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We1 recall that if ∆ = (Ki)i∈I is a collection of sets, then an algebra
(A, (fi){i∈I}) of type ∆ consists of a set A and a collection (fi)i∈I of op-
erations on A, such that for each i ∈ I fi is a Ki–ary operation; that is,
fi : AKi → A. We shall use the same symbol for an algebra A and its
underlying set.

We say that the types ∆ = (Ki)i∈I and ∆′ = (Lj)j∈J are equivalent if
there is a bijection φ : I → J such that for each i the cardinalities |Ki| and
|Lφ(i)| are equal.

We denote by A(∆) the category of all algebras of type ∆ and all homo-
morphisms between them. Clearly, if ∆ and ∆′ are equivalent types, then
A(∆) and A(∆′) are isomorphic categories. The purpose of this note is to
prove the converse, thereby answering a question posed by A. Pultr.

This question was motivated by the result of Z. Hedrĺın and A. Pultr [2]
which states that even if ∆ and ∆′ are not equivalent, A(∆) and A(∆′) are
embeddable as full subcategories in each other, so long as ∆ and ∆′ are not
too small (the sums of the cardinalities of the sets in ∆ and ∆′ should each
exceed 1).

In §1 we recall the necessary properties of algebraic operations, and in §2
we prove the theorem.

1. Operations

Let f : FK → K be a K–ary operation on F (F,K any sets). The support
of f (Felscher [1]) is defined by

supp(f) = {A ⊆ K | for all α, β ∈ FK , α|A = β|A ⇒ f(α) = f(β)}

That is, A ∈ supp(f) means that the value of f on any α ∈ FK is already
determined by the restriction of α to A.

The essential rank of f is defined as min{|A| | A ∈ supp(f)}. If A is a
primitive class (variety) of algebras, define its rank to be the supremum of
the essential ranks of all A–algebraic operations. Since the essential rank of
an algebraic operation is always less than the dimension (S lomiński [3]) of
A, this supremum exists.

1This note was accepted for Comment. Math. Univ. Carolinae in 1968 but then got
lost during the military occupation of Prague and surrounding events. My own long-lost
carbon copy of it turned up in July 2005 while moving offices. The only changes to the
text are addition of the footnotes and some commas.
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Now let f be any element of the free algebra F (X, A) with basis X of
the primitive class A, and let A be any algebra in A. One can define an
X–ary operation f̂A on A by f̂A(α) = ᾱ(f) for any α ∈ AX . Here ᾱ is the
homomorphic extension of α to a homomorphism of F (X, A) to A. f̂A is
an algebraic operation on A; in fact f 7→ f̂A is a surjective homomorphism
of F (X, A) onto the algebra HX(A) of all X–ary algebraic operations on A
(see for instance [1]).

2. Non-isomorphism of categories

Theorem. If the categories A(∆) and A(∆′) are isomorphic, then ∆ and
∆′ are equivalent types.

We shall prove this theorem in two steps. Let s denote the canonical
underlying set functors on A(∆) and A(∆′).

Lemma 1. If the concrete categories (A(∆), s) and (A(∆′), s) are concretely
isomorphic (that is, isomorphic by a functor which preserves underlying
sets), then ∆ is equivalent to ∆′.

Proof. Let ∆ = (Ki)i∈I . It suffices to show that the knowledge of the
category A(∆) and its underlying set functor is sufficient to recover ∆ up to
equivalence. Now the definition of free algebra of A(∆) over a basis involves
only the underlying sets and homomorphisms, so we know the free algebras
of A(∆). Hence by the last paragraph of §1 we know the algebraic operations
for A(∆) so we can calculate the rank δ of A(∆).

Let F be a free algebra of A(∆) with basis X such that |X| ≥ δ. Let
Y = F − X. Define a relation R on Y by y1Ry2 if and only if there is
an endomorphism of F which maps y1 onto y2. Let S be the smallest
equivalence relation on Y containing R, and let J = Y/S be the set of
equivalence classes of Y under S.

We now consider the meaning of this construction in terms of the actual
algebraic structure of F . The set Y is the set of all fi(α), i ∈ I, α ∈ FKi ,
where the fi are the defining operations of the class. Under an endomor-
phism of F an element fi(α) cannot be mapped onto an element fj(β) with
i 6= j. Further, if α0 ∈ FKi is injective with α0(Ki) ⊆ X, then every element
of the form fi(α), α ∈ FKi , is the image of fi(α0) under suitable endomor-
phisms of F . Hence the equivalence classes under S are just the subsets of
Y of the form φ(i) = {fi(α) | α ∈ FKi}, and φ : i 7→ φ(i) is a bijective map
from I to J .

It remains only to show that to each φ(i) ∈ J we can recover |Ki|. We
can choose a y ∈ φ(i) with the property that every element of φ(i) is the
image of y under some endomorphism of F . We then have the corresponding
X–ary algebraic operation ŷ = ŷF in HX(F ). We claim that ŷ has essential
rank |Ki|, completing the proof. Indeed, y is of the form fi(α0) for some
injective α0 ∈ FKi with α0(Ki) ⊆ X. supp(ŷ) is just the set of all subsets
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of X which contain α0(Ki), so the essential rank of ŷ is |α0(Ki)|. Since α0

is injective, |α0(Ki)| = |Ki|. �

The second part of the proof of the theorem is given by the following
lemma:

Lemma 2. If the categories A(∆) and A(∆′) are isomorphic, then the con-
crete categories (A(∆), s) and (A(∆′), s) are concretely isomorphic.

Proof. We first determine a free algebra P of rank 1 (that is, basis cardinality
1) in A(∆). This can be done in many ways, For instance, P ∈ A(∆) is a
free algebra if and only if every epimorphism to P has a section, and it
furthermore has rank 1 if and only if every morphism P → P is mono.

The functor mor(P,−) : A(∆) → Set is a “new underlying set functor”
which is naturally equivalent to the standard underlying set functor s on
A(∆).

Let T : A(∆) → A(∆′) be an isomorphism. Then T (P ) is a free alge-
bra of rank 1 in A(∆′), so we also have a “new underlying set functor”
mor(T (P ),−) on A(∆′) which is naturally equivalent to the standard one.

If one identifies the sets mor(P,A) and mor(T (P ), T (A)) by means of T for
each A ∈ A(∆), then T commutes with these “new underlying set functors”,
and it is not difficult, using the properties of the standard underlying set
functors, to deduce that A(∆) and A(∆′) are also concretely isomorphic
with respect to the standard underlying set functors. �

Lemma 2 states that two categories of the form A(∆) are abstractly iso-
morphic if and only if they are concretely isomorphic, or in more algebraic
terminology: rationally equivalent. This in fact holds for more general prim-
itive classes of algebras; for instance a slight modification of the above proof
shows that two Schreier primitive classes (subalgebras of free algebras are
free) whose free algebras of rank 1 are not isomorphic to any of higher rank2

are abstractly isomorphic as categories if and only if they are rationally
equivalent. Some restriction on the classes considered is however necessary,
for it is known that to any primitive class one can find primitive classes not
rationally equivalent to the given one, such that the categories are isomor-
phic.
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2The phrase “whose free algebras . . . higher rank” was a handwritten addition in the
1968 typescript – apparently an afterthought; now, 38 years later, I don’t know what I
was thinking then – but if one replaces it by “in which any epimorphism to a free algebra
is onto” things are OK.


