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1. INTRODUCTION 

Two manifolds are commensurable if they have diffeomorphic finite covers. We would like 
invariants that distinguish manifolds up to commensurability. A collection of such commen- 

surability invariants is complete if it always distinguishes non-commensurable manifolds. 
Commensurability invariants of hyperbolic 3-manifolds are discussed in [l]. The two 

main ones are the invariant trace field and the invariant quaternion algebra. The latter is 
a complete commensurability invariant in the arithmetic case, but not in general. The set of 
primes at which traces fail to be integral is another commensurability invariant, and 
examples are given in Cl] where the invariant quaternion algebras agree but this set does 
not. Another commensurability invariant discussed in [l] is the collection of “cusp fields” 
(the fields generated by cusp parameters). Craig Hodgson has pointed out that the set of 
PSL(2, Q)-classes of cusp parameters is a finer commensurability invariant than the cusp 
fields when the degree of some cusp field exceeds 3. 

Here we discuss commensurability of nonhyperbolic 3-manifolds. For 3-manifolds with 
geometric structure the classification is known (cf. Section 2): 

THEOREM A. For each of the six “Seifert geometries” S3, E3, S2 x IE’, E-U2 x [El, Nil, and 

PSL there is just one commensurability class of compact geometric 3-manifolds with the given 
structure (two for the last two geometries if orientation-preserving commensurability of 
oriented manifolds is considered). For the remaining nonhyperbolic geometry Sol, the commen- 

surability classes are in one-one correspondence with real quadratic number jelds (such 

a manifold is covered by a torus bundle over a circle and the field in question is the field 
generated by an eigenvalue of the monodromy of this bundle). 

Noncompact finite volume nonhyperbolic geometric 3-manifolds admit geometric structures of 
both types W2 x lE3 and PSL and form just one commensurability class, also in the oriented case. 

In Section 3 we define several multiplicative invariants for prime 3-manifolds. A multipli- 

cative invariant is one that multiplies by degree for covering spaces. Our invariants are most 
interesting for graph manifolds. Since the ratio of two multiplicative invariants is a com- 
mensurability invariant, we get several commensurability invariants also. The next two 
theorems, which use two of these invariants, are a start on the commensurability classifica- 
tion for manifolds with nontrivial geometric decomposition. 

Let M be a closed non-Seifert-fibered oriented 3-manifold obtained by pasting two 
Seifert manifolds, MI and M2, each having a torus as its boundary, along these tori. Suppose 
also that neither half Mi is the total space SMb of the circle bundle over the MSbius band 
with orientable total space (otherwise there is a double cover of M that either satisfies our 
requirements or is a torus bundle over the circle and is thus covered by Theorem A). To each 
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half Mi of M is associated a pair of numerical invariants ei, xi E Q (the euler number of the 
fibration and orbifold euler characteristic of the base, as described in Section 2) with xi # 0. 
Let p be the intersection number within the gluing torus of the fibers of the two pieces of M. 

Denote Vi = $/ei E Q u{ a} and exchange MI and M2 if necessary to make 1 u1 j 6 1 u2 1. 

THEOREM B. 1. Let M be as above. Then p2eIe2 and v1/v2 are commensurability invari- 
ants of M. Their product is a rational square (or indeterminate if eI = e2 = 0). 

2. For each p2eIe2 E Q - (0) and v1/u2 E [ - 1, l]n(Q - (0)) whose product is a ra- 

tional square there is a unique commensurability class of M as above. If ez = 0 there are two 
commensurability classes according to whether eI is also zero or not. 

3. The above commensurability class splits into two orientation preserving ones, deter- 

mined by the sign of eI, unless el = e2 = 0 or ele2 < 0 and vi/v2 = - 1. 

Our requirement that MI and M2 have just one boundary component in the above 
theorem is mostly for convenience of exposition. 

THEOREM C. Suppose a closed connected oriented manifold M is either obtained by pasting 

two connected Seijkrt fibered manifolds together along their boundaries or by pasting the 
boundary components of a single connected Segert fIbered mangold together in pairs. Then 

M is Seifertjibered, or covered by a torus bundle over S’, or commensurable with a manifold of 

Theorem B. 

We next discuss whether M is virtuallyjibered, i.e. whether some finite cover of M fibers 
over S’ . Thurston has conjectured that hyperbolic manifolds are always virtually fibered. 
Currently there is little evidence for either the truth or the falsity of this conjecture. For 
a geometric manifold M belonging to one of the other seven geometries the answer is 
easy - M is virtually fibered if it is non-compact (hyperbolic fiber) or has a geometric 
structure of type S2 x E’ (fiber S’), lE3, Nil, or Sol (fiber T’), or I-I2 x E’ (hyperbolic fiber), 
and not virtually fibered if it is compact with S3, or PSL structure. 

We shall give a complete answer for graph manifolds. In the special case of the manifold 
of Theorem B the answer is as follows. 

THEOREM D. The manifold M of Theorem B is virtually jibered if and only if 

0<p2eIe2~10rel=e2=0. 

Before we describe the general result we describe when a graph manifold itself fibers over 
S’. We also describe when it is the link of a complex surface singularity, since this turns out 
to be related. These results are not new (cf. e.g., [2-4]) but the present formulation in terms 
of a “reduced plumbing matrix” has not appeared before. We assume M is prime, since 
otherwise it cannot be virtually fibered. 

Suppose M is a prime graph manifold whose toral decomposition (cf. [S, 61) into Seifert 
fibered manifolds is 

M = MIu . . . uM,. 

Then for each i we have the invariants ei = e(MJ and xi = X(Mt) already mentioned’ and 
for each separating torus T we have the fiber intersection number in T mentioned above, 

‘The notation x(M) is always used for the orbifold euler characteristic of the base orbifold of the Seifert manifold 
M in this paper. It is not to be confused with the euler characteristic of A4 itself, which is zero. 
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which we will denote p(T). It is convenient to represent all this information by a weighted 
graph with a vertex for each Mi and an edge for each separating torus T. For example, the 
manifold M of Theorems B and D would have the graph 

el e2 
-P. . 

CXll [x21 

We call this the decomposition graph. 

The sign of the fiber intersection number weight on an edge of this graph is not well 
determined; it depends on choices of fiber orientations for the Seifert components Mi. Thus, 
for a vertex corresponding to a Seifert component with orientable base we can change the 
signs of all weights on edges with one end at that vertex by changing the fiber orientation of 
the Seifert component. At a vertex corresponding to a Seifert component with non- 
orientable base the signs of all adjacent edge-weights are indeterminate. 

We define the decomposition matrix for M to be the symmetric n x n matrix A(M) = (aij) 

with 

1 
Uij = f?i + 2 C - 

iEi [p(E)1 if i = j 

=&kl ifi=j 

where iEj means E is an edge from i to j and p(E) is the fiber intersection number weight for 
this edge. 

For convenience we assume in this introduction that M is, in the terminology of Section 
4, a “very good graph manifold with no self-pastings.” That is 

l each Mi is Seifert fibered over orientable base; 
l fiber orientations can be chosen so that the fiber intersection numbers p(T) are all 

positive; 
l the decomposition graph G(M) has no loops (edges that start and terminate at the 

same vertex) and no Mi is the circle bundle SMb over the Mobius band. 

As we shall see, these conditions are not essential to most of our discussion, and can in 
any case be achieved by taking a double cover of M (except when M is a sol-manifold). We 
also assume M is not a T 2 bundle over S1. Under these conditions we shall see that the 
decomposition matrix is a reduced version of the “plumbing matrix” for M of [3] (see also 
[7,8]). The following is a simplified version of Theorem 4.1 below. 

THEOREM E. 1. The above M is the link of a complex surface singularity if and only if 

A (M) is negative definite. 
2. The above MJibers over the circle ifand only ifA annihilates a vector with no zero 

component (we say A(M) is “supersingular”). 

3. The above M has a “horizontal surface” (an embedded surface transverse to a Seifert 

fiber of one of the Mi) if and only if A (M) is singular. 

The relevance for us of being the link of a complex surface singularity is that it is 
inherited by covers, so they too have negative definite (and hence non-singular) decomposi- 
tion matrices. 
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For example, the graph manifold of Theorem B with decomposition graph 

ei e2 
-P. 

has decomposition matrix 

Assuming MI and M2 have orientable base, it is thus a singularity link up to orientation if 
and only if p2e1e2 > 1 and is fibered over S’ if and only if p2eIe2 = 1. 

To describe the general necessary and sufficient condition for virtual fibration of a prime 
graph manifold M we need a definition. We shall call a block matrix 

T = 

a virtualizer if 

l Tij = Tji for each i, j, SO T is symmetric; 
l each entry of each Tij is a non-negative rational number; 
l Tii is a nonsingular diagonal matrix whose entries sum to 1 for each i; 
l the kth row sum of Tij is the kth diagonal entry of Tii for each i, j (a corresponding 

statement for columns follows by symmetry). 

If the Tij for i #j are permitted to have arbitrary rational entries and the last item is 
replaced by 

l the sum of absolute values of the entries of the kth row of Tij is at most the kth 
diagonal entry of Tii for each iJ, 

we speak of a sub-virtualizer. If A = (aij) is an n x n symmetric matrix and T a virtualizer or 
sub-virtualizer as above, we shall call the matrix 

a virtualization or sub-virtualization of A. If the virtualizer or sub-virtualizer T has all 
diagonal entries equal to a fixed number 1 /m (which, in particular, implies that the Tij are 
all m x m matrices), we shall call it uniform, and speak of a unijorm (sub-)virtualization. 

We call a symmetric rational matrix A virtually singular if it has a virtualization which is 
singular. It would appear that there are variations of this concept - a considerably weaker 
one using sub-virtualization and a stronger one using uniform virtualization - but we shall 
show that they are all equivalent. We call A supersingular if it annihilates a vector with no 
zero component and we call it virtually supersingular if it has a virtualization with this 
property. Again, we shall see that the “uniform” and “sub-” variations of this concept are 
equivalent. 

THEOREM F. Suppose M is a prime graph manifold with no selfpastings (“very good” is not 
needed) which is not a Sol- or Nil-manifold and A = A(M) is its decomposition matrix. Then 
M is virtually fibered if and only if its decomposition matrix A is virtually supersingular. 

A cover of M has a horizontal surface if and only if A is virtually singular. 
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We can give a rather simple criterion for virtual singularness of A. A is a matrix with 

nonnegative off-diagonal entries. By reordering indices so alI = a.. = a,, = 0, 
a rt l,r+l, ... ,% > 0, 4+1,,+1, *.. , a,,” < 0, we may put A in the form 

such that Q has zero diagonal entries, P has positive diagonal entries, N has negative 
diagonal entries. Let P_ be the result of multiplying the diagonal entries of P by - 1. 

THEOREM G. The above Afails to be virtually singular ifand only ifQ is void and P_ and 
N are both negative dejnite. 

For example, this says that 

A= 

is virtually singular if and only if 0 < UC < b’. The condition for virtually supersingular is 
the same except that when UC = 0 then A is virtually supersingular if and only if a = c = 0. 
See Proposition 6.7. 

The property that A has nonnegative off-diagonal entries is necessary in Theorem G, but 
Proposition 6.2 shows that if A and A’ are symmetric rational matrices that differ only in the 
signs of their off-diagonal entries, then one is virtually singular or supersingular if and only 
if the other is. 

I do not as yet know as simple a condition for virtually supersingular as that of Theorem 
G. An additional necessary condition is given by Proposition 6.6. 

Theorem 3.2 of [9] gives a sufficient condition for failure of virtual fibration. In our 
language it is that each diagonal entry of the decomposition matrix A exceeds in absolute 
value the sum of absolute values of the other entries in its row. This result follows from 
Theorem F, since the condition is clearly inherited by virtualizations of A and is easily seen 
to imply that A is nonsingular. The computations in the proof of the underlying Theorem 
3.1 of [9] can be refined to give a direct proof of our Theorem 4.1.2, not involving plumbing. 

2. GEOMETRIC 3-MANIFOLDS AND THEOREM A 

We shall only consider oriented manifolds. Let M be a Seifert fibered 3-manifold with 
unnormalized Seifert invariant (g; /Illal, . . . , /3,/aV} (we follow the convention that g < 0 is 
nonorientable genus). Recall (e.g. [ 12,131) that M may be considered as a circle bundle over 
the orbifold with signature {g;q, . . . , a,}. The euler number of this Seifert fibration is 

e = - i$l Bilai 

and the orbifold euler characteristic of the base is 

x = e(g) - i 1 - 1 
i=l ( > % 
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where e(g) = 2 - 2g or 2 + g accordingly as g > 0 or 
according to the following scheme. 

g < 0. M has geometric structure 

e#O 
e=O 

x>o x=0 x<o 

S3 Nil PSL 

S2XlE' w3 WXE' 

With a natural normalization of the metric on these geometries the volume of M is 
4n2 x2/l e) if eX # 0 and is indeterminate, depending on the geometric structure, otherwise 
(cf. [12]). The normalization we are using is to give s3 and PSL the natural metric on the 
universal cover of the unit tangent bundle of S2 and I-I2 respectively. For S3 this gives 
curvature i. This volume formula is just Fubini’s theorem: volume = (area of base) x (length 
of fiber) since the fiber length is 2nl~/el by the construction of the geometric structure on 

M in [12] or [13]. 
The fact that two Seifert manifolds belonging to the same geometry are commensurable 

(the commensurability cannot in general be chosen to preserve the geometric structure) 
seems to have been first observed in the 60’s by Macbeath, though not in terms of 
geometries. The proof is easy nowadays - the main observation is that M is covered by 
a circle bundle over a 2-manifold obtained by pulling back the Seifert fibration to a mani- 
fold cover of the base orbifold. For circle bundles the commensurability claim is easy. 

The seventh nonhyperbolic 3-manifold geometry is Sol. A compact orientable manifold 
for this geometry is either a T2-bundle over S’ or is double covered by one. Moreover, the 
monodromy A:Z2 + Z2 of the fibration is hyperbolic, i.e. it has trace ) tr(A)I > 2. The 
eigenvalues of A therefore generate a real quadratic field. It is easy to see that this field is 
a commensurability invariant. 

One can recover M up to commensurability from this field k as follows. If tr(A) < - 2 
we can take a double cover of M to replace A by A2 which has positive trace. The two real 
embeddings of k give a map of k to lQ2 (alternatively, think of IK!’ as k Oas R) and the 
restriction of this map to the ring of integers Ok embeds Ok as a lattice A c [w2. The group of 
units Co,* acts by multiplication on R2 and A and hence on the torus [w’/A. The monodromy 
of the fibration of M is an element of this group. Since 0: is infinite cyclic times torsion, the 
commensurability claim follows. This arithmetic description of these torus bundles relates 
to their occurrence as links of cusp singularities of Hilbert modular surfaces; see [14] for 
more details. 

The only ones of the above geometries that admit complete finite volume non-compact 
geometric manifolds M are W2 x IE’ and PSL. The behavior of volume in this case is as 
follows. Both the above geometries fiber over I-I2 and these fibrations have natural 
connections - the obvious horizontal connection in the product case and the lift of the 
Riemannian connection for W2 in the PSL case. Consider a horospherical section S’ x h at 
each cusp of M (h represents the Seifert fiber). The connection induces linear foliations on 
these tori. Thus, if we cut off the cusps along these horospherical tori we get a compact 
Seifert fibered 3-manifold MO with boundary plus a linear ,foliation of each boundary 
component. The euler number of the Seifert fibration is defined in this situation. It vanishes 
precisely in the W2 x E’ case and otherwise the volume formula 47r2 IX2/el is still valid. 

The definition of euler number for this situation is as follows. If a section to the Seifert 
fibration is chosen at each boundary component of MO and the linear foliations parallel to 
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these sections are used then the euler number is the euler number of the closed Seifert 
manifold resulting by Dehn filling the boundary components of Me using these sections as 

meridians. Suppose other linear foliations of the boundary tori Ti are given. They have 
slopes ri E [w with respect to the chosen sections. (Slope is defined so that the sections have 
slope 0 and the Seifert fiber has slope co.) The euler number for M with respect to these 
foliations differs from the euler number with respect to the sections by Cri. In the case of 
rational slopes this is the same as the euler number for the closed Seifert manifold obtained 
by Dehn filling the boundary components of M0 using closed leaves of the boundary 
foliations as meridians. 

M has geometric structures for any choice of linear foliations at its cusps of slope # 00, 
and the validity of the volume formula follows by the same argument as in the compact case 
when the foliations have integral slopes and then follows by a covering argument when the 
slopes are rational and by continuity in general. 

The covering argument uses the following lemma, which was proved in [lS] in the 
closed case and follows similarly in general; see also [9]. 

LEMMA 2.1. Let zN + M be a fiber preserving map of orientable Seifert manifolds over 

orientable bases which preserves linear foliations on boundary tori and let f be the degree of 
II restricted to a fiber and b be the degree of the induced map of base surfaces. Then 

e(N) = be(M)/f 

3. MULTIPLICATIVE INVARIANTS OF GEOMETRIC DECOMPOSITION 

For this section M will be a closed connected orientable 3-manifold. If M is prime (i.e. 
not a nontrivial connected sum) the toral decomposition of Jaco-Shalen and Johannson 
[S, 61 cuts M open along a minimal collection of embedded incompressible tori into 
a collection of simple manifolds and Seifert fiberable manifolds.* We make the convention 
that if M has a sol geometric structure (i.e. it has a double cover that fibers over S’ with 
hyperbolic monodromy) we do not cut it. Note that the total space SMb of the tangent circle 
bundle to the Mobius band admits another Seifert fibration. Namely, it fibers over the disk 
with two exceptional fibers of degree 2, obtained by lifting the obvious circle action on the 
Mobius band to SMb. When SMb occurs as a piece in the toral decomposition of 
a manifold, we shall always take this Seifert structure on it. 

It is often more natural to cut M along tori and Klein bottles into pieces which admit 
finite volume geometric structures (or at least conjecturally admit such structures: in the 
case that M is non-Haken and not Seifert fibered M conjecturally has a hyperbolic 
geometric structure and we do not cut it). This differs from the toral decomposition above in 
that SMb is not allowed as a piece of the decomposition - rather than cutting along the 
boundary torus of such a piece we cut along its core Klein bottle, which splits it into a toral 
annulus. We call this the geometric decomposition. 

We shall use both the geometric and the toral decompositions. The geometric decompo- 
sition is the more natural decomposition in that, for example, it behaves well with respect to 
covering spaces. The toral decomposition is more convenient for discussing plumbing and is 
discussed in the next section. 

*This is a very slight modification of the decomposition as Jaco and Shalen described it. 
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M is a graph manifold if it is a connected sum of prime manifolds whose geometric 
decompositions consist only of pieces corresponding to the seven nonhyperbolic geometries 
(equivalently, their toral decompositions have only such pieces or SMb pieces). 

If the geometric decomposition of a prime graph manifold M is nontrivial, i.e., M is not 
itself geometric, then it decomposes M into pieces that belong to the W2 x E’, PSL pair of 
geometries. Each piece comes with a linear foliation of its boundary tori, namely the 
restriction of the Seifert fibration of the adjacent piece. It thus has a well defined euler 
number for its fibration, and also a geometric structure of type Hz x IE’ or PSL, well defined 
up to boundary-foliation-preserving deformation. These geometric structures lift appro- 
priately in covers, so the sum of the volumes of the PSt components is a multiplicative 
invariant, which one might call the PSL-volume of M. It has been studied in a different 
description in [9]. We can split this invariant into two orientation sensitive multiplicative 
invariants - sum over the PSI, components with positive euler number and sum over the 
PSL components with negative euler number. We shall call the difference of these two 
invariants the signed PSL-uolume. If we denote by V(M) and u(M) respectively the sum of 
IX2/el or X2/e over the PSL components of M, then the PSL-volume is 4x2 V(M) and the 
signed PSL-volume is 4x2 u(M). 

We can define a further refinement of these invariants. Consider the graph with a 
vertex for each component of the geometric decomposition of M and an edge for each 
cutting torus or Klein bottle. Call this the geometric decomposition graph to distinguish 
it from the (toral) decomposition graph of the Introduction. If it has no cycle of odd length 
we shall say M is a bipartite graph manifold. In this case, by taking alternate components, 
we can partition the components of the geometric decomposition into two sets such 
that the pieces within each set are disjoint from each other. Then the v-invariants u1 (M) 
and v2(M) of the two parts of this partition, ordered so Iul (M)I < Iv2 (M)I, are multi- 
plicative invariants, and similarly for the V-invariants V1 (M) and I/2 (M). These invariants 
are defined for a nonbipartite graph manifold M as follows: any nonbipartite graph 
manifold is double covered by a bipartite one, so one takes half the invariant of the double 
cover. For a nonbipartite graph manifold it is easy to see that u = u1 = u2 and V = 
Vi = V2. 

The ratio of any two multiplicative invariants is a commensurability invariant. In 
particular, vi/u2 E [ - 1, l] u {indeterminate} is the commensurability invariant of Theo- 
rem B. 

We shall show that the other invariant p2ele2 of Theorem B is also a special case of 
a more general commensurability invariant. 

Let M be a bipartite graph manifold (this is not essential, but leads to no restriction, as 
we will see, and simplifies orientation issues). Call the two classes of components of the 
geometric decomposition of M the “left geometric components of M” and “right geometric 
components of M”. Each separating torus T of the geometric decomposition of M separates 
a left geometric component from a right one. We call them M 1 (T) and M2 (T). Let p (T) be 
the intersection number in T of a fiber of Ml (T) and a fiber of M2 (T). Define 

1 xWl(T)) x@fdT)) 
e(M)’ = (T:~,(~)~,v)+~} IPWI e(M1CU) e@fdT)) ’ c - 

We claim: 

PROPOSITION 3.1. The above invariant 8(M) is a multiplicatiue invariant. In particular, we 
can define f?(M) for an arbitrary prime graph manifold M as half of 0 of the bipartite cover. 
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Proof: Suppose K : N + M is a d-fold cover. Let T’ be a separating torus of N and define 
Ni (T’) and N2(T’) to be the geometric components that meet along T’ and p(T’) to be the 

intersection number in T’ of their fibers. Letfi(T’) be the degree of x restricted to a fiber of 
N,(T’) for i = 1,2. Let T be the image torus in M. An easy calculation (cf. e.g. [ll]) shows 
that the intersection number of a fiber of Ni (T’) and a fiber of Nz (T’) in T’ is p(T’) = 

p(T) _f~ (T’) h(T’)ld(T’). Lemma 2.1 implies X(NI (T’))Ie(Nl (T’)) = VI (T’)Ix(M, (T))/ 
e(M1 (T)) and x(Nz (T’))/e(N2 (T’)) = If2(T’)IX(M2(T))/e(M2 (T)). It follows that 

1 WI V’)) x(Nz (T’)) If1 W)IXWI (TN If2 G’YxW2 (TN 1 _ 
IN”N 4N1 V’N eW2U’)) IP(T’)I 441 CO 442 (T)) 

W’) AMI 6’3) XWZ (TN 1 _ 

MT)I 4Ml (TM 4M2 (TN ’ 

Summing over the T’ which cover T, we see that 

1 XVI WI x(N~(T’)) = d 1 XWI (0) AM2 (TN 
Ts c n-L(T) PGYI W1V’)) 05 (T’)) = I IP WI 4M, (0) 4M2 (TN ’ 

Summing over all T for which e(M1(T)) e(M, (T)) # 0 now proves the proposition. 0 

Now for the manifold of Theorem B we have that 8(M) = x1 Xz/(lplele2), u1 = xf/el, 

and v2 = X$/e2 are all multiplicative invariants, so p2e1e2 = u1u2/82 is a commensurability 
invariant. 

Remark 3.2. For a general prime 3-manifold we can still define the above invariants as 
well as invariants r$ and ut analogous to u1 and u2 but based on hyperbolic volume of the 
hyperbolic components of the two parts of the bipartite decomposition. Seifert components 
of the geometric decomposition that are adjacent to hyperbolic components do not have 
linear foliations on the corresponding boundary tori, so they have indeterminate euler 
number and indeterminate geometry. They therefore do not contribute to the invariants 

rJl,U2, VI, v2,fJ 

Note that our multiplicative invariants for graph manifolds all vanish if all components 
of the geometric decomposition have e = 0. In [l l] a multiplicative invariant is defined for 
graph manifolds which does not have this property. In fact it is insensitive to the euler 
numbers of the components of the geometric decomposition. 

4. TORAL DECOMPOSITION AND PLUMBING 

If we use the toral instead of the geometric decomposition of a prime graph manifold, we 
have linear foliations on the boundary tori of each piece as before, induced by adjacent 
Seifert fibrations, so we can again define euler numbers for the pieces. Recall that we always 
take the Seifert fibration with two degree 2 exceptional fibers on SMb pieces. The euler 
number of a piece adjacent to a SMb piece differs from its euler number in the geometric 
decomposition, but other euler numbers are the same. 

Assume now M is a graph manifold that does not belong to the Sol geometry. We shall 
say M is good if it is prime and 

l every component of the toral decomposition is Seifert fibered over orientable base. 
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We shall say it is very good if in addition: 

l the fibers of the pieces can be oriented so that when we view a separating torus from 
one side, a fiber in the torus of the Seifert structure on the near side has positive 
intersection number in the torus with a fiber from the far side. 

Note that this makes sense, since if we view a torus from the opposite side we reverse its 
orientation and also reverse the order of the two relevant fibers, thus not changing the 
relevant intersection number. Finally, we say M has no self-pastings if 

l there is no SMb piece in the toral decomposition (equivalently, no Klein bottles in the 
geometric decomposition, so toral and geometric decomposition are the same); 

0 no Seifert piece meets itself along a separating torus. 

It is easy to see that any prime non-Sol graph manifold M has a very good double cover 
with no self-pastings. Indeed, each contravention of one of the above items leads to 
a generator of H’ (M; Z/2) and we take the double cover corresponding to the sum of these 
generators. 

Suppose M is good. Denote the pieces of the toral decomposition MI, . . . , M,, with 

euler numbers el , . . . , e,. Define an s x s matrix S = (sij) as follows: if i # j then sij is the sum 
of reciprocals of the above fiber intersection numbers over all tori that separate Mi from 
Mj and if i = j then sii = ei + 2 x (sum of reciprocals of fiber intersection numbers at tori 
that separate Mi from itself). This matrix is called the reduced plumbing matrix for M. For 
a very good graph manifold with no self-pastings the reduced plumbing matrix agrees with 
the “decomposition matrix” of the introduction. 

The following is a more detailed version of Theorem E of the introduction, 

THEOREM 4.1. Let M be a closed oriented graph mangold which does not Jiber over the 

circle with torus jiber. 
1. M is a singularity link gand only ifit is very good and its reduced plumbing matrix is 

negative dejinite. (For a T2 bundle ooer S’ the condition is that the monodromy be conjugate to 

with b > 0 or have trace > 2, cf: [3].) 
2. M fibers over the circle if and only if it is good and its reduced plumbing matrix is 

supersingular. 
3. If M is good then it has a horizontal surface ifand only ifits reduced plumbing matrix is 

singular. 

Proof We may assume M is prime, since singularity links are prime by [3] and oriented 

manifolds that fiber over the circle are prime since, except for S’ x S2, they have universal 
cover lR3. 

We refer to [3] for details on plumbing. The condition for M to be a singularity link is 
given in [3, p. 3331. It is that M can be represented by plumbing bundles over orientable 
surfaces according to a plumbing graph A with positive edge signs and negative definite 
intersection matrix S(A). Recall that a node of A is a vertex with nonzero genus weight or 
with valency > 3 (valency is number of incident edges). The components of the complement 
of the nodes in A are the maximal chains of A. 
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We shall say the above negative definite plumbing graph A for M is minimal if it admits 

no “blowing down,” that is there is no vertex on a chain with euler weight - 1, [cf. 3, 

Section 41. This minimal plumbing graph is unique; we shall call it the normal firm 

plumbing graph. This is not exactly what was called “normal form” in [3] in that the other 
Seifert fibration of SMb pieces was used there. As described in [3] and [4], the nodes of the 
normal form plumbing graph correspond to the Seifert pieces of the toral decomposition. 

More generally, let M be any prime graph manifold that is not a torus bundle over S’. 
[3] gives us a unique “normal form” plumbing graph for M up to allowable changes of edge 
weights. As described above, we modify the normal form of [3] by taking the other Seifert 
fibration on SMb pieces. What this means is that any valency 1 vertex with genus weight 
-. 1 should be replaced appropriately by a subgraph of the form 

-2 
-- 

-2 

as described in [3, Theorem 8.21. The normal form plumbing diagram is then characterized 
by being minimal, having no valency 1 vertex with genus weight - 1, and having only 
negative euler weights on chains. If M is good, then the plumbing diagram has no 
nonorientable (i.e. negative) genus weights, so the intersection matrix S(A) of the plumbing 
is defined, as in [3]. Its (i,j)-entry is the sum of the edge weights f 1 of the edges from vertex 
i to vertex j if i #j and is the euler weight at vertex i plus twice the sum of edge weights of 
edges from i to i if i = j. 

In [4, Section 211 a procedure is described to diagonalize a matrix of the form S(A) when 
A is a tree. We can extend this to partially diagonalise the intersection matrix of any 
plumbing graph as follows. 

Suppose we have a chain of the plumbing graph A as follows (by convention, weights in 
brackets are genus weights, omitted genus weights are 0 and omitted edge weights are + 1): 

Then the corresponding 

1 0 ... 

0 1 -f ... 

By adding suitable multiples of the middle row and column to the preceding and following 
row and column we get 

. . . . . . . . . . . . . . . 

. . . - (e - l/cl) 0 l/e1 ... 

. . . 0 - cl 0 ..I 

. . . llel 0 - (f- l/el) ... 

. . . . . . . . . . . . . . . 
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l 
. . . . . . . . . . . . 

(-q)@ 1:: -“lie VeJ l/e1 ... 

1 - (f- l/er) a.. 
. . . . . . . . . . . . 

r 

More generally, if we start with the chain 

. -e --el -2 
‘>-___. 

-ek -f , ’ 

--- 
’ ’ [gl [hl ’ ’ 

then an inductive argument shows that S(A) is equivalent to 

(-er)@( -(e2--l-))@ . . . CB(-[ek,ek-l...,eJO 

. . . . . . . . . . . . i 

where p/q = [eI, . . . ,eJ and dqt=Cek,ek-I, . . . . eI]. We are using the standard con- 

tinued fraction notation 

( 

. . . . . . . . . . . . 

. . . - (e - 4/P) l/p ... 
* . . l/P - cf- 4’/P) *.* 

(*) 

Cer, e2, . . . ,ekl = el - 
1 

1 * 
e2 - ___ 

1 
. . . -- 

ek 

If there are c ( - l)-edges on the chain (up to equivalence we can assume c = 0 or 1) then the 
analysis is the same except that the entries l/p in the matrix (*) are replaced by ( - l)‘/p. 

Suppose the e andfweighted vertices are nodes of the plumbing graph, so by [3] they 
correspond to Seifert pieces for the toral decomposition of M. By Lemma 5.3 of [3] the 
indicated chain corresponds to pasting the two Seifert pieces together along a common 
torus by the map with matrix 

(-L)‘( yp, pq.) 
with respect to (base) x (fiber) coordinates in each piece, where p’ = (qq’ - 1)/p. Hence 
- q’/p is the appropriate contribution to the euler number at the e-node, - q/p is the 
appropriate contribution at thef-node, and ( - 1)‘~ is the intersection number of a fiber 
from the e-node with a fiber from thef-node. The analogous analysis holds if thef-node is 
absent, so the chain ended at the ek-vertex (this case was done in [4]). 

We thus see that if we do the above procedure to every maximal chain of the plumbing 
graph then the resulting matrix (*) is precisely what we called the “reduced plumbing 
matrix” for M. Thus the plumbing matrix S(A) is equivalent to the direct sum of a negative 
definite diagonal matrix and the reduced plumbing matrix. Thus the latter is negative 
definite if and only if the former is, completing the proof of the first part of the theorem. 
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Part 2 of the theorem was proved in reference [14] of [3], which was never published, 
but most of the ingredients have appeared elsewhere. We describe that proof here. As 

mentioned in the introduction, another proof can essentially be extracted from the proof of 

Theorem 3.1 of [9]. 
By [4, Theorem 4.21 a map of a graph manifold to S’ is homotopic to a fibration if and 

only if its restriction to each Seifert component of the toral decomposition is homotopic to 
a fibration. It is well known that a map of a Seifert fibered 3-manifold is homotopic to 
a fibration if and only if it is transverse to some Seifert fibration of the manifold, that is, it 
has nonzero degree on the fibers (cf. e.g. [lS] - this goes back to the Conner Raymond 
theory of injective circle actions in the 1960s). Since we are not considering torus bundles 
over S’, the Seifert manifolds we need to consider all have unique Seifert fibered structures 
except in the case of SMb, in which case we have specifically chosen the Seifert fibered 
structure that fibrations to the circle are transverse to. Thus, for our graph manifold M, 

a map to the circle is homotopic to a fibration if and only if it has nonzero degree on each 
fiber of a Seifert component of the toral decomposition. In particular, this forces these 
Seifert components to have orientable base, so M is good. The theorem will thus be proven 
once we show the following lemma. 

LEMMA 4.2. If M is a good graph manifold and the Seifert pieces of its toral decomposition 

are MI, . . . , M,, then the following are equivalent for an integer tuple (11, . . . , I,): 

(i) (4, . . . , 1,) occurs as the tuple of degrees on the typical jibers of the Mi of some map 
M + S’; 

(ii) (4, . . . ,I,) occurs as the tuple of intersection numbers of some oriented embedded 

surface S c M with the typical fibers of the Mi; 
(iii) (11, . . . , Is) is annihilated by the reduced plumbing matrix for M. 

Proof The equivalence of(i) and (ii) results by associating to a mapf: M + S’ a smooth 
fiber of a smooth map homotopic to f and conversely, associating to an embedded oriented 
surface S c M its dual cohomology class and then using the identification 
H’ (M;Z) = [M, S’] to associate a map to S’. 

To see the equivalence with statement (iii), consider the normal form plumbing for 
M and let X be the corresponding 4-manifold obtained by plumbing disk bundles, so 
M = 8X. The long exact cohomology sequence for the pair (X, M) gives an exact sequence 

H’ (M) + Hz (X, M) + H2 (X) . 

By PoincarC: duality, HZ (X, M) = Hz(X) which is the free abelian group on the funda- 
mental classes of the base surfaces of the bundles being plumbed. Identifying H’ (M) with 
[M, S’], the map H1 (M) + H’(X, M) thus associates to a homotopy class cfl E [M, S’] 
a tuple (m,, . . . , mk) of numbers, one to each bundle being plumbed. We claim mi is the 
degree off on the fiber of the ith bundle. Indeed, this follows from the commutative diagram 

H’ (M) + H’(X, M) 

1 1 

H’(S) + H’(I), S) 

where I) is a fiber of the corresponding disk bundle piece of X and S = aD. Thus, if we 
number vertices of the plumbing diagram A so that vertices 1, . . . , s are the nodes, then 

mt, . . . , m, become the numbers II, . . . , 1, of the lemma. 
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On the other hand, rewriting H2 (X, M) + H2(M) as H2 (X) -+ Hom(H, (X, Z)) via 
Poincare duality, it becomes the intersection form, so (ml, . . . , mk) occurs as the image of 
some Lfl E [M, S’] if and only if it is in the kernel of the plumbing intersection matrix S(A). 
Since, with the given ordering of the vertices of A, our reduction of S(A) to the reduced 
plumbing matrix plus a diagonal matrix only added multiples of rows and columns beyond 
the first s of them to other rows and columns, the first s components of any vector 
annihilated by S(A) are not changed during the reduction. This proves the lemma. 0 

5. PROOF OF THEOREMS B AND C 

Let M be an oriented non-Seifert-fibered manifold obtained by pasting two Seifert 
manifolds MI and M2 with boundaries T2 along their torus boundaries. If MI and M2 both 
equal SMb then M is double covered by a torus bundle over S’, while ifjust one of them, say 
MI, is SMb, then M is double covered by a manifold obtained by pasting two copies of M2. 
Thus the assumption of Theorem B that neither part is SMb is no real restriction. We now 
make that assumption. Then the decomposition M = M, u M2 is its geometric decomposi- 
tion. 

We have already seen in Section 3 that vi/v2 is a commensurability invariant and that 
p2ele2 also is if ele2 # 0. Note that the properties that one or both of el and e2 are zero are 
also commensurability invariant since they are equivalent for a cover to the properties that 
some or all the components of the geometric decomposition have e = 0. 

If el # 0 then the sign of el is an orientation preserving commensurability invariant 
except perhaps when Ivi/v21 = 1, since in this case we can exchange the indices 1 and 2 
which will change the sign of el if el and e2 have opposite signs. Thus part 3 of the Theorem 
follows from part 2. 

To see that the invariants determine M up to commensurability the following lemma 
will be useful. 

LEMMA 5.1. Let X + F be a Seifertjbration with oriented total space, with 8F consisting 

of r copies of St, and with a section to the$bration given on dF, so e(X) and x(X) are defined 
(recall x(X) means the orbifold euler characteristic of F). Assume also that x(X) < 0. Then 
there exist positive integers do, no such that don0 e is integral and the following is true. For any 

positive integers d, n, m with do dividing d, no dividing n, and m dividing dne, there exists 
a circle bundle X’ + F’ with connected orientable base F’ and a commutative diagram 

X’ -J-+X 

1 1 
F’ - F 

satisfying: 

(i) X’ --f X is a covering of degree dnm; 
(ii) aF’ consists of rd circles; 

(iii) restricted to each boundary component T2 = base xjiber of x’ the map n: is pn x pm 
where p,, is the connected n-fold cover of the circle; 

(iv) x(X’) = dnX(X); 
(v) e(X’) = dne(X)/m. 

Proof: Let F. + F be a finite normal covering of the orbifold F by a smooth oriented 
2-manifold. We may choose it to have the same degree no on each boundary component (e.g. 
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by taking a characteristic cover). Then each boundary component of F is covered by 

d,, boundary components of FO, where dono is the degree of FO + F. We may assume the 
cover is chosen so rdO is even. We may also assume no is sufficiently large that 

no x(X) < - r. Since the pullback of X to F. is a circle bundle of euler number donoe (X), 
this number is integral. 

Let d and n be multiples of do and no. We shall show first that a covering as in the lemma 
exists for m = 1. The euler characteristic of F. is donoX which is less than rdo, so if we fill 
in the boundary of F. by disks we get a surface F, of negative euler characteristic. Thus 
F. admits a connected (d/d,)-fold cover, and we let F1 be the inverse image of F. in this 
cover. Then F1 has rd boundary components. Choose a map of H’(F1) to Z/(n/no) which 
maps each boundary component to a generator (we made this easy by arranging that dr is 
even - map half the boundary components to 1 E Z/(n/n,) and half to - 1 E Z/+/n,)). Let 
F’ -+ F1 be the induced cyclic cover. Let X’ + F’ be the pull-back of X + F via the 
composite map F’ -+ F. It is easy to see that this satisfies the lemma for m = 1. 

Now if m # 1 is a divisor of e(X) = dne(X) then we replace the above X’ by a fiberwise 
m-fold cyclic cover to get the desired X’. 0 

The above proof shows: 

SCHOLIUM TO 5.1. If, in the above lemma, F is a smooth oriented surface with r boundary 
components (so X -+ F is a smoothjibration) and r is even and x(X) < - r, then we may choose 

do = no = 1. 

We call the cover given by Lemma 5.1 a (d, n, m)-cover. Note that the choice of section 
on 8X affects the behavior of this cover on 3X as well as the value of e(X). In applications of 
the lemma to geometric components of graph manifolds this e(X) is usually not the euler 
number with respect to the boundary foliation that we are interested in. 

Returning to our manifold M = Ml u M2, we choose sections to the Seifert fibrations on 
aM1 = aM2. Let no and do satisfy Lemma 4.1 for both Ml and M2, with do even and 
n,, xi < - 1 for i = 1,2. If n is a multiple of no and d a multiple of do then Ml and M2 have 
(d, n, 1) covers. They therefore have (dn, n, n) covers, which we will denote A, and fiz. Since 
an (n, n)-cover of the torus is compatible with any gluing map, we can paste fi, to &i, to get 
a manifold fi = fi, u j@, that covers M. The fiber intersection number in each separating 
torus is still p. That is, in each such torus a fiber of fir intersects a fiber of tiz in an orbit of 
the Z/p-action on fibers. If we factor by this action on each side we get 

fi = &V/P) = fi,/(&+-JGY~lP) in which the fiber intersection number in each torus 
is 1. Lemma 2.1 tells us how the euler numbers relevant to our geometric decompositions 
behave (these are not the euler numbers with respect to the sections chosen above). We 
summarize the result by representing A? by the plumbing diagram 

with e”i = dnpel, C2 = dnpe2, & = dn2X1, jf2 = dn2 x2, and where the double line with label 
dn is shorthand for dn connecting edges. 

We can now use the fibers of each half of A? as sections in the boundary components of 
the other half. We apply the above Scholium to Lemma 5.1 to the two halves of 3, taking 
a (d’, nl, n2)-cover of the left half and a (d’, n2, nr)-cover of the right half. Then the results still 
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match up with fiber intersection numbers 1 in the boundary tori to give a cover i@ of ii?. 
ri;r is represented by a plumbing diagram 

[ii11 cx21 

with 6 = dd’, I?~ = Gnpq e, /n2, e2 = 6npn2e2/nI, t1 = 6n2nIX1, ji2 = 6n2n2X2. The only 
restriction on 6, n, nI, and n2 by our construction was that n be a multiple of no and 
6 a multiple of do for some fixed no and do. 

Now suppose M’ = M; u M; is another manifold as in Theorem B with the same 
invariants p2eIe2 and u1/u2 as M. We construct I@’ commensurable with M’ as above, but 
using numbers 8, n’, n;, and n;, and we need to show that we can choose these numbers so 
li;r and ri;i’ are isomorphic. 

Suppose first that p2eIe2 # 0. Let p’, e;, e;, xi, xi be the invariants of M’, so 

p’2e;e; = p2eIe2 and (&2/e;)/(X;2/eL) = (X12/e1)/(X22/e2). We first choose n and 6 as 
above that work for both M and M’ and fix n’ = n, 6’ = 6. We choose nl, n;, n2, n; to satisfy 
nl/n; = xi/x1 and n2/n> = x;/x2. We claim that iU and h?i’ then agree up to orientation. 

By reversing the orientation of M’ if necessary we may assume el and e’l have the same 
sign. Then e2 and e; do also. The equations z1 = 1; and X2 = & are immediate from our 
choices. To show F1 = Zi we consider the product of (P1/Zi)2, (p” e; e;/p’ ele2), and 
(u1/u2)/(u~/u~). It suffices to show this product equals 1, since the second two multiplicands 
are 1 by assumption. Applying the definitions of all the ingredients in terms of the ei, ni, etc. 
and simplifying leads to (n:n;2x:x;2)/(ni nF&‘), which is 1 by the choice of the ni and nf. 
Similarly g2 = 2;. 

The above argument also works if el = e2 = 0. If e2 = 0 and el # 0 we again arrange 
that ei and e; have the same sign. Then choose a suitable n = n’ and then choose 

S/S’ = (x;4 xl)/(x2clx;), 44 = (el x9/(4 xi), and 0; = (x;2x24/(x?xX). It is easily 
verified that this does what is required. 

To complete the proof of Theorem B we must show that all possible values of p2ele2 
and o1 /v2 whose product is a square can be realized. The cases when el e2 = 0 are trivial, so 
assume e1e2 # 0 and let the above square be r”/s2. Once one has chosen el, e2, and 
p realizing p2el e2, to realize v1/v2 one must choose x1 and x2 so that x1/x2 = Ir/(spe2)l. But, 
it is easy to see that for given e, the set of x for which a Seifert manifold with invariants e and 
x exists includes almost all negative integers. So appropriate x1 and x2 can be found as 
integers. 0 

Proof of Theorem C. Suppose M is as in Theorem C and is neither Seifert fibered nor 
covered by a torus bundle. We may assume M is the union M = Ml u M2 of two geometric 
components, pasted together along their boundaries, for if M has just one geometric 
component then it has a double cover of this form. We may use Lemma 5.1 to replace 
MI and M2 by suitable (dn, n, n) covers to arrange that MI and ii4, both have orientable 
base. Moreover, since X(Mi) is multiplied by dn in this process and &Il/p(T)I is only 
multiplied by d, by taking n sufficiently large we can assume that xz: = X(Mi) + &I l/p(T)1 
is negative for i = 1,2. Let Ml be the result of Dehn filling Ml by pasting a solid torus to 
each boundary component T of Ml with meridian the fiber of M2 in T. Let M: be defined 
similarly. Then M+ is Seifert fibered over an orbifold F+ of orbifold euler number xl. 
Choose a number dI so that F: and F: both have dl-fold covers by smooth 2-manifolds 
F: and F’,’ and let ii?: + FT and fi: + F: be the pulled back Seifert fibrations. 
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Let T be a boundary component of Mi, considered as a subset of M: and T some torus 
in fi: covering T. In T we have the fibers S1 and SZ of M1 and M2, which intersect with 

intersection number p(T). Let p = Ip( T)I. The intersection number equation S1.S2 = f p is 
equivalent to saying that the homology classes of Sr and S2 generate an index p subgroup of 
H1 (T). On the other hand, T + T is a p-fold covering and S1 and SZ are both trivially 
covered in this covering. It follows that this covering is the covering classified by the above 
subgroup of H1 (T). In particular, we obtain the same covering when we consider T as 
a boundary component of Mz. It follows that if fii is the inverse image of Mi in @’ (i.e., the 
result of removing the inverse images of the solid tori added by Dehn filling), then fi, can be 
pasted to fil, to obtain a manifold @ = i@, u fii, that covers M = M1 u Mz. All fiber 
intersection numbers in ii? are now + 1. By replacing l@ by a commensurable manifold we 

can make the fiber intersection numbers all + 1 (see remarks following the proof of 
Proposition 6.2). We then have a manifold as in the previous proof which covers a manifold 
of the type discussed in Theorem B. 0 

Remark. This proof can be applied to any graph manifold to show that it is covered by 

one whose Seifert components are all circle bundles over orientable surfaces and whose fiber 
intersection numbers are all 1. This answers a question of J. Wahl. 

6. VIRTUAL FIBRATION OF GRAPH MANIFOLDS 

In this section we will prove Theorem F and deduce Theorem D from it. We first prove 
some basic results about virtualization of matrices. Proposition 6.2 was promised in the 
Introduction. 

LEMMA 6.1. 1. A virtualization of a virtualization of A is a virtualization of A. 

2. Zf A is singular or supersingular then so is any virtualization of A. 

3. If A and A’ are virtualizations of A then there exists a matrix A which is a virtualization 

of both A and A’. 

Proof Part 1 is easy and left to the reader. For part 2 note that if A annihilates 

(v,, *.. , II,)’ and T = (Tij) is a virtualizer, then the T-virtualization of A annihilates 
(VI, . . . ) VI, . . . . . . ) v,, . . . , v,)’ with ni repeats of VI, where ni x ni is the size of Tii. Finally, 
for part 3 observe that if T = (Tij) and T’ = (T’ij) are virtualizers then T” = (Tij@ T’ij) is 
a virtualizer which is a virtualization of both T and T’. q 

PROPOSITION 6.2. If A is a symmetric rational matrix then the following are equivalent: 

(i) A has a supersingular uniform virtualization. 

(ii) A has a supersingular virtualization. 

(iii) A has a supersingular sub-virtualization. 

The corresponding statements with “supersingular” replaced by “singular” are also 

mutually equivalent. 

Proof We shall prove the supersingular case. The singular case is the same proof. 
Clearly (i) * (ii) = (iii). The fact that (ii) * (i) follows easily using parts 1 and 2 of 

Lemma 6.1. We leave this to the reader. More interesting is the implication (iii) * (ii). We 
shall give a purely algebraic proof of this implication and then explain the topology 
underlying it. First some preparatory comments. 
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Suppose B is a sub-virtualization of A which is supersingular. Then B is obtained from 
a virtualization B. of A by multiplying each off-diagonal entry by a suitable rational 
number between - 1 and 1. We temporarily call this operation on BO “reduction.” It 
suffices to show that B. has a virtualization which is supersingular, since a virtualization of 
a virtualization of A is a virtualization of A. For easier notation we replace B,, by A and thus 
assume A has a reduction A,-, which is supersingular. 

Suppose A is an n x n matrix with entries aij. Write the entries of A0 as (1 - 2rij) aij with 
0 < rij < 1. In particular, rij = 0 if i = j. For each i, j let 

Then T = (Tij)l Q i,j $ n is a virtualizer. Since A,, is supersingular it annihilates some 

(% ... 9 u,)’ with Ui # 0 for each i. The T-virtualization 

of A annihilates (q, - ul, . . . , u,, - u,)‘, so A is virtually supersingular. q 

The topology underlying this proof is as follows. By multiplying by a suitable positive 
integer we may assume A is an integral matrix and each rij aij is integral. We can realize A as 
the reduced plumbing matrix of some graph manifold, which we again denote M, with 
Seifert components Mr, . . . , M, and, for each i #j, with precisely laijl tori joining Mi to 
Mj with fiber intersection number sign(aij) in each of these tori. If, for each i fj, we cut 
along rijlaijl of these tori and repaste by the map 

to change the sign of the fiber intersection number, then we obtain a graph manifold 
M0 with reduced plumbing matrix AO. We claim that M and M0 have a common double 
cover M. Indeed, consider the decomposition graph I for M. That is, I has a vertex for each 
Mi and an edge for each separating torus. If an edge corresponds to a torus where we have 
cut and re-pasted as above, call it a ( - I)-edge. Map H1 (I) to Z/2 by taking any cycle in 
I to the number modulo 2 of ( - l)-edges on it. This map induces a 2-fold cover I of 
I which induces the desired covers A? and &!a of M and MO. These covers are diffeomorphic 
as follows: choose some vertex of I and for each Seifert component of &i use either the 
identity map or a map that reverses both base and fiber orientations, accordingly as the 
corresponding vertex in l= is separated from the chosen one by an even or odd number of 
( - l)-edges. The reduced plumbing matrix of this A is in fact a multiple of the above 
virtualization A of A. Topologically, the reason A is supersingular is because MO fibers by 
Theorem 4.1.2, so its cover M does. 

Proofof Theorem F. For simplicity we will just discuss the case of virtual fibration and 
supersingularness. The arguments apply without change to prove the analogous statements 
for existence of a horizontal surface and virtual singularness. 

We shall first consider the case that M is a very good graph manifold with no 
self-pastings, so its reduced plumbing matrix A is the same as its decomposition matrix. The 
following is the basic ingredient for our discussion. 
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LEMMA 6.3. 1. If B is any virtualization of A then there exists a cover N + M such that the 

reduced plumbing matrix of N is a positive multiple of B. 

2. Zf N + M is a covering then there exists a covering iii + N such that the reduced 

plumbing matrix of iV is a positive multiple of some uni$orm virtualization of A. 

Proof Since M is very good the geometric and toral decompositions of M agree. Let 
Mi, i = 1, . . . , n, be the Seifert components of this decomposition and denote ei = e(MJ, 

xi = X(Mi), for each i. We first prove statement 1. 
Choose no and do to satisfy Lemma 5.1 for each Mi and so that, in addition, do is even 

and no xi < - 1 for each i. As in the proof of Theorem B, we can choose (do no, no, no)-covers 

fii of each Mi and paste these together to get a manifold fi that covers M with degree don:. 

Note that c(Ai) = donoei and each separating torus for M has been replaced in fi by don0 
separating tori, all with the same fiber intersection number as the original torus. Thus the 

reduced plumbing matrix A for A is simply ;i = don0 A. Note that each fii is a Seifert 
manifold to which the Scholium to Lemma 5.1 applies, so they have (d, 1, I)-covers for 
arbitrary d. 

Let 

T 
T = . .I.’ 

. . . T 

( 1 

. . . ..: 

T,I ... Tnn 

be a virtualizer and multiply it by a suitable positive integer to get an integral matrix 

D= 

( 1 

. . . . . . . . . I 

D nl ... D”ll 

Denote the diagonal entries of the matrix Dii by diil1, . . . , diin,n,. For any i,j, the sum of the 
entries dijkl, ,.. , dijkn, in the kth row of Dij is diikk. For k = 1, . . . , ni let Nik be a (diikk, 1, l)- 
cover of A,. Then we can glue all the Nik together as follows: for each torus separating 
fii from &j, glue d,, of the diikk tori covering it in Nil, to corresponding tori in Nj,. The 
resulting N is a cover of fi and hence of M and has a reduced plumbing matrix 

dono [~~~~: 111 ~~~~::j. 

Thus part 1 of the Lemma is proved. 
To prove statement 2 we need the following: 

LEMMA 6.4. Zf X + F is as in Lemma 5.1 and Y is any cover of X then there exists dI and 
nl such that for any multiples d and n of dI and nl a cover P of Y exists which is 

a (dn, n, n)-cover of X. 

Proof. Suppose the degree of Y + X restricted to a Seifert fiber is m. Let Z + X be the 
cover corresponding to the largest characteristic subgroup of 7cl (X) contained in the image 
of q(Y) -+ q(X). Let Y be the degree of this cover Z + X. It still has degree m on Seifert 
fibers. The induced cover of base orbifolds has the same degree p say over every boundary 
component of F. By Lemma 5.1 we may find a (donopm, nom, nap)-cover Y of Z for some 
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(d,, no). This 13 is then a (dint, nl, +cover of X with dl = rdO and n, = napm. If d = did2 
and n = nln2 we now take a further (d2n2, n2, n2)-cover to obtain 9. 0 

Returning to the proof of Lemma 6.3.2, suppose N + M is the given cover. Choose d and 

nsuchthatforeachi= 1, . . . . n and each Seifert component Nij of N that covers the Seifert 

component Mi of M, there is (dn, n, n)-cover Rij of Mi covering Nij as in Lemma 6.4. Let 
dij be the degree of Nij + Mi. Then the disjoint union d,jRij of dij copies of Nij is a dn3-fold 
cover of Nip The d,jNij can be pasted together to give a dn3-fold cover N of N. The reduced 
plumbing matrix of IV is then dn times a uniform virtualization of A. 0 

Theorem F now follows easily for very good M without self-pastings. Suppose some 
cover N of M fibers over S’. Then by Lemma 6.3.2 we may lift to a cover ZV of N whose 
reduced plumbing matrix is a uniform virtualization of A and apply Theorem 4.1.2, showing 
that A has a supersingular uniform virtualization. Conversely, if A has a supersingular 
virtualization, then by Lemma 6.3.1 plus Theorem 4.1.2, M has a cover which fibers over S’. 

It remains to show that the general case of Theorem F follows from the very good case. 
Suppose M is a prime graph manifold with no self-pastings and let A be its decomposition 
matrix. One can take a double cover of M that makes all Seifert components have 
orientable base and then a further double cover, if necessary, to make fiber intersection 
numbers in tori positive. The resulting reduced plumbing matrix is a virtualization of A, so 

it is virtually singular or supersingular if and only if A was (this uses Lemma 6.1). Thus 
Theorem F holds using A. 0 

We now discuss simpler criteria for a matrix A to fail to be virtually singular. Our aim is 
Theorem G. 

PROPOSITION 6.5. Let A be a negative dejinite rational matrix with nonnegative ofidiagonal 

entries. Then any sub-virtualization of A is still negative definite and is therefore nonsingular. 

Proof: We first prove the proposition for a virtualization. We can find a very good 
graph manifold M with reduced plumbing matrix A. Then M is a singularity link by 
Theorem 4.1.1. By Lemma 6.3 any virtualization of A is a positive multiple of the reduced 
plumbing matrix of a cover of M. Since a cover of M is still a singularity link, the 
virtualization is negative definite by Theorem 4.1.1 again. 

Now let A,, be a reduction of A in the sense of the proof of Proposition 6.2 and let A be 
the virtualization of A constructed in that proof. Let X = (Xij)i G ij c n with 

and Xij = for i#j. 

Then 

X’AX = I 41 a,, 0 0 (1 (1 - - 2rldall 2r,l)a,l 0 0 : al2 ai, 0 0 : (1 (1 - - 2r12)a12 2r,,)an2 0 0 : a.. ... . ..e . . . . . ain ai. 0 0 . . (1 (1 - - 2rl,)al, 2r,,)a,, 0 0 : 
By what we have just shown, this is a negative definite matrix. After rearranging rows and 
columns it is A @ AO, so A0 is negative definite. cl 
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Proof of Theorem G. We first show the “if.” Thus, suppose A can be written 

as in Theorem F with N and P_ negative definite. Using Proposition 6.5 we see that any 
virtualization A of A still has the same property. Thus we may rename A as A and it suffices 
to show A is nonsingular. 

If it is singular then 

(2 z)(:)=(i) 
has a nonzero solution. We would then have Pu + Zv = 0 and Z’u + Nu = 0 which imply 
uf Pu = - u’ Zv = - v’ Z’u = u’ NV. Since ut Pu is nonnegative and v’ NV is nonpositive, 

a solution of this must have u’Pu = v’Nu = 0 and hence u = u = 0. 
For the converse we show first that if A has a singular principal minor then A is virtually 

singular. Indeed, suppose that after reindexing, 

with A0 singular. Then 

is a singular sub-virtualization of A. Thus if the Q of Theorem F is nonvoid, we may use the 
minor A0 = (al 1 ) to see that A is virtually singular. Thus assume Q is void. To complete the 
proof we must show A is virtually singular if one of P_ and N is not definite. If we replace 
A by - A and then reverse the signs of the off-diagonal entries (which is a sub-virtualiz- 
ation), we reverse the roles of P_ and N. Thus with no loss of generality it is N which is 
indefinite. We shall show some sub-virtualization of N has a singular principal minor. 

By replacing N by an appropriate minor of N we may assume 

with M negative definite but N not negative definite. Then ( - l)k-ldet(M) > 0 and 
( - l)“det(N) 2 0. Let 

/ a11 tat2 ... alk 
\ 

N, = ta.12 1 : M 
t 

for 0 < t < 1. 

\ talk J 

Then det(N,) = all det (M) + t2 q for some rational q, so any solution t of det (NJ = 0 
has t2 rational. There is such a solution with 0 -C t < 1 since ( - l)kdet (N,) 2 0 and 
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( - l)kdet (NJ c 0. With this t the matrix 

: 

(1 - t*)aii 0 0 ... 

0 ?Ull t2a12 ... 

0 t2 a21 

0 ; 

0 t2 akl 

is a singular sub-virtualization of N. 0 

The first part of the above proof also shows the following necessary condition for virtual 
supersingularness. A symmetric matrix N is negative if D’ Nu < 0 for all vectors u. We need 
the analog of Proposition 6.5 for negativeness, but this follows by a simple continuity 
argument. 

PROPOSITION 6.6. If A can be written in the form 

A= 
P Z 

( > Z’ N 

with P_ and N both negative then A is virtually supersingular if and only if P_ and N are each 

virtually supersingular. If, for example, N = N1 0 N2 with N1 and N2 both non-trivial and 

negative and one of them definite but the other not, then N is virtually singular but not virtually 
supersingular and so the same holds for the above A. 

Proof of Theorem D. Theorem D follows from Theorem F and the following proposi- 
tion. 

PROPOSITION 6.7. The rational matrix 

A= 
a b 

( > b c 

is virtually singular if and only if 0 G ac < b ‘, It is virtually supersingular if and only if 

it is virtually singular and either neither or both of a and c is zero. 

Proof If ac > b2 then A is definite. By multiplying by - 1 if necessary we can make 
A negative definite and then, if b < 0, we multiply the first row and column by - 1 so b > 0. 
Then Theorem G applies to show A is virtually singular if and only if 0 < ac < b2. 

Proposition 6.6 shows that A is not virtually supersingular if one but not both of a and 
c is zero. 

To complete the proof we must show that 0 < ac < b2 or a = c = 0 implies A is virtually 
supersingular. If ac happens to be a rational square, say ac = d2, then this is easy, since 

A= 
a d 

( > d c 

is a sub-virtualization which is supersingular. We may thus assume UC is not a rational 
square, in particular 0 < UC -C b2. By multiplying A by l/b we may assume b = 1. Then A is 
the reduced plumbing matrix of a manifold M as in Theorem B. Since virtual supersingular- 
ity of A is equivalent to virtual fibration of M, which is a commensurability property, we 
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may replace A by the reduced plumbing matrix of a commensurable manifold. Thus, 

without loss of generality we may assume 

A= 
e 1 

( > 1 1. 

Write e = p/q and r = q + 1. Define 

/I = pr2 
pr2 

pqr + pq3r2 
’ = (q3 + 1) (pr2 + 1) . 

All we really need about r is that r > q and q2 - pr > 0. The latter is because q2 - pr 2 

q2 - (q - 1) (q + 1) > 1. One then verifies easily that a - y, fi - y, and 1 + y - a - /I are all 
positive. Thus 

i 

ae 0 Y a-y 
0 (1 - a)e p-7 1+7-a-/? 

Y B-r B 0 

a-y l+y-a-/3 0 l-8 

is a virtualization of A. It is supersingular, since it annihilates (r, - q3r, - q, pqr’)‘, 

as direct computation shows. q 

Acknowledgements-Theorem B developed out of discussions with J. Wahl in 1992 of his interesting characteristic 
number P.P for singularity links [lo]. Discussions with Shichen Wang led me to think about virtual fibration. I am 
grateful to him for these discussions and for making me aware of the related papers [9, 111. This research was 
supported by the Australian Research Council. 

1. 

2. 
3. 

4. 

5. 
6. 

7. 

8. 

9. 

10. 
11. 

REFERENCES 

W. D. Neumann and A. W. Reid: Arithmetic of hyperbolic 3-manifolds, in Topology 90, Proc. Research 
Semester in Low Dimensional Topology at Ohio State, Walter de Gruyter, Berlin (19921, pp. 273-310. 
G. B. Winters: On the existence of certain families of curves, Amer. J. Math. 96 (1974), 215-228. 
W. D. Neumann: A calculus for plumbing applied to the topology of complex surface singularities and 
degenerating complex curves, Trans. Amer. Math. Sot. 268 (1981), 299-343. 
D. Eisenbud and W. D. Neumann: Three-dimensional link theory and invariants of plane curve singularities, 
Ann. of Math. Studies 110 (1985). 
W. H. Jaco and P. B. Shalen: Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Sot. 220 (1979). 
K. Johannson: Homotopy equivalences of 3-manifolds with boundaries, Lect. Notes in Math. 761, Springer, New 
York (1979). 
R. von Randow: Zur Topologie von drei-dimensionalen Baummannigfaltigkeiten, Banner Math. Schriften 14 
(Bonn 1962). 
F. Hirzebruch, W. D. Neumann and S. S. Koh: Dijfkrentiable manifolds and quadratic forms, Lecture Notes in 
Pure and Appl. Math. 4, Marcel1 Dekker, New York (1971). 
J. Luecke and Y.-O. Wu: Relative Euler number and finite covers of graph manifolds, preprint, to appear in 
Proc. Georgia fnt. Topology Conf: 
J. Wahl: A characteristic number for links of surface singularities, J. Amer. Math. Sot. 3 (1990), 625-637. 
S. Wang and Y.-Q. Wu: Covering invariants and cohopficity of 3-manifold groups, Proc. London Math. Sot. 
(to appear). 



378 Walter D. Neumann 

12. W. D. Neumann: Geometry of quasihomogeneous surface singularities, in Singularities, Arcata 1981, Proc. 
Symp. Pure Math. 40, Amer. Math. Sot., Providence, RI (1983), pp. 244258. 

13. P. Scott: The geometry of 3-manifolds, Bull. London Math. Sm. 15 (1983), 401-478. 
14. F. Hirzebruch: Hilbert modular surfaces, Enseign. Math. (2) 19 (1973), 183-281. 
15. W. D. Neumann and F. Raymond: Seifert manifolds, plumbing, p-invariant, and orientation reversing maps, 

in Algebraic and Geometric Topology, Lecture Notes in Math. 664, Springer, Berlin (1978), pp. 162-194. 

Department of Mathematics 

The University of Melbourne 

Parkville, Victoria 3052, Australia 

E-mail: neumann@maths.mu.oz.au. 


