated at
the end of this section.

Remark 2.5. Assume that d = 1 and that U is deterministic with U(0) > −∞.

If NA(P) holds, x ≥ 0 and u(x) < ∞, then there exists ℎ̂ ∈ Dx such that1

infP∈P EP [U(x+ ℎ̂ΔS)] = u(x).

2.1 Proofs

Let us now turn to the proofs of Theorem 2.2 and Remark 2.5. We �x the initial
capital x ≥ 0; moreover, NA(P) is always in force. Some additional notation is
needed. The quasi-sure support suppP(ΔS) is de�ned as the smallest closed subset
A of ℝd such that P{ΔS ∈ A} = 1 for all P ∈ P; cf. [6]. We can then introduce

L := span suppP(ΔS) ⊆ ℝd,

the smallest linear subspace of ℝd containing suppP(ΔS). In view NA(P), the
fundamental theorem of asset pricing in the form of [6, Theorem 3.1] shows that
the origin is in the closed convex hull of suppP(ΔS) and thus L coincides with the
a�ne hull of suppP(ΔS). The orthogonal complement

L⊥ := {ℎ ∈ ℝd : ℎv = 0 for all v ∈ L}

is the nullspace of ΔS in the sense of the following lemma, which entails that
projecting onto L eliminates any redundancy between portfolios.

1Note that all the involved expectations are well de�ned due to U(0) > −∞.
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Lemma 2.6. Given ℎ ∈ ℝd, we have ℎ ∈ L⊥ if and only if ℎΔS = 0 P-q.s.

Proof. If ℎ ∈ L⊥, then P{ℎΔS = 0} = P{ΔS ∈ L} = 1 for all P ∈ P and hence
ℎΔS = 0 P-q.s. Conversely, let ℎ /∈ L⊥; then there exists v ∈ suppP(ΔS) such
that ℎv ∕= 0, and thus ℎv′ ∕= 0 for all v′ in an open neighborhood B(v) of v. By the
minimality property of the support, it follows that there exists P ∈ P such that
P{ΔS ∈ B(v)} > 0. Therefore, P{ℎΔS ∕= 0} > 0 and ℎ does not satisfy ℎΔS = 0
P-q.s.

The following compactness property is an important consequence of NA(P).

Lemma 2.7. The set Kx := Dx ∩ L ⊆ ℝd is convex, compact and contains the
origin.

Proof. It is clear that Kx is convex, closed and contains the origin. Suppose for
contradiction that Kx is unbounded; then there are ℎn ∈ Kx such that ∣ℎn∣ → ∞.
After passing to a subsequence, ℎn/∣ℎn∣ converges to a limit ℎ ∈ ℝd. As Kx is
convex, we have ℎn/∣ℎn∣ ∈ Kx, thus ℎ ∈ Kx by the closedness. Moreover, ∣ℎ∣ = 1.
Since ℎnΔS ≥ −x P-q.s. for all n, we see that ℎΔS = limℎnΔS/∣ℎn∣ ≥ 0 P-q.s.,
which implies ℎΔS = 0 P-q.s. by NA(P). As ℎ ∈ Kx ⊆ L, it follows that ℎ = 0,
contradicting that ∣ℎ∣ = 1.

Lemma 2.8. Let (2.2) hold. Then there exists a random variable Y ≥ 0 satisfying
EP [Y ] <∞ for all P ∈ P and

U+(x+ ℎΔS) ≤ Y P-q.s. for all ℎ ∈ Dx.

Proof. The following arguments are quite similar to [29]. As ℎΔS = 0 P-q.s. for
ℎ ∈ D0, the claim is clear for x = 0; we suppose that x > 0. By projecting onto L,
it su�ces to consider ℎ ∈ Kx. Let g1, . . . , gN ∈ ℝd be such that the convex cone
generated by g1, . . . , gN equals spanKx, where N is chosen minimally. Let ℎ ∈ Kx;
then ℎ =

∑N
i=1 �igi for some �i ≥ 0, and as Kx is bounded by Lemma 2.7, there

exists a constant c ≥ 1 independent of ℎ such that ∣�i∣ ≤ c/N . As a result,

x+ ℎΔS = x+

N∑
i=1

�igiΔS ≤ x+ cmax{0, g1ΔS, . . . , gNΔS}.

Let
Y := U+(x+ cmax{0, g1ΔS, . . . , gNΔS})

and �x P ∈ P. To show that EP [Y ] <∞, it su�ces to establish that

EP [U+(x+ cgiΔS)] <∞

for each i. To this end, �x an arbitrary g ∈ ri(Kx) and let " ∈ (0, 1) be such that
g̃i := g + "(cgi − g) ∈ Kx. In view of Assumption 2.1(i), by adding a constant to
U , we may suppose that U(1) ≥ 0, and then we have the elementary inequality

"U+(y) ≤ 2U+("y) + 2U(2), y ∈ ℝ; (2.3)
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see [29, Lemma 2]. Therefore,

"U+(x+ cgiΔS) = "U+(x+ gΔS + [cgi − g]ΔS)

≤ 2U+("[x+ gΔS] + "[cgi − g]ΔS) + 2U(2)

≤ 2U+(x+ gΔS + "[cgi − g]ΔS) + 2U(2)

= 2U+(x+ g̃iΔS) + 2U(2)

holds P-q.s.; namely, on the set {x+gΔS ≥ 0}. The �rst term above is P -integrable
by (2.2). The same holds for the second term; in fact, (2.2) immediately implies
that EP [U+(x)] < ∞, and using the concavity of U and x > 0, it follows that
EP [U+(y)] <∞ for all y ≥ 0.

Proof of Theorem 2.2. Lemma 2.8 and Fatou's lemma imply that for all P ∈ P,
the function ℎ 7→ EP [U(x+ ℎΔS)] is upper semicontinuous on Dx. It follows that
ℎ 7→ infP∈P EP [U(x + ℎΔS)] is upper semicontinuous and thus attains its (�nite)
supremum on the compact set Kx (Lemma 2.7). Finally,

sup
ℎ∈Kx

inf
P∈P

EP [U(x+ ℎΔS)] = sup
ℎ∈Dx

inf
P∈P

EP [U(x+ ℎΔS)]

by Lemma 2.6.

Next, we state two auxiliary results that will be used in the analysis of the
multi-period case.

Lemma 2.9. Let (2.2) hold and let D ⊆ Dx be dense. Then

sup
ℎ∈D

inf
P∈P

EP [U(x+ ℎΔS)] = u(x).

Proof. The function ℎ 7→ �(ℎ) := infP∈P EP [U(x + ℎΔS)] is a concave on Dx.
Thus, � is continuous on the relative interior of its domain dom(�). Moreover,
supdom(�) � = supri(dom(�)) � by concavity, so that it su�ces to show that D is
dense in dom(�). Indeed, suppose that x > 0 and let ℎ ∈ ri(Dx). As 0 ∈ Dx, there
exists � > 1 such that �ℎ ∈ Dx; that is, x + ℎΔS ≥ (1 − �−1)x P-q.s. In view of
Assumption 2.1(i), this implies that U(x+ ℎΔS) is uniformly bounded from below
and thus that �(ℎ) > −∞. On the other hand, if x = 0, then ℎ ∈ Dx implies
ℎΔS = 0 P-q.s. by NA(P). Thus, we have ri(Dx) ⊆ dom(�) in both cases, and
hence D is dense in dom(�).

Lemma 2.10. Let (2.2) hold for some x > 0. Then (2.2) holds for all x ≥ 0 and
u : [0,∞)→ [−∞,∞) is nondecreasing, concave and continuous.

Proof. The �rst claim follows from (2.3) and implies that u(x) <∞ for x ∈ [0,∞).
Moreover, it is elementary to see that u is nondecreasing and concave. In particular,
u is continuous on (0,∞), the interior of its domain. It remains to show that

u(0) ≥ limn→∞ u(1/n). For each n ≥ 1, let ℎ̂n ∈ K1/n be an optimal portfolio for
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x = 1/n as in Theorem 2.2. SinceK1/n ⊆ K1 andK1 is compact, we have ℎ̂n → ℎ∞
after passing to a subsequence. Moreover, we have ℎ∞ ∈ ∩n≥1K1/n = K0. (In fact,
ℎ∞ = 0 and the whole sequence converges.) Using Lemma 2.8 (with x = 1) and
Fatou's lemma similarly as in the proof of Theorem 2.2, we obtain that

lim
n→∞

u(1/n) = lim
n→∞

inf
P∈P

EP [U(1/n+ ℎ̂nΔS)] ≤ inf
P∈P

EP [U(0 + ℎ∞ΔS)] ≤ u(0)

as desired.

It remains to show the result for the scalar case, Remark 2.5.

Proof of Remark 2.5. Note that all expectations are well de�ned because U is
bounded from below on [0,∞). As in the proof of Theorem 2.2, we may assume
that x > 0; moreover, there exists a maximizing sequence ℎn ∈ Kx converging
to some ℎ̂ ∈ Kx. By passing to a subsequence, we may assume that one of the
following holds:

(i) ℎn > 0 for all n ≥ 1 and {ℎn} is a monotone sequence,

(ii) ℎn < 0 for all n ≥ 1 and {ℎn} is a monotone sequence,

(iii) ℎn = 0 for all n ≥ 1.

Case (iii) is trivial while (i) and (ii) are symmetric; we focus on (i). As u(x) < ∞
and ℎn > 0, the set

P∗ := {P ∈ P : EP [U+(x+ ℎΔS)] <∞ for some ℎ > 0}

is not empty. Using again (2.3), we see that in fact

P∗ = {P ∈ P : EP [U+(x+ ℎΔS)] <∞ for all ℎ ≥ 0}. (2.4)

We have ℎn ∈ [ℎ̂, ℎ1] if {ℎn} is decreasing, or otherwise ℎn ∈ [ℎ1, ℎ̂]. Hence,

U(x+ ℎnΔS) ≤ U+(x+ ℎ1ΔS) ∨ U+(x+ ℎ̂ΔS), n ≥ 1.

For P ∈ P∗, the right-hand side is integrable by (2.4) and so Fatou's lemma yields

that lim supn→∞EP [U(x+ ℎnΔS)] ≤ EP [U(x+ ℎ̂ΔS)]. As a result,

inf
P∈P∗

EP [U(x+ ℎ̂ΔS)] ≥ lim sup
n→∞

inf
P∈P∗

EP [U(x+ ℎnΔS)]

≥ lim sup
n→∞

inf
P∈P

EP [U(x+ ℎnΔS)]

= u(x). (2.5)

Recalling (i), we clearly have ℎ̂ ≥ 0. If ℎ̂ > 0, then EP [U(x + ℎ̂ΔS)] = ∞ for
P ∈ P ∖ P∗ and thus

inf
P∈P

EP [U(x+ ℎ̂ΔS)] = inf
P∈P∗

EP [U(x+ ℎ̂ΔS)]. (2.6)

If ℎ̂ = 0, then (2.6) is still true since both sides are equal to U(x); recall that U is
deterministic. In view of (2.5), this completes the proof.
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3 The Multi-Period Case

Let us now detail the setting for the multi-period market; we follow [6]. Fix a time
horizon T ∈ ℕ, let Ω1 be a Polish space and let Ωt := Ωt1 be the t-fold Cartesian
product, t = 0, 1, . . . , T , with the convention that Ω0 is a singleton. We de�ne ℱt
to be the universal completion of the Borel-�-�eld ℬ(Ωt); that is, ℱt = ∩Pℬ(Ωt)

P ,
where ℬ(Ωt)

P is the P -completion of ℬ(Ωt) and P ranges over the set P(Ωt) of all
probability measures on ℬ(Ωt). Moreover, we set (Ω,ℱ) := (ΩT ,ℱT ); this will be
our basic measurable space. For convenience of notation, we shall often see (Ωt,ℱt)
as a subspace of (Ω,ℱ).

For each t ∈ {0, 1, . . . , T − 1} and ! ∈ Ωt, we are given a nonempty convex set
Pt(!) ⊆ P(Ω1); intuitively, Pt(!) is the set of possible models for the t-th period,
given state ! at time t. We assume that for each t,

graph(Pt) := {(!, P ) : ! ∈ Ωt, P ∈ Pt(!)} ⊆ Ωt ×P(Ωt) is analytic,

where we use the usual weak topology on P(Ω1). We recall that a subset of a Polish
space is called analytic if it is the image of a Borel subset of another Polish space
under a Borel-measurable mapping (see [5, Chapter 7]); in particular, the above
condition is satis�ed whenever graph(Pt) is a Borel set. Analyticity of graph(Pt)
implies that Pt admits a universally measurable selector; that is, a universally
measurable kernel Pt : Ωt → P(Ω1) such that Pt(!) ∈ Pt(!) for all ! ∈ Ωt. Given
such a kernel Pt for each t ∈ {0, 1, . . . T − 1}, we can de�ne a probability P on Ω
by Fubini's theorem,

P (A) =

∫
Ω1

⋅ ⋅ ⋅
∫

Ω1

1A(!1, . . . , !T )PT−1(!1, . . . , !T−1; d!T ) ⋅ ⋅ ⋅P0(d!1), A ∈ Ω,

where we write ! = (!1, . . . , !T ) for a generic element of Ω. The above formula
will be abbreviated as P = P0⊗⋅ ⋅ ⋅⊗PT−1 in what follows. We can then introduce
the set P ⊆ P(Ω) of possible models for the multi-period market up to time T ,

P := {P0 ⊗ ⋅ ⋅ ⋅ ⊗ PT−1 : Pt(⋅) ∈ Pt(⋅), t = 0, 1, . . . T − 1},

where, more precisely, each Pt is a universally measurable selector of Pt. See
also [6, 12] for more background and examples.

Next, we introduce the stocks and trading portfolios. Let d ∈ ℕ and let St =
(S1
t , . . . , S

d
t ) : Ωt → ℝd be Borel-measurable for all t ∈ {0, 1, . . . , T}. We assume

that Sit ≥ 0 P-q.s. Moreover, let ℋ be the set of all predictable ℝd-valued processes.
Given H ∈ ℋ, we denote

H ∙ S = (H ∙ St)t∈{0,1,...,T}, H ∙ St =

t∑
u=1

HuΔSu,

where ΔSu = Su−Su−1. Sometimes it will be convenient to write ΔSt+1 explicitly
as a function on Ωt × Ω1,

ΔSt+1(!, !′) = ΔSt+1(!1, . . . , !t, !
′), (!, !′) = ((!1, . . . , !t), !

′) ∈ Ωt × Ω1.
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For �xed initial capital x ≥ 0, the set of admissible portfolios for our utility maxi-
mization problem is given by

ℋx := {H ∈ ℋ : x+H ∙ St ≥ 0 P-q.s. for t = 1, . . . , T}.

We continue to work under the no-arbitrage condition NA(P) from [6]; in the
present setting, it postulates that for all H ∈ ℋ,

H ∙ ST ≥ 0 P-q.s. implies H ∙ ST = 0 P-q.s.

Recall that a function f from a Borel subset of a Polish space into ℝ := [−∞,∞]
is called lower semianalytic if {f < c} is analytic for all c ∈ ℝ; in particular, any
Borel function is lower semianalytic.

We have seen in the previous section that nonexistence of an optimal strategy
may arise when the utility function is unbounded from above. While we have
used the integrability condition (2.2) in the one-period case (which already is not
sharp), it seems di�cult to �nd a condition in the multi-period case that is actually
veri�able (or at least sharp). In fact, even the �niteness of the value function in
the case without uncertainty is typically di�cult to verify. In order to establish a
clean statement, we therefore focus on the bounded case for our main result, and
give an example for the unbounded case below.

Theorem 3.1. Let NA(P) hold, let x ≥ 0 and let U : Ω × [0,∞) → ℝ be a lower
semianalytic function which is bounded from above and satis�es Assumption 2.1.
Then there exists Ĥ ∈ ℋx such that

inf
P∈P

EP [U(x+ Ĥ ∙ ST )] = sup
H∈ℋx

inf
P∈P

EP [U(x+H ∙ ST )] <∞.

The proof is stated below. Our last result is a simple example where the
utility maximization problem admits a solution for any deterministic utility func-
tion, possibly unbounded from above, under a strong boundedness and nonde-
generacy assumption on the stock price process. Let us �rst explain what we
mean by nondegeneracy. Given t ∈ {0, . . . , T − 1}, ! ∈ Ωt and x ≥ 0, let
Dt,x(!) := {ℎ ∈ ℝd : x + ℎΔSt+1(!, ⋅) ≥ 0 Pt(!)-q.s.} and let Kt,x(!) be the
corresponding projection as in Lemma 2.7. If NA(P) holds, then by Lemma 2.7
and Lemma 3.3 below there exists a function " : Ωt → ℝ which is strictly positive
P-q.s. and has the following property: for all ℎ ∈ Kt,x(!) with ∣ℎ∣ = 1, there exists
P ∈ Pt(!) such that P{ℎΔSt+1(!, ⋅) < −"(!)} > 0. We shall say that S is uni-
formly nondegenerate if " can be chosen to be a positive constant. (In the spirit
of [30], one could also call this a uniform no-arbitrage condition.) We then have
the following result, again proved in the next subsection.

Example 3.2. Let x ≥ 0 and let U : Ω× [0,∞)→ ℝ be a lower semianalytic func-
tion such that U(⋅, 1) is bounded from above and Assumption 2.1 holds. Suppose
that S is bounded and uniformly nondegenerate. Then there exists Ĥ ∈ ℋx such
that

inf
P∈P

EP [U(x+ ĤΔS)] = sup
H∈ℋx

inf
P∈P

EP [U(x+H ∙ ST )] <∞.
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3.1 Proofs

For �xed ! ∈ Ωt, the random variable ΔSt+1(!, ⋅) on Ω1 determines a one-period
market on (Ω1,ℱ1) under the set Pt(!) ⊆ P(Ω1). We denote the no-arbitrage
condition (2.1) of that market by NA(Pt(!)). The following lemma, proved in [6,
Theorem 4.5], will be useful in order to apply the results of Section 2.

Lemma 3.3. The following are equivalent:

(i) NA(P) holds.

(ii) The set {! ∈ Ωt : NA(Pt(!)) fails} is P-polar for all t ∈ {0, . . . , T − 1}.

In view of the discussion on possible no-arbitrage conditions mentioned in the
Introduction, let us remark that the above �locality property� of NA(P) is crucial
in order to apply dynamic programming as in the subsequent arguments.

We also need a local description of the admissible portfolios.

Lemma 3.4. Let x ≥ 0 and H ∈ ℋ. Then H ∈ ℋx if and only if

x+H ∙ St+1(!, ⋅) ≥ 0 Pt(!)-q.s. for P-quasi-every ! ∈ Ωt

and every t = 0, 1, . . . , T − 1.

Proof. The �if� implication is a direct consequence of Fubini's theorem; we show
the converse. Let t ∈ {0, . . . , T − 1}, let H ∈ ℋx and set

B :=
{
! ∈ Ωt : {x+H ∙ St+1(!, ⋅) ≥ 0} is not Pt(!)-polar

}
;

then we need to prove that B is P-polar. It follows from [5, Proposition 7.29, p. 144]
that the mapping

ℝ× ℝd × Ωt ×P(!1)→ ℝ, (x, ℎ, !, P ) 7→ EP [(x+ ℎΔSt+1(!, ⋅))−]

is Borel-measurable. As the graph of Pt is analytic, this implies that the set-valued
mapping

Ψ(x, ℎ, !) := {P ∈ Pt(!) : EP [(x+ ℎΔSt+1(!, ⋅))−] > 0}

has an analytic graph. Using the Jankov�von Neumann Theorem [5, Proposi-
tion 7.49, p. 182], we can then �nd a universally measurable mapping

Pt : ℝ× ℝd × Ωt → P(Ω1)

such that Pt(x, ℎ, !) ∈ Pt(!) for all x, ℎ, ! and Pt(x, ℎ, !) ∈ Ψ(x, ℎ, !) on {Ψ ∕= ∅}.
Since compositions of universally measurable mappings remain universally measur-
able [5, Proposition 7.44, p. 172], the kernel

! 7→ P ′t (!) := Pt(x+H ∙ St(!), Ht(!), !)
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is again universally measurable. We then have

B =
{
! ∈ Ωt : P ′t (!){x+H ∙ St+1(!, ⋅) < 0} > 0

}
,

showing that B is universally measurable. Suppose that there exists P ∈ P such
that P (B) > 0, then if P ′ := P⊗tP ′t ∈ P(Ωt+1) is the product measure formed from
P ′t and the restriction of P to Ωt, we have P

′{x+H ∙ St+1 < 0} > 0, contradicting
that H ∈ ℋx and P ′ ∈ P. Therefore, B is P-polar.

The conditions of Theorem 3.1 are in force throughout the remainder of its
proof. In order to employ dynamic programming, we introduce the conditional
value functions at the intermediate times. There are some measure-theoretic issues
related to the simultaneous presence of suprema and in�ma in our problem, so we
shall work with certain regular versions of the value functions. Set U(x) := −∞
for x < 0 and denote UT := U . If ! ∈ Ωt and !

′ ∈ Ω1, we also write ! ⊗t !′ for
(!, !′) ∈ Ωt+1. For t = T − 1, . . . , 0 and ! ∈ Ωt, de�ne

Ut(!, x) := sup
ℎ∈ℚd

inf
P∈Pt(!)

EP [Ut+1(! ⊗t ⋅, x+ ℎΔSt+1(!, ⋅))], x > 0, (3.1)

Ut(!, 0) := lim
x↓0

Ut(!, x) (3.2)

as well as Ut(!, x) = −∞ for x < 0. The following lemma ensures that Ut is well
de�ned for all t.

Lemma 3.5. Let t ∈ {0, . . . , T}. Then Ut : Ωt × [0,∞) → [−∞,∞) is lower
semianalytic, bounded from above and satis�es Assumption 2.1.

Proof. The claim is true by assumption for t = T ; we show the induction step from
t+ 1 to t. It is elementary to see that Ut(!, ⋅) is nondecreasing and bounded from
above. Let y > 0; then by assumption there exists c ∈ ℝ such that Ut+1(⋅, y) ≥ c.
Considering ℎ = 0 in (3.1), it follows that

Ut(!, x) ≥ inf
P∈Pt(!)

EP [Ut+1(! ⊗t ⋅, x)] ≥ c.

Next, we show the concavity on (0,∞). Let x1, x2 ∈ (0,∞), let " > 0 and let
ℎ1, ℎ2 ∈ ℚd be such that

Ut(!, xi) ≤ "+ inf
P∈Pt(!)

EP [Ut+1(! ⊗t ⋅, xi + ℎiΔSt+1(!, ⋅))], i = 1, 2.

Using the concavity of Ut+1 and (ℎ1 + ℎ2)/2 ∈ ℚd, we see that

Ut(!, x1) + Ut(!, x2)

2

≤ "+ inf
P∈Pt(!)

EP

[
Ut+1

(
! ⊗t ⋅,

x1 + x2

2
+
ℎ1 + ℎ2

2
ΔSt+1(!, ⋅)

)]
≤ "+ sup

ℎ∈ℚd

inf
P∈Pt(!)

EP

[
Ut+1

(
! ⊗t ⋅,

x1 + x2

2
+ ℎΔSt+1(!, ⋅)

)]
.
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As " > 0 was arbitrary, it follows that [Ut(!, x1)+Ut(!, x2)]/2 ≤ Ut(!, [x1 +x2]/2);
i.e., Ut(!, ⋅) is midpoint-concave on (0,∞). Since moreover Ut(!, ⋅) is bounded on
any closed subinterval of (0,∞), this implies that Ut(!, ⋅) is indeed concave on
(0,∞); see, e.g., [14, p. 12]. In particular, Ut(!, ⋅) is continuous on (0,∞). In view
of the de�nition (3.2), both concavity and continuity extend to [0,∞).

It remains to show that Ut is lower semianalytic. Since the precomposition of
a lower semianalytic function with a Borel mapping is again lower semianalytic [5,
Lemma 7.30(3), p. 177], we see that the function

Ωt × Ω1 × (0,∞)× ℝd → ℝ, (!, !′, x, ℎ) 7→ Ut+1(! ⊗t !′, x+ ℎΔSt+1(!, !′))

is lower semianalytic. Using a fact about Borel kernels acting on lower semianalytic
functions [5, Proposition 7.48, p. 180], we can deduce that

Ωt ×P(Ω1)× (0,∞)×ℝd → ℝ, (!, P, x, ℎ) 7→ EP [Ut+1(!⊗t ⋅, x+ ℎΔSt+1(!, ⋅))]

is also lower semianalytic. Since the graph of Pt is analytic, it then follows by [5,
Proposition 7.47, p. 179] that

� : Ωt× (0,∞)×ℝd → ℝ, �(!, x, ℎ) := inf
P∈Pt(!)

EP [Ut+1(!⊗t ⋅, x+ℎΔSt+1(!, ⋅))]

is lower semianalytic. Finally, we have Ut(!, x) = supℎ∈ℚd �(!, x, ℎ) by de�nition,
and the supremum of a countable family of lower semianalytic functions is still
lower semianalytic [5, Lemma 7.30(2), p. 177]. Thus, Ut is lower semianalytic as a
function on Ωt × (0,∞). Finally, Ut : Ωt × [0,∞) → ℝ is also lower semianalytic;
indeed, for each c ∈ ℝ, it follows from (3.2) that {(!, x) ∈ Ωt×[0,∞) : Ut(!, x) < c}
is the countable union of the analytic sets {(!, x) ∈ Ωt× (0,∞) : Ut(!, x) < c} and
{(!, x) ∈ Ωt × [0,∞) : x = 0, Ut(!, 1/n) < c}, n ≥ 1.

While the nonstandard de�nitions (3.1) and (3.2) were made to ensure the
crucial measurability properties of Ut, the following lemma shows that Ut is indeed
a version of the conditional value function at time t.

Lemma 3.6. Let t ∈ {0, . . . , T − 1}. For P-quasi-every ! ∈ Ωt,

Ut(!, x) = sup
ℎ∈Dt,x(!)

inf
P∈Pt(!)

EP [Ut+1(! ⊗t ⋅, x+ ℎΔSt+1(!, ⋅))], x ≥ 0, (3.3)

where Dt,x(!) := {ℎ ∈ ℝd : x+ ℎΔSt+1(!, ⋅) ≥ 0 Pt(!)-q.s.}.

Proof. Let ! ∈ Ωt and x ≥ 0. If ℎ ∈ ℚd∖Dt,x(!), then for some P ∈ Pt(!), we have
P{x+ ℎΔSt+1(!, ⋅) < 0} > 0 and hence EP [Ut+1(!⊗t ⋅, x+ ℎΔSt+1(!, ⋅))] = −∞.
This implies the inequality �≤� of (3.3). To see the reverse inequality, we �rst focus
on x > 0. As St+1 is nonnegative P-q.s., we have ΔSt+1(!, ⋅) ≥ −St(!) Pt(!)-q.s.
for all ! outside a P-polar set (argue as in the proof of Lemma 3.4). It follows
that any ℎ = (ℎ1, . . . , ℎd) ∈ [0,∞)d with ∣ℎ1 + ⋅ ⋅ ⋅ + ℎd∣ ≤ x/∣St(!)∣ is contained
in the convex set Dt,x(!) and thus that ℚd is dense in Dt,x(!). If ! is also such
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that NA(Pt(!)) is satis�ed, then the claimed inequality follows by Lemma 2.9, for
any x > 0. To extend the result to x = 0, it then su�ces to note that both sides
of (3.3) are continuous in x ∈ [0,∞): this holds for Ut(!, ⋅) by the de�nition (3.2),
and for the right-hand side by Lemma 2.10. It remains to recall Lemma 3.3(ii).

Lemma 3.7. Let t ∈ {0, . . . , T −1}, x ≥ 0 and H ∈ ℋx. There exists a universally

measurable mapping ℎ̂t : Ωt → ℝd such that x+H ∙ St(!) + ℎ̂t(!)ΔSt+1(!, ⋅) ≥ 0
Pt(!)-q.s. and

inf
P∈Pt(!)

EP [Ut+1(! ⊗t ⋅, x+H ∙ St(!) + ℎ̂t(!)ΔSt+1(!, ⋅))] = Ut(!, x+H ∙ St(!))

(3.4)
for P-quasi-every ! ∈ Ωt.

Proof. We �rst show that Ut is ℱt⊗ℬ(ℝ) measurable; recall that ℱt is the universal
�-�eld of Ωt. Indeed, we know from Lemma 3.5 that Ut(⋅, x) is ℱt-measurable for
�xed x ∈ ℝ and that Ut(!, ⋅) is continuous on [0,∞) for �xed ! ∈ Ωt. Thus, U is
product-measurable as a function on Ωt × [0,∞). As Ut(⋅, x) = −∞ for x < 0, it
follows that Ut is product-measurable as a function on Ωt × ℝ as claimed. Next,
we show that the function

�(!, x, ℎ) := inf
P∈Pt(!)

EP [Ut+1(! ⊗t ⋅, x+ ℎΔSt+1(!, ⋅))]

is ℱt ⊗ ℬ(ℝ)⊗ ℬ(ℝd)-measurable. Indeed, for �xed (x, ℎ) ∈ [0,∞)× ℝd, it follows
from the proof of Lemma 3.5 that ! 7→ �(!, x, ℎ) is lower semianalytic and in partic-
ular universally measurable. On the other hand, Ut+1(!̃, ⋅) is upper semicontinuous
for any !̃ ∈ Ωt+1. Since Ut+1 is bounded from above, an application of Fatou's
lemma yields that (x, ℎ) 7→ �(!, x, ℎ) is upper semicontinuous for every ! ∈ Ωt. It
now follows as in [6, Lemma 4.12] that � is ℱt ⊗ ℬ(ℝ)⊗ ℬ(ℝd)-measurable.

Fix x ≥ 0 and consider the set-valued mapping

Φ(!) := {ℎ ∈ ℝd : �(!, x+H ∙ St(!), ℎ) = Ut(!, x+H ∙ St(!))}, ! ∈ Ωt.

By the above, its graph is in ℱt⊗ℬ(ℝd). Thus, Φ admits an ℱt-measurable selector
ℎ̃t on the universally measurable set {Φ ∕= ∅}; cf. the corollary and scholium of [21,
Theorem 5.5]. We extend ℎ̃t by setting ℎ̃t := 0 on {Φ ∕= ∅}. Moreover, Theorem 2.2
and Lemma 3.6 show that Φ(!) ∕= ∅ for P-quasi-every ! ∈ Ωt, so that ℎ̃t solves (3.4)
P-q.s.

Let B be the set of all ! ∈ Ωt where we do not have x + H ∙ St(!) +
ℎ̃t(!)ΔSt+1(!, ⋅) ≥ 0 Pt(!)-q.s. As in the proof of Lemma 3.4, B is universally

measurable, so that ℎ̂t := ℎ̃t1Bc is still universally measurable. Moreover, as

inf
P∈Pt(!)

EP [Ut+1(! ⊗t ⋅, x+H ∙ St(!) + ℎ̃t(!)ΔSt+1(!, ⋅))] = −∞, ! ∈ B,

ℎ̂t is still satis�es (3.4) P-q.s. and the proof is complete.
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Lemma 3.8. Let t ∈ {0, 1, . . . , T − 1}, H ∈ ℋx and

It(!) := inf
P∈Pt(!)

EP [Ut+1(! ⊗t ⋅, x+H ∙ St+1(!, ⋅))], ! ∈ Ωt.

Given " > 0, there exists a universally measurable kernel P "t : Ωt → P(Ω1) such
that P "t (!) ∈ Pt(!) for all ! ∈ Ωt and

EP "
t (!)[Ut+1(! ⊗t ⋅, x+H ∙ St+1(!, ⋅))] ≤

{
It(!) + " if It(!) > −∞,
−"−1 if It(!) = −∞.

Proof. The function (!, P, x, ℎ) 7→ EP [Ut+1(!⊗t ⋅, x+ℎΔSt+1(!, ⋅))] is lower semi-
analytic by the proof of Lemma 3.5. As the graph of Pt is analytic, the Jankov�von
Neumann Theorem in the form of [5, Proposition 7.50, p. 184] implies that there
exists a universally measurable mapping (!, x, ℎ) 7→ P̃ "t (!, x, ℎ) ∈ Pt(!) such that

EP̃ "
t (!,x,ℎ)[Ut+1(! ⊗t ⋅, x+ ℎΔSt+1(!, ⋅))] ≤

{
It(!) + " if It(!) > −∞,
−"−1 if It(!) = −∞.

The composition ! 7→ P "t (!) := P̃ "t (!, x + H ∙ St(!), Ht+1(!)) has the desired
properties.

Proof of Theorem 3.1. Let ℎ̂0 be an optimal portfolio for infP∈P0
EP [U1(x+ℎΔS1)]

as in Lemma 3.7, and set Ĥ1 := ℎ̂0. Proceeding recursively, use Lemma 3.7 to de�ne
the strategy ! 7→ ℎ̂t(!) for infP∈Pt(!)EP [Ut+1(! ⊗t ⋅, x+ Ĥ ∙ St + ℎΔSt+1(!, ⋅))]
and set Ĥt+1 := ℎt, for t = 1, . . . , T − 1. We then have Ĥ ∈ ℋx by Lemma 3.4. To
establish that Ĥ is optimal, we �rst show that

inf
P∈P

EP [UT (x+ Ĥ ∙ ST )] ≥ U0(x). (3.5)

Let t ∈ {0, . . . , T − 1}. By the de�nition of Ĥ, we have

inf
P ′∈Pt(!)

EP ′ [Ut+1(! ⊗t ⋅, x+ Ĥ ∙ St+1(!, ⋅))] = Ut(!, x+ Ĥ ∙ St(!))

for all ! outside a P-polar set. Let P ∈ P; then P = P0 ⊗ ⋅ ⋅ ⋅ ⊗ PT−1 for some
selectors Ps of Ps, s = 0, . . . , T − 1 and we conclude via Fubini's theorem that

EP [Ut+1(x+ Ĥ ∙ St+1)] = E(P0⊗⋅⋅⋅⊗Pt−1)(d!)[EPt(!)[Ut+1(! ⊗t ⋅, x+ Ĥ ∙ St+1(!, ⋅))]

≥ EP0⊗⋅⋅⋅⊗Pt−1 [Ut(x+ Ĥ ∙ St)]

= EP [Ut(x+ Ĥ ∙ St)].

A repeated application of this inequality shows that EP [UT (x+ Ĥ ∙ ST )] ≥ U0(x),
and since P ∈ P was arbitrary, our claim (3.5) follows.

To conclude that Ĥ is optimal, it remains to prove that

U0(x) ≥ sup
H∈ℋx

inf
P∈P

EP [U(x+H ∙ ST )] =: u(x).
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To this end, we �x an arbitrary H ∈ ℋx and �rst show that

inf
P∈P

EP [Ut(x+H ∙ St)] ≥ inf
P∈P

EP [Ut+1(x+H ∙ St+1)], t = 0, 1, . . . , T−1. (3.6)

Let " > 0 and let P "t be an "-optimal selector as in Lemma 3.8. Then, for ! outside
a P-polar set, Lemma 3.6 yields that

EP "
t (!)[Ut+1(! ⊗t ⋅, x+H ∙ St+1(!, ⋅))]− "
≤ (−"−1) ∨ inf

P∈Pt(!)
EP [Ut+1(! ⊗t ⋅, x+H ∙ St+1(!, ⋅))]

≤ (−"−1) ∨ sup
ℎ∈Dt,x′(!)(!)

inf
P∈Pt(!)

EP [Ut+1(! ⊗t ⋅, x+H ∙ St(!) + ℎΔSt+1(!, ⋅))]

= (−"−1) ∨ Ut(!, x+H ∙ St(!)),

where x′(!) := x+H ∙ St(!). Given P ∈ P, we thus have

EP [(−"−1) ∨ Ut(x+H ∙ St)] ≥ EP⊗tP "
t
[Ut+1(x+H ∙ St+1)]− "

≥ inf
P ′∈P

EP ′ [Ut+1(x+H ∙ St+1)]− ".

As " > 0 and P ∈ P were arbitrary, (3.6) follows. Noting the trivial equality
U0(x) = infP∈P EP [U0(x+H ∙ S0)], a repeated application of (3.6) yields

U0(x) ≥ inf
P∈P

EP [U1(x+H ∙ S1)] ≥ ⋅ ⋅ ⋅ ≥ inf
P∈P

EP [UT (x+H ∙ ST )].

As H ∈ ℋx was arbitrary, it follows that U0(x) ≥ u(x), and in view of (3.5), this
shows that Ĥ is optimal.

Proof of Example 3.2. The assumption that S is uniformly nondegenerate clearly
implies that NA(Pt(!)) holds for all (t, !); in particular, Lemma 3.3 shows that
NA(P) holds. Moreover, using that S is bounded and uniformly nondegenerate,
we obtain a universal constant a such that ∣x + H ∙ ST ∣ ≤ a for all H ∈ ℋx.
On the other hand, by a scaling argument similar to (2.3), the assumption that
U(⋅, 1) is bounded from above implies that U(⋅, y) ≤ cy for some cy ∈ ℝ, for all
y > 0. Together, it follows that U(x + H ∙ ST ) ≤ ca for all H ∈ ℋx. Using these
and similar arguments, we can go through the proof of Theorem 3.1 with minor
modi�cations.
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