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Abstract. We discuss the bi-Lipschitz geometry of an isolated
singular point of a complex surface which particular emphasis on
when it is metrically conical.

1. Introduction

A very basic question in metric geometry is whether a neighborhood
of a point in an algebraic or semialgebraic set V is metrically conical,
i.e., bi-Lipschitz equivalent to a metric cone (our metric is always the
“inner metric,” given distance within V , rather than “outer metric,”
given by distance in the ambient affine space).

For real algebraic sets an extensive literature exists on local bi-
Lipschitz geometry, and failure of metric conicalness is common. The
characteristic example is the β–horn for β = p

q
≥ 1,

{(x, y, z) ∈ R3 : (x2 + y2)q = z2p, z ≥ 0} ,
which is topologically the cone on a circle but is bi-Lipschitz classified
by β [1] and is thus not metrically conical if β > 1. The full bi-
Lipschitz classification of germs semi-algebraic sets in this dimension
was completed in [1] and [4].

However, the techniques that have been used to distinguish local
bi-Lipschitz geometry in the real algebraic case are mostly useless in
the complex case. For example, the β–horns can be distinguished by
their volume growth number, defined as

µ(V, p) := sup
{
r > 0 : lim

ε→0

Vol(V ∩Bε(p))

εr
= 0
}
.

This is a well defined rational number for any semialgebraic germ (V, p)
(Lion-Rolin [12]), and is bi-Lipschitz invariant (Birbrair and Brasselet
[2]), and equals β + 1 for the β–horn. On the other hand, a complex
variety of dimension n has volume growth number equal to 2n at every
point. And, in fact, complex algebraic curves are metrically conical at
every point.

Key words and phrases. bi-Lipschitz, complex surface singularity.
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It is worth stressing that the local geometry is a bi-Lipschitz invariant
of a complex analytic germ (V, p) (independent of embedding). For if
one uses any set of generators of the local ring Op(V ) to embed (V, p)
in some (CN , 0), then (V, p) inherits a Riemannian metric at smooth
points of V which gives a distance metric on (V, p) that is unchanged
up to bi-Lipschitz equivalence when adding to the set of generators of
Op(V ) that is used.

The first examples of failure of metric conicalness in the complex
setting were given by the first two authors in [5]. They demonstrated
that the Ak–singularity zk+1 = x2 + y2 is not metrically conical for k
odd and ≥ 3. Ak is weighted homogeneous with weights (k+1

2
, k+1

2
, 1).

The current authors showed much more generally:

Theorem 1.1 ([6]). A weighted homogeneous surface singularity is not
metrically conical if its two lowest weights are distinct.

A singularity is homogeneous if it is weighted homogeneous with all
its weights equal. Homogeneous singularities are (obviously) metrically
conical; the converse holds for cyclic quotient singularities:

Theorem 1.2 ([6]). A cyclic quotient singularity C2/(Z/n) is metrically
conical if and only if it is homogeneous.

Since the two lowest weights are equal to each other for many non-
homogeneous cyclic quotient singularities, the converse of Theorem 1.1
is not necessarily true. But we will prove here a converse to Theorem
1.1 for Brieskorn hypersurfaces:

Theorem 1.3. The Brieskorn singularity

V (a, b, b) := {(x, y, z) ∈ C3 : α0x
a + α1y

b + α2z
b = 0}

with a < b has a metrically conical singularity at 0 for any α0, α1, α2 ∈
C− {0}.

We close this introduction by sketching the known obstructions to
metric conicalness in the complex case.

Let Mε be the link of the point p ∈ V (the boundary of V ∩ Bε(p),
where Bε(p) is an ε-ball in some ambient affine space in which (V, p) is
embedded, ε sufficiently small). A non-trivial homology class or free
homotopy class in Mε will have a lower bound on the diameter of any
cycle representing it in Mε. In a metric cone this lower bound will
shrink at most linearly with respect to ε as ε → 0. If such a cycle
exists which shrinks faster than linearly, it therefore obstructs metric
conicalness. Theorems 1.1 and 1.2 are proved by exhibiting such fast
cycles for π1(M). This is close to the ideas of metric homology [2, 3],
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but the link of a surface singularity may be a homology sphere, in which
case homology is not useful. Instead, one might see this as a first step
to “metric homotopy theory” in bi-Lipschitz geometry.

A main tool used in [5] was to exhibit a “Cheeger cycle” in V (also
called “separating set”), a codimension 1 subset that divides V into
pieces of roughly equal volume, but whose 3-dimensional volume shrinks
faster towards p than it could in a metric cone. In [5] the Cheeger cycle
was constructed as the union of orbits of the real points of V under the
C∗–action, so it was important that an appropriate real form be used.
At the time it was also only known that this Cheeger cycle obstructs
(V, p) being semi-algebraicly bi-Lipschitz equivalent to a metric cone.
We are grateful to Bruce Kleiner for showing us how the semi-algebraic
condition on the bi-Lipschitz equivalence can be removed.

In the final section of this paper we revisit the separating set approach,
describing a more robust version using “conflict sets.” We then sketch
how it can be used to show that the Briançon-Speder family of singu-
larities of constant topological type does not have constant bi-Lipschitz
type. The details of this argument will appear in a future paper [7].
The embedded real case of this, which is much more elementary, was
proved in [11].

Acknowledgements. The authors acknowledge support for this re-
search under the following grants: CNPq grant no 300985/93-2 (Bir-
brair), CNPq grant no 300393/2005-9 (Fernandes), NSA grant H98230-
06-1-011 and NSF grant no. DMS-0206464 (Neumann). Birbrair and
Neumann express their gratitude to the ICTP in Trieste for its hospi-
tality during the final work on this paper.

2. Conical Brieskorn singularities

This section is devoted to the proof of Theorem 1.3; we refer to the
notation of that theorem. Since changing the coefficients αi can be
realized by a linear change of coordinates in C3, which is bi-Lipschitz,
we can choose the coefficients at our convenience. We choose

V = {(x, y, z) ∈ C3 : xa + yb − zb = 0} .

Then the projection of V to the (y, z)-plane is an a–fold branched cover
branched along the lines z = ωy with ω ∈ µb, the b–th root of unity. We
will show that this projection has a bounded Lipschitz constant except
in a thin neighborhood of the branch locus. The conical structure of
the (y, z)–plane pulls back to V except in these thin neighborhoods.
We then show that these neighborhoods can be chosen to also carry a
conical structure.
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We first decompose V into pieces. When we refer to V and its pieces
we will really mean the germ at 0, so V is always implicitly intersected
with a small neighborhood of 0 ∈ C3.

Our two pieces will consist of a disk-bundle neighborhood of the
branch set of the projection to the (y, z)–plane and the closure of its
complement, and we will show that both pieces are metrically conical
at 0. But we start with a preliminary decomposition into two pieces
which are not metrically conical.

Our preliminary decomposition of V is as follows:

V0 := {(x, y, z) ∈ V : |x|2a−2 ≥ |y|2b−2 + |z|2b−2}
V1 := {(x, y, z) ∈ V : |x|2a−2 ≤ |y|2b−2 + |z|2b−2} .

Using the fact that xa = −(yb − zb) on V , we can write this as

V0 := {(x, y, z) ∈ V : |yb − zb|(2−2/a) ≥ |y|2b−2 + |z|2b−2}
V1 := {(x, y, z) ∈ V : |yb − zb|(2−2/a) ≤ |y|2b−2 + |z|2b−2} .

Denote the images of the projections to the (y, z)–plane by

W0 := {(y, z) ∈ C2 : |yb − zb|(2−2/a) ≥ |y|2b−2 + |z|2b−2}
W1 := {(y, z) ∈ C2 : |yb − zb|(2−2/a) ≤ |y|2b−2 + |z|2b−2} .

Lemma 2.1. The projection of V to the (y, z)–plane is an a–fold cyclic
covering branched along the lines z = ωy with ω ∈ µa (the a–th roots
of unity). When restricted to V0 − {0} it is a bi-Lipschitz unramified

covering of its image W0 − {0} with Lipschitz constant
√

1 + b2

a2 .

Proof. Write f(x, y, z) = xa + yb − zb so V = f−1(0). That V → C2

is a cyclic branched cover follows because it is the orbit map of µa
acting on V by multiplication in the x-coordinate. Branching is thus
along x = 0 which projects to the set yb = zb in C2. This is the set
{(y, z) : z = ωy, ω ∈ µa}. The restriction to V0 is an unramified cover
since W0 − {0} does not intersect this branch locus.

The bi-Lipschitz constant of the projection at a point of V will be
the bi-Lipschitz constant of the projection of the tangent plane at that
point to the (y, z)–plane. The tangent plane at the point is given by
the orthogonal complement of the complex gradient ∇f . The following
lemma is an exercise:

Lemma 2.2. For planes complex orthogonal to unit vectors u1 and
u2 the orthogonal projection of one plane to the other has bi-Lipschitz
constant 1/|〈u1, u2〉|, where 〈, 〉 is hermitian inner product. �
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Returning to the proof of Lemma 2.1, the unit vectors in question are

(1)
∇f
|∇f |

=
(ax̄a−1, bȳb−1,−bz̄b−1)√

a2|xa−1|2 + b2(|yb−1|2 + |zb−1|2)

and (1, 0, 0). So the bi-Lipschitz constant is√
a2|xa−1|2 + b2(|yb−1|2 + |zb−1|2)

|axa−1|
≤
|
√
a2|xa−1|2 + b2|xa−1|2

|axa−1|
=

√
1 +

b2

a2
,

where the inequality uses the defining inequality for V0. �

Note that W0 − {0} and W1 − {0} decompose C2 − {0} into two
subsets that meet along their boundaries. We claim:

Lemma 2.3. Assume b > a. Then, in a neighborhood of 0, W1 − {0}
consists of disjoint closed disk-bundle neighbourhoods of the lines z = ωy.
At small distance r from the origin these disks have radius close to
cr(b−1)/(a−1) for some c > 0.

Proof. Since the µb-action that multiplies just the z–coordinate by ω
permutes the lines in question, it suffices to consider the line y = z.
For fixed y = v a transverse section to this line can be given by
(v(1− ξ), v(1 + ξ)) as ξ varies. We restrict ξ to be small so we are in a
neighbourhood of the line and we consider the set of (v(1−ξ), v(1+ξ)) ∈
C2 satisfying

|(vb(1− ξ)b − vb(1 + ξ)b)|(2−2/a) ≤ |v(1− ξ)|2b−2 + |v(1 + ξ)|2b−2 .

This inequality simplifies to:

|(1− ξ)b − (1 + ξ)b|2(a−1)/a ≤ |v|2(b−a)/a(|1− ξ|2b−2 + |1 + ξ|2b−2)

To first order in ξ this is

|2bξ|2(a−1)/a ≤ 2|v|2(b−a)/a ,

which gives √
2|vξ| ≤ c|v|(b−1)/(a−1) ,

for some constant c (specifically, c =
√

2/(2(a−2)/(2a−2)b)).
Since the radius of the transverse section at v is the maximum of√
2|vξ|, the lemma follows. �

Denote the branch locus yb = zb in V or in the (y, z)–plane by B (we
use the same notation for both).

Note that the radius of the disk-bundle neighbourhood W1 of B at
distance r from the origin is of order r(b−1)/(a−1), which is o(r). Thus if
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we choose a small δ > 0 and decompose V conically with respect to the
(y, z)–plane as follows:

C0 := {(x, y, z) ∈ V : d((y, z), B) ≥ δ|(y, z)|}
C1 := {(x, y, z) ∈ V : d((y, z), B) ≤ δ|(y, z)|} ,

with images in C2:

D0 := {(y, z) ∈ C2 : d((y, z), B) ≥ δ|(y, z)|}
D1 := {(y, z) ∈ C2 : d((y, z), B) ≤ δ|(y, z)|} ,

then, so long as we are in a small enough neighborhood of 0 ∈ V , the
sets C0 and D0 are subsets of V0 and W0. Since D0 is strictly conical
and C0 is a bi-Lipschitz covering of it, C0 is metrically conical. To
complete the proof of the theorem we must just show that the other
piece, C1, is also metrically conical, since it follows from Corollary 0.2
of [13] that the union is then metrically conical.
C1 is a union of disk-bundle neighbourhoods of the lines y = ωz.

As before, it suffices to focus just on the component C ′1, which is a
neighborhood of y = z. The proof of Theorem 1.3 is then completed by
the following lemma.

Lemma 2.4. The map of C ′1 to C2 given by

(x, y, z) 7→
(y + z

2
, ei arg x

√
|x|2 +

|y − z|2
4

)
is a bi-Lipschitz homeomorphism onto a metric cone in C2.

The rest of this section is devoted to proving this lemma. We first
introduce more convenient coordinates on C ′1. Define

u :=
z − y

2
v :=

z + y

2
The inverse change of coordinates is

y := v − u z := v + u

Thus v is as in the proof of Lemma 2.3 and u equals vξ in the notation
of that proof. C ′1 is given by

(2) C ′1 = {(x, u, v) ∈ C3 : xa = (v + u)b − (v − u)b, |u| ≤ δ|v|}
and the map of Lemma 2.4 is

(3) F (x, u, v) =
(
rve

iθv , eiθx
√
r2
x + r2

u

)
,

where we are using polar coordinates

x = rxe
iθx , u = rue

iθu , v = rve
iθv .
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Since for v small the size of x is negligible with respect to δ|v|, the
image of F is extremely close to the conical set {(u, v) : |u| ≤ δv}, and
the main issue is checking the bi-Lipschitz bound.

We can rewrite the defining equation xa = (v + u)b − (v − u)b in (2)
as

(4) xa = 2buvb−1 + u3g(u, v),

with g(u, v) a polynomial of degree b− 3. If we choose δ very small in
(2) then u3g(u, v) will be virtually negligible, so to simplify calculation
we will omit this term for now and work with

(5) C := {(x, u, v) ∈ C3 : xa = 2buvb−1, |u| ≤ δ|v|}

instead of C ′1. It is fairly clear that up to bi-Lipschitz equivalence this
changes nothing, but we come back to this issue later.

It is helpful to first consider a single transverse section to the v-line,
so, writing D = 1/(2bvb−1), we start by proving

Lemma 2.5. For any integer a ≥ 1 and any D ∈ C∗ the map f of the
graph SD := {(x, u) : u = Dxa} to C given by

(6) f(x, u) = eiθx
√
r2
x + r2

u = eiθx
√
r2
x + |D|2r2a

x ,

is a bi-Lipschitz homeomorphism with bi-Lipschitz bound ≤ a.

Proof. The metric in SD is given by

(7)
ds2 = |dx|2 + |du|2 = |dx|2 + |aDxa−1|2|dx|2

= (drx
2 + r2

xdθx
2)(1 + a2|D|2r2a−2

x ) .

On the other hand, differentiating f gives

(8) df = eiθx

(rx + a|D|2r2a−1
x√

r2
x + |D|2r2a

x

drx + i
√
r2
x + |D|2r2a

x dθx

)
,

so the metric pulled back by f is

(9) |df |2 =
(1 + a|D|2r2a−2

x )2

1 + |D|2r2a−2
x

drx
2 + (1 + |D|2r2a−2

x ) r2
xdθx

2 .

The ratio of coefficients of r2
xdθx

2 in (7) and (9) increases steadily from
1 to a2 as rx increases from 0 to ∞. And it is an exercise to check

that the ratio of the coefficient of drx
2 increases from 1 to (a+1)2

4a
and

then decreases again to 1 as |D|2r2a−2
x goes from 0 to ∞ via 1/a. Since

1
a2 ≤ (a+1)2

4a
≤ a2 for all a ≥ 1, it follows that the ratio ds2/|df |2 is

bounded below and above by 1
a2 and a2, so the bi-Lipschitz constant of

f is bounded by a. �
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Consider now a point (x0, u0, v0) ∈ C. At this point we have two
surfaces: the surface C = {xa = 2buvb−1} that we are interested in, and
the surface

C(x0,u0,v0) := {(x, u, v) : xa = 2buvb−1
0 }

which is the product of the v-plane with the curve of Lemma 2.5. For
each of these surfaces we can consider the local bi-Lipschitz constant of
the map F (x, u, v) = (v, eiθx

√
r2
x + r2

u). For C(x0,u0,v0) we have already
computed this and it is uniformly bounded by a. The constants for
C and C(x0,u0,v0) have ratio bounded by the bi-Lipschitz constant of
the projection between the tangent spaces of these two surfaces at the
given point. So it remains to compute this latter number and show it is
uniformly bounded.

The gradients of the two surfaces at the given point are

(axa−1
0 , 2bvb−1

0 , 2b(b− 1)u0v
b−2
0 ) and (axa−1

0 , 2bvb−1
0 , 0)

respectively. Referring to Lemma 2.3 we see that the number in question
is

(10)

√
|axa−1

0 |2 + |2bvb−1
0 |2 + |2b(b− 1)u0v

b−2
0 |2√

|axa−1
0 |2 + |2bvb−1

0 |2

Note that the additional term in the numerator is at most ((b− 1)δ)2

times the term preceding it, so the whole expression in (10) is bounded

by
√

1 + ((b− 1)δ)2. This completes the proof of this point.
Finally, we promised to revisit the issue of replacing C ′1 by C at

equation (5). This is a similar argument to the one we have just
completed — one checks that the projection in the x–direction between
C and C ′1 has bi-Lipschitz constant bounded by (1+δ2g(δ)) for a certain
fixed degree b− 3 polynomial in δ, and can hence be made arbitrarily
close to 1 by choosing δ small enough.

3. Separating sets and the Briançon-Speder family

For an algebraic germ (X, p), the r–density of X at p is defined as

densityr(X, p) = lim
ε→0

vol(X ∩Bε(p))

εr

Thus, the volume growth number, defined in the Introduction, is

µ(X, p) = sup{r > 0 : densityr(X, p) = 0} .
Although the value of the r–density is not generally a bi-Lipschitz
invariant, its vanishing or non-vanishing is, which is why µ also is a
bi-Lipschitz invariant. If r = dimX we speak simply of the density.
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Let (X, p) be an n-dimensional germ and (Y, p) ⊂ (X, p). Then (Y, p)
is called a separating set if

• Y divides X into two pieces X1 and X2, each containing p;
• densityn−1(Y ) = 0, densityn(X1) 6= 0, densityn(X2) 6= 0.

In view of the comments above, the existence of a separating set is a
bi-Lipschitz invariant. It is also an obstruction to metric conicalness:

Proposition 3.1. A metric cone cannot contain a separating set.

With extra conditions on semialgebraicity of the conical structure
and sets in question this is in [5]. Bruce Kleiner showed us how to
eliminate the extra assumptions; details will appear in [7].

In [5] a separating set was used to show the non-conicalness of the
Ak singularity for odd k ≥ 3. We here give a different construction
that works for all k ≥ 2. Note that these are also covered by Theorem
1.1, where the proof is by fast cycles; we describe the separating set
approach to illustrate its usefulness.

Consider therefore Ak, written in the form V = {(x, y, z) : zk+1 = xy}.
The subset {z = 0} ∩ V has components L1 = {x = 0} ∩ V and
L2 = {y = 0} ∩ V . Consider their conflict set

Y = {p ∈ V : d(p, L1) = d(p, L2) ,

where d() is distance. A symmetry argument shows that Y separates V
into two isomorphic pieces V1 and V2, so

density4(V1) = density4(V2) =
1

2
density4(V ) 6= 0 .

Any smooth arc on Y that approaches 0 has |x| = |y| = |z|(k+1)/2 and
must therefore approach tangent to the z–axis, so the tangent cone of
Y is the z–axis. However, if a semialgebraic set Y of dimension n has
tangent cone of lower dimension, then densityn(Y ) = 0 (see Federer
[10]). Thus Y is a separating set.

The Briançon-Speder family [9]

Vt = {(x, y, z) : z15 + zy7 + x5 + txy6 = 0}

is a family of weighted homogeneous surface singularities with weights
(3, 2, 1) which is topologically a trivial family but which does not satisfy
the Whitney conditions. By Theorem 1.1, no Vt is metrically conical.

Theorem 3.2. The bi-Lipschitz type is non-constant in the Briançon-
Speder family: Vt has a separating set for t 6= 0 and none for t = 0.

As already mentioned, details will be in [7].
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