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Abstract. For any finite volume hyperbolic 3-manifold M we use ideal tri-

angulation to define an invariant β(M) in the Bloch group B(C). It actually
lies in the subgroup of B(C) determined by the invariant trace field of M .

The Chern-Simons invariant of M is determined modulo rationals by β(M).

This implies rationality and — assuming the Ramakrishnan conjecture — ir-
rationality results for Chern Simons invariants.

1. Main Results

The pre-Bloch group P(k) of a field k is the quotient of the free Z-module Z(k−
{0, 1}) by all instances of the following relations: Misprint in (1) in the

published paper cor-
rected here 03/96[x]− [y] + [

y

x
]− [

1− x−1

1− y−1
] + [

1− x

1− y
] = 0(1)

[x] = [1− 1
x

] = [
1

1− x
] = −[

1
x

] = −[
x

x− 1
] = −[1− x](2)

The Bloch group B(k) is the kernel of the map

µ : P(k) → k∗ ∧Z k∗ given by µ([z]) = 2(z ∧ (1− z)).

(There are several variants of this definition in the literature. Dupont and Sah [6]
show that the various definitions differ at most by torsion and that they agree with
each other for algebraically closed fields. See also the discussion in [15].)

By results of Borel, Bloch, and Suslin [2, 1, 20] (see Theorem 4.1) the Bloch
group B(k) of a number field is isomorphic modulo torsion to Zr2 , where r2 is the
number of complex embeddings of k (a complex embedding is an embedding k → C
with image not in R). Thus B(k) ⊗ Q ∼= Qr2 . Moreover, if a specific complex
embedding is chosen, that is, k is given as a subfield of C, then the induced map
B(k)⊗Q → B(C)⊗Q is injective, so we may write B(k)⊗Q ⊂ B(C)⊗Q.

Let M = H3/Γ be an oriented complete hyperbolic manifold of finite volume
(briefly just “hyperbolic 3-manifold” from now on). The invariant trace field
k(M) = k(Γ) is the field generated over Q by squares of traces of elements of
Γ. It is the smallest field among trace fields of finite index subgroups of Γ ([19], see
also [13]). It is a number field and comes with a specific embedding in C.

Thurston has shown [21] that any hyperbolic 3-manifold M has a degree one
ideal triangulation (see sect. 2) by ideal simplices ∆1, . . . ,∆n. Let zi ∈ C be the
parameter of the ideal simplex ∆i for each i (cross-ratio of its four vertices). These
zi define an element β(M) =

∑n
i=1[zi] in the pre-Bloch group P(C).
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Theorem 1.1. This β(M) depends only on M . It lies in the Bloch group B(C) ⊂
P(C). As an element of B(C)⊗Q, it lies in the subgroup B(k(M))⊗Q.

One of the main ingredients for this theorem — Proposition 3.1 below — fills a
gap in the literature. Statements have appeared in papers of at least two authors
that implicitly assume it.

In the non-compact case one can find genuine (rather than just degree one) ideal
triangulations of M (see [7]) and the simplex parameters zi then lie in the invariant
trace field k(M) (see [13]). Thus β(M) is the image of a class βk(M) :=

∑
[zi] ∈

P(k(M)).

Theorem 1.2. βk(M) lies in B(k(M)) and is independent of triangulation.

Thus, in the non-compact case the “⊗Q” of Theorem 1.1 can be deleted. We do
not know if it can in the compact case, though we can describe an explicit integer
c = c(M) ≥ 0 such that 2cβ(M) is in the image of B(k(M)) → B(C).

The Bloch invariant β(M) is intimately related to the volume vol(M) and the
Chern-Simons invariant CS(M). Chern and Simons defined the latter invariant
in ([3]) for any compact (4n − 1)-dimensional Riemannian manifold. Meyerhoff
[11] extended the definition in the case of hyperbolic 3-manifolds to allow noncom-
pact ones, that is hyperbolic 3-manifolds with cusps. The Chern-Simons invariant
CS(M) of such a hyperbolic 3-manifold M is an element in R/π2Z. It is called
rational (also called torsion) if it lies in π2Q/π2Z.

The relation with the Bloch invariant uses the “Bloch regulator map”

ρ : B(C) −→ C/Q,

defined as follows. For z ∈ C− {0, 1}, define

ρ(z) =
log z

2πi
∧ log(1− z)

2πi
+ 1 ∧ R(z)

2π2
,

where R(z) is the “Rogers dilogarithm function”

R(z) =
1
2

log(z) log(1− z)−
∫ z

0

log(1− t)
t

dt.

See section 4 of [6] or [9] for details on how to interpret this formula. This ρ vanishes
on the relations (1) and (2) which define P(C) and hence ρ induces a map

ρ : P(C) −→ C ∧Z C.

This fits in a commutative diagram

P(C)
µ−→ C∗ ∧ C∗

↓ρ ↓=
C ∧ C ε−→ C∗ ∧ C∗

where ε = 2(e ∧ e) with e(z) = exp(2πiz). The kernel of µ is B(C) and the kernel
of ε is C/Q. Hence ρ restricts to give the desired map ρ : B(C) → C/Q.

Theorem 1.3. ρ(β(M)) = 1
2π2 (CS(M) + i vol(M)) ∈ C/Q.

The volume part of this result is not hard (in part because “volume” is already
well defined on P(C)), but the part referring to Chern-Simons lies deeper. Modulo
Proposition 3.1 below, the compact case is due to Dupont [5].

This theorem has various consequences for rationality and irrationality of the
Chern-Simons invariant. For example, we show in [15]:
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Theorem 1.4. The Chern-Simons invariant CS(M) of a hyperbolic 3-manifold is
rational if the invariant trace field k(M) of M , as a subfield of C, is an imaginary
quadratic extension of a totally real field (briefly, “k is CM-embedded in C”).

On the other hand we have the following irrationality conjecture for Chern-
Simons invariant. We use k to mean the complex conjugate of the subfield k ⊂ C.

Conjecture 1.5. If the invariant trace field k = k(M) satisfies k ∩ k ⊂ R then
CS(M) is irrational. In particular, CS(M) is irrational if k(M) has odd degree
over Q.

We show in [15] that this conjecture would follow from a conjecture of Ramakr-
ishnan [18]:

Conjecture 1.6. For any number field k the Bloch map ρ restricted to B(k) ⊗ Q
is injective.

A number field k occurs as the invariant trace field of an arithmetic hyperbolic
3-manifold if and only if it has just one complex place (cf. e.g., [13]). It then either
satisfies k = k and is CM-embedded or it satisfies k∩k ⊂ R. Thus, in the arithmetic
case Theorem 1.4 and Conjecture 1.5 would say that rationality or irrationality of
the Chern-Simons invariant is completely determined by whether or not k = k.

Although no example of irrationality of the Chern-Simons invariant of a hy-
perbolic 3-manifold has been proved, there is a lot of numerical evidence for the
above conjecture. A similar comment applies to volume. We say more about com-
putational aspects in the final section of this announcement. We also describe
there a generalization of β(M) to an invariant of a homomorphism Γ = π1(M) →
PGL(2, C). In [16] we define an analogous invariant in any dimension, but its
significance is not clear at this time.
Added May 1995. A.B. Goncharov has kindly shared with us his manuscript [8] in
which he defines an invariant in K2n−1(Q)⊗Q for any hyperbolic (2n−1)-manifold
of finite volume.

2. Background

2.1. Ideal simplices and degree one ideal triangulations. We shall denote
the standard compactification of H3 by H3

= H3 ∪ CP1. An ideal simplex ∆ with
vertices z1, z2, z3, z4 ∈ CP1 is determined up to congruence by the cross ratio

z = [z1 : z2 : z3 : z4] =
(z3 − z2)(z4 − z1)
(z3 − z1)(z4 − z2)

.

This z lies in the upper half plane of C if the orientation induced by the given
ordering of the vertices agrees with the orientation of H3. Permuting the vertices
by an even (i.e., orientation preserving) permutation replaces z by one of

z, 1− 1
z
, or

1
1− z

,

while an odd permutation replaces z by
1
z
,

z

z − 1
, or 1− z.

We will also allow degenerate ideal simplices where the vertices lie in a plane, so
the parameter z is real. However, we always require that the vertices are distinct.
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Thus the parameter z of the simplex lies in C−{0, 1} and every such z corresponds
to an ideal simplex.

Let Y be a CW-complex obtained by gluing together finitely many 3-simplices
by identifying the 2-faces in pairs. The complement of the 1-skeleton is then a
3-manifold, and if this 3-manifold is oriented we call Y a 3-cycle. In this case the
complement Y − Y (0) of the vertices is an oriented 3-manifold.

Suppose M3 = H3/Γ is a hyperbolic manifold. A degree one ideal triangulation
of M consists of a 3-cycle Y plus a map f : Y − Y (0) → M satisfying

• f is degree one almost everywhere in M ;
• for each 3-simplex S of Y there is a map fS of S onto an ideal simplex in

H3
, mapping vertices to ideal vertices, such that f |S−S(0) : S−S(0) → M

is the composition π ◦ (fS |S − S(0)), where π : H3 → M is the projection.
Thurston shows in [21] that any hyperbolic 3-manifold has degree one ideal

triangulations. Such triangulations also arise “in practice” (e.g., in the program
SNAPPEA for exploring hyperbolic manifolds — [23]) as follows. It follows from
[7] that any non-compact M has a “genuine” ideal triangulation: one for which f
is arbitrarily closely homotopic to a homeomorphism ([7] gives an ideal polyhedral
subdivision and some flat simplices may be needed to subdivide the polyhedra con-
sistently into ideal tetrahedra). The ideal simplices can be deformed to give degree
one ideal triangulations (based on the same 3-cycle Y ) on almost all manifolds
obtained by Dehn filling cusps of M (see e.g., [17]).

2.2. Bloch group. We describe the geometric background for our definition of
the Bloch group. For k = C, the relations (2) express the fact that the pre-Bloch
group P(C) may be thought of as being generated by congruence classes of ideal
hyperbolic 3-simplices. The convex hull of five distinct points in the ideal boundary
of H3 can be decomposed into ideal simplices in exactly two ways: once into two
ideal simplices and once into three. The “five term relation” (1) expresses the fact
that these two decompositions represent the same element in P(C).

As already mentioned, there are several different definitions of the Bloch group
in the literature. By [6] they differ at most by torsion and agree with each other
for algebraically closed fields. The version (1) of the five term relation we use is the
one of Suslin [20]. Dupont and Sah use a slightly different one first written down
by Bloch and Wigner:

[x]− [y] + [y/x]− [(1− y)/(1− x)] + [(1− y−1)/(1− x−1)] = 0.

This is conjugate to Suslin’s by the self-map [z] 7→ [z−1] of Z(k − {0, 1}). See [15]
or [20] for a discussion of the reason for Suslin’s choice. Also, relation (2) is already
implied modulo torsion by the five term relation (1). Omitting it gives the version
of the Bloch group used by Dupont and Sah [6].

Remark. The above suggests that our invariant β(M) captures a type of “ideal
scissors congruence class” of the hyperbolic manifold M . In fact, P(C) is the “scis-
sors congruence group” generated by hyperbolic polyhedra with only ideal vertices
and triangular faces modulo the relations generated by cutting and pasting along
such faces. From a scissors congruence point of view it is more natural not to restrict
the faces to be triangular; we then obtain the quotient of P(C) by the subgroup
generated by “flat” simplices, that is, the quotient of P(C) by the image of P(R).
Hilbert’s third problem for hyperbolic geometry is often interpreted as the problem
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of evaluating the analogous group for polyhedra without ideal vertices. Dupont and
Sah [6] show that allowing only non-ideal vertices gives the same scissors congru-
ence group up to 2-torsion as allowing both ideal and non-ideal vertices, and that
the resulting group is the −1 co-eigenspace P−(C) for the action of conjugation
on P(C). The geometric background to this is that the group P(C) is orientation
sensitive, while the non-ideal scissors congruence group is not. In fact, any ideal
simplex ∆ can be cut into three simplices which can be re-assembled to give the
mirror image of ∆ by dropping a perpendicular from a vertex of ∆ to the opposite
face.

The “imaginary part” of the Ramakrishnan conjecture (also conjectured in [24])
would imply that the imaginary part of ρ(β(M)), namely vol(M), is a complete
scissors congruence invariant up to torsion for a hyperbolic manifold. This might
be considered a weak positive answer to Hilbert’s third problem for hyperbolic
manifolds!

3. Sketch of Proofs

The consequences of our results for rationality and irrationality of Chern-Simons
invariant follow in [15] from an analysis of the dimensions of the eigenspaces of
the action of complex conjugation on the Bloch group B(K) for a number field
K = K ⊂ C. We will not discuss this further here.

We first discuss the compact case of Theorem 1.1.
There is an exact sequence due to Bloch and Wigner (cf. [6])

(3) 0 → µ → H3(PGL(2, C)δ; Z) σ−→ B(C) → 0,

where µ ⊂ C∗ is the group of roots of unity and the superscript δ means we are
taking PGL(2, C) with discrete topology. If M = H3/Γ is compact then the map
Γ → PGL(2, C) induces a map H3(Γ; Z) → H3(PGL(2, C)δ; Z). But H3(Γ; Z) =
H3(M ; Z) ≡ Z. The image of a generator gives a “fundamental class” [M ] ∈
H3(PGL(2, C)δ; Z).

The independence of β(M) on ideal triangulation is given by the following propo-
sition.

Proposition 3.1. β(M) = σ([M ]) ∈ B(C).

We next explain why β(M)⊗Q lies in the image of B(k)⊗Q → B(C)⊗Q, where
k is the invariant trace field k = k(Γ). We denote this subgroup by B(k)Q.

If Γ has trace field K then one can find a quadratic extension K1 of K so that
the embedding Γ ↪→ PGL(2, C) factors up to conjugacy through PGL(2,K1). Now
the exact sequence (3) holds modulo torsion for any field, in particular for K1. We
deduce that β(M)⊗Q lives in B(K1)Q. By [14] there are infinitely many different
fields K1 for which we can do this. If we take two of them, say K1 and K2, we
see that β(M) ⊗ Q lives in B(K1)Q ∩ B(K2)Q. This is B(K1 ∩K2)Q = B(K)Q by
Proposition 2.1 of [15]. Finally, by replacing Γ by a subgroup of finite index we can
arrange that its trace field is the invariant trace field k. Since this just multiplies
β(M)⊗Q by the index of the subgroup, it follows that β(M)⊗Q is in B(k)Q.

We prove Proposition 3.1 in [16] by factoring through a relative homology group
for which the relationship between [M ] and β(M) is easier to see. In the notation
of [4] this relative group is H3(PGL(2, C), CP1; Z). It has a natural map to P(C).
(Dupont and Sah [6] show — without using this notation — that this map is an
isomorphism.)
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In fact, our key lemma in both the compact and non-compact cases is

Lemma 3.2. H3(Γ, CP1; Z) is infinite cyclic, generated by a “fundamental class”
[M ]. The composition H3(Γ, CP1; Z) → H3(PGL(2, C), CP1; Z) → P(C) maps [M ]
to β(M).

In the non-compact case the fact that β(M) lies in B(C) is the relation
∑

zi ∧
(1 − zi) = 0 ∈ C∗ ∧ C∗ on the simplex parameters zi. This has been attributed
to Thurston (unpublished) by Gross [10]. It also follows easily from [17] (see also
[12]). We give a cohomological proof in [16].

Finally, we discuss Theorem 1.3. We have already remarked that it is in the
compact case, modulo Proposition 3.1, essentially a result of Dupont [5]. In general
it follows from the simplicial formula for Chern-Simons invariant of [12]. That
formula was deduced in the general case from the compact case and included an
unknown constant which was claimed there to be a rational multiple of π2. There
was a gap in the proof of this rationality, which is filled by Proposition 3.1 above.

4. Final Remarks

4.1. Computing the invariant β(M). Define the Bloch-Wigner function D2 : C−
{0, 1} → R by (cf. [1])

D2(z) = Im ln2(z) + log |z| arg(1− z), z ∈ C− {0, 1}
where ln2(z) is the classical dilogarithm function. The hyperbolic volume of an
ideal tetrahedron ∆ with cross ratio z is equal to D2(z). It follows that D2 satisfies
the functional equations given by the relations which define P(C), and therefore
D2 induces a map

D2 : B(C) −→ R,

by defining D2[z] = D2(z).
Given a number field k let σ1, σ̄1, . . . , σr2 , σ̄r2 denote the complex embeddings of

k. One then has a map

c2 : B(k) −→ Rr2∑
i(ni[zi]) 7→ (

∑
i niD2(σ1(zi)), . . . ,

∑
i niD2(σr2(zi))).

The following theorem is a re-interpretation by Bloch and Suslin of a theorem about
K-groups of Borel.

Theorem 4.1. The kernel of c2 is exactly the torsion subgroup of B(k) and the
image of c2 is a maximal lattice in Rr2 . In particular, the rank of B(k) is r2.

Using this theorem we can compute β(M) up to torsion by computing its image
c2(β(M)) using the simplex parameters of an ideal triangulation. The program
SNAPPEA works with ideal triangulations. However, in its current incarnation it
computes the simplex parameters numerically rather than as exact algebraic num-
bers. A preliminary version of a modification of Snappea that computes to high
precision and derives exact simplex parameters was written (mostly by Oliver Good-
man) as part of an Australian Research Council project at Melbourne University.
Using this, the element c2(β(M)) ∈ Rr2 can be computed to high precision when
the invariant trace field k = k(M) does not have too high degree. Such calculations
support the predictions of the Ramakrishnan conjecture.

These calculations have also yielded interesting examples. For example, there
exist two compact arithmetic 3-manifolds of volume 1.83193119 . . . defined over the
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field Q(i) but with different quaternion algebras (so they are non-commensurable)
such that one can disassemble one of them into three ideal tetrahedra that can be
reassembled into the other. The tetrahedral parameters lie in K := Q(i,

√
4− 2i),

so the Bloch invariant is defined over this field. The examples have Chern-Simons
invariants differing by π2/12 modulo π2. Thus Chern-Simons invariant is not de-
termined by Bloch invariant if one does not take it modulo π2Q. Craig Hodgson
found these examples and Alan Reid helped compute the quaternion algebras.

4.2. Generalization of β(M).

Theorem 4.2. If M = H3/Γ is a finite volume hyperbolic manifold and f : Γ →
PGL(2, C) is any homomorphism then there is a natural invariant β(f) ∈ P(C). If
f is the homomorphism corresponding to some Dehn filling M ′ of M then β(f) =
β(M ′). In particular, for the discrete embedding we have β(f) = β(M). If each
cusp subgroup of Γ has non-trivial elements γ with f(γ) parabolic (or trivial) then
β(f) ∈ B(C).

This theorem gives a way of defining the “volume” of any homomorphism f : Γ →
PGL(2, C). The existence of such a volume was mentioned in [22]. In [16] a version
of this theorem is proved for any dimension.

If M = H3/Γ is compact then we can define β(f) as the image of the funda-

mental class [M ] ∈ H3(Γ; Z) under H3(Γ; Z)
f∗−−−→ H3(PGL(2, C)δ; Z) → B(C).

This clearly generalizes the invariant β(M), which is the value of β(f) for the dis-
crete embedding. If M is non-compact it is harder to define β(f). We cannot
directly follow the program of the previous section since H3(Γ, CP1; Z) will depend
on the action of Γ on CP1 and hence on the homomorphism f . We use instead
H3(Γ, C; Z), where C is the union of Γ/P as P runs through a set of representa-
tives for the conjugacy classes of cusp subgroups of Γ. This homology group is
cyclic generated by a class [M ]. There are, in general, several maps C → CP1

which are equivariant with respect to f : Γ → PGL(2, C), so f induces several maps
H3(Γ, C; Z) → H3(PGL(2, C), CP1; Z) → P(C). One can define a simplicial version
of β(M) and show that it is the image of [M ] under any one of these maps. Thus
the maps are all the same and the image of [M ] agrees again with the simplicial
version of the invariant.

References

[1] S. Bloch: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, Lecture
notes U.C. Irvine (1978).

[2] A. Borel: Cohomologie de SLn et valeurs de fonction zeta aux points entiers, Ann. Sci. Ecole
Norm. Sup. (4) 7, (1974), 613–636.

[3] S. Chern, J. Simons, Some cohomology classes in principal fiber bundles and their application
to Riemannian geometry, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 791-794.

[4] W. Dicks, M. J. Dunwoody: Groups acting on graphs, Camb. Studies in Adv. Math. 17 (1989)
[5] J. Dupont: The dilogarithm as a characteristic class for flat bundles, J. Pure and App.

Algebra 44 (1987), 137–164.

[6] J. Dupont, H. Sah: Scissors congruences II, J. Pure and App. Algebra 25 (1982), 159–195.

[7] D. B. A. Epstein, R. Penner: Euclidean decompositions of non-compact hyperbolic manifolds,
J. Diff. Geom. 27 (1988), 67–80.

[8] A.B. Goncharov: Volumes of hyperbolic manifolds and mixed Tate motives, (in preparation).
[9] R. Hain: Classical polylogarithms, Motives, Proc. Symp. Pure Math, 55 (1994), Part 2, 3–42

[10] B. Gross: On the values of Artin L-functions, preprint (Brown, 1980).



8 WALTER D. NEUMANN AND JUN YANG

[11] R. Meyerhoff: Hyperbolic 3-manifolds with equal volumes but different Chern-Simons invari-
ants, in Low-dimensional topology and Kleinian groups, edited by D. B. A. Epstein, London

Math. Soc. lecture notes series, 112 (1986) 209–215.
[12] W. D. Neumann: Combinatorics of triangulations and the Chern Simons invariant for hyper-

bolic 3-manifolds, in Topology 90, Proceedings of the Research Semester in Low Dimensional

Topology at Ohio State (Walter de Gruyter Verlag, Berlin - New York 1992), 243–272.
[13] W. D. Neumann, A. W. Reid: Arithmetic of hyperbolic manifolds, Topology 90, Proceedings

of the Research Semester in Low Dimensional Topology at Ohio State (Walter de Gruyter

Verlag, Berlin - New York 1992), 273–310.
[14] W. D. Neumann, A. W. Reid: Amalgamation and the invariant trace field of a Kleinian

group, Math. Proc. Cambridge Philos. Soc. 109 (1991), 509–515.

[15] W. D. Neumann, J. Yang: Rationality problems for K-theory and Chern-Simons invariants
of hyperbolic 3-manifolds, Enseignement Mathématique (to appear).
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