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ABSTRACT. We describe how a coarse classification of graph manifolds can
give clearer insight into their structure, and we relate this particularly to the man-
ifolds that can occur as the links of points in normal complex surfaces. We relate
this discussion to a special class of singularities; those of “splice type”, which
turn out to play a central role among singularities of complex surfaces.

An appendix gives a brief introduction to classical 3-manifold theory.
This paper was written to serve as notes for a short course at ICTP Trieste.

1. INTRODUCTION

The early study of 3-manifolds and knots in 3-manifolds was motivated to a
large extent by the theory of complex surfaces. For example, Poul Heergaard’s
1898 thesis [7], in which he introduced the fundamental tool of 3-manifold theory
now called a “Heegaard splitting,” was on the topology of complex surfaces. For
a thread from Heergaard’s thesis through knot theory to the “splice diagrams” that
will play a central role in this paper, see the survey [23] on topology of complex
surface singularities.

The local topology of a normal complex surface (“normal” roughly means that
any “inessential” singularities have been removed) at any point is the cone on a
closed oriented 3-manifold. The manifold is called the “link” of the point. We call
it a “singularity-link,” even though we allow S3, which can only be the link of a
non-singular point (Mumford [16]).

Singularity links and other 3-manifolds that arise in the study of complex sur-
faces are of a special type, namely “graph manifolds.” Graph manifolds were de-
fined and classified by Waldhausen in his thesis [40]. The motivation was certainly
that the set of graph manifolds includes all singularity-links, and Waldhausen’s
work together with Grauert’s criterion effectively gave a description of exactly
what 3-manifolds are singularity-links. This description was put in a more conve-
nient algorithmic form in [17]. More elegant versions have emerged since, which
depend on taking a coarser look at the classification of graph manifolds. These
coarse classifications are a central theme of this paper. They will also lead us to a
special class of singularities, the singularities of “splice type” which encompasses
several important classes of singularities.
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An appendix to this paper provides a convenient reference for some of the basic
3-manifold theory that we use.

This paper was written to serve as notes for a short course at ICTP Trieste. It is
based in part also on lectures the author gave at CIRM (Luminy) in March 2005.

2. THE PLACE OF GRAPH MANIFOLDS IN 3-MANIFOLD THEORY

Throughout this paper, 3-manifolds will be compact and oriented unless other-
wise stated. They will also be prime — not decomposable as a non-trivial con-
nected sum. One forms the connected sum of two 3-manifolds by removing the
interior of a disk from each and then gluing the resulting punctured 3-manifolds
along their S2 boundaries. Kneser and Milnor [12, 15] showed that any oriented
3-manifold has an essentially unique decomposition into prime 3-manifolds. Sin-
gularity links are always prime ([17]).

Definition 2.1. A graph-manifold is a 3-manifold M that can be cut along a family
of disjoint embedded tori to decompose it into pieces Si × S1, where each Si is a
compact surface (i.e., 2-manifold) with boundary.

The JSJ-decomposition is a natural decomposition of any prime 3-manifold into
Seifert fibered and simple non-fibered pieces (see the appendix for relevant defini-
tions and more detail). Its existence was proved in the mid-1970’s independently by
by Jaco and Shalen [9] and by Johannson [11], although it had been sketched earlier
by Waldhausen [41]. From the point of view of JSJ-decomposition, a graph man-
ifold is simply a 3-manifold which has no non-Seifert-fibered JSJ-pieces. There
are various modifications of the JSJ decomposition, depending on the intended ap-
plication, and they differ in essentially elementary ways (see e.g., [25]). One ver-
sion is the “geometric decomposition” — a minimal decomposition along tori and
Klein bottles into pieces that admit geometric structures in the sense of Thurston
(finite volume locally homogeneous Riemannian metrics). The relevant geometry
for simple non-Seifert-fibered pieces is hyperbolic geometry1. From this geomet-
ric point of view, graph manifolds are manifolds that have no hyperbolic pieces in
their geometric decompositions.

In summary, a graph manifold is a 3-manifold that can be glued together from
pieces of the form (surface)×S1, or more efficiently, from pieces which are Seifert
fibered. Both points of view will be useful in the sequel.

3. SEIFERT MANIFOLDS

Let M3 → F be a Seifert fibration of a closed 3-manifold. It is classified up
to orientation preserving homeomorphism (or diffeomorphism) by the following
data:

1The existence of the hyperbolic structure when M is simple non-Siefert fibered and the JSJ de-
composition is trivial was still conjectural until recently; although proved in many cases by Thurston,
it is probably now proved in general by Perelman’s work.
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• The homeomorphism type of the base surface F , which we can encode by
its genus g. We use the convention that g < 0 refers to a non-orientable
surface, so g = −1,−2, . . . means F is a projective place, Klein bottle,
etc.

• A collection of rational numbers 0 < qi/pi < 1, i = 1, . . . , n, that en-
code the types of the singular fibers. Here pi is the multiplicity of the i-th
singular fiber and qi encodes how nearby fibers twist around this singular
fiber.

• A rational number e = e(M → F ) called the Euler number of the Seifert
fibration. Its only constraint is that e +

∑n
i=1

qi

pi
should be an integer.

It is most natural to think of the base surface F as an orbifold rather than a
manifold, with orbifold points of degrees p1, . . . , pn. As such, it has an orbifold
Euler characteristic

χorb(F ) = χg −
∑

i

(1− 1
pi

)

where χg is the Euler characteristic of the surface of genus g:

χg =

{
2− 2g , g ≥ 0 ,

2 + g , g < 0 .

Note that an oriented 3-manifold M3 may be Seifert fibered with non-orientable
base. However, we do not need to consider this for links of singularities: a Seifert
fibered 3-manifold is a singularity link if and only if it has a Seifert fibration over
an orientable base and the Euler number e(M → F ) is negative.

From the point of view of geometric structures and geometric decomposition,
there are exactly six geometries that occur for Seifert fibered manifolds and the
type of the geometry is determined by whether χorb(F ) is > 0,= 0, < 0 and
whether e(M → F ) is = 0 or 6= 0 ([19, 34]). These two invariants, which we will
abbreviate simply as χ and e, are thus fundamental invariants for a Seifert fibered
M3. If e 6= 0 then M3 has a unique orientation that makes e < 0, and we call this
its “natural orientation,” since it is the orientation that makes it (or a double cover
of it if the base surface is non-orientable) into a singularity link.

The above discussion was for a closed 3-manifold M3. If M3 is allowed to have
boundary (but is still compact) then the Euler number e is indeterminate unless one
has extra data. The additional data consists of a choice of a simple closed curve in
each boundary torus of M3, transverse to the fibers of the Seifert fibration.

Definition 3.1. We call this collection of curves a system of meridians for M .

Given a system of meridians, we can form a closed Seifert fibered manifold M̄3

by gluing a solid torus onto each boundary component, matching a meridian of the
solid torus with the chosen “meridian” on the boundary T 2. The Euler invariant
e(M̄) is called the Euler invariant of M with its system of meridians.
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4. DECOMPOSITION GRAPHS, DECOMPOSITION MATRICES

We now return to a general graph manifold M , considering it from the point of
view of JSJ-decomposition. So M can be cut along tori so that if breaks into pieces
that are Seifert fibered 3-manifolds. “JSJ decomposition” means that no smaller
collection of cutting tori will work (see the Appendix for a proof of existence and
uniqueness of JSJ decomposition).

If M fibers over the circle with torus fiber or is double covered by such a mani-
fold then M admits a geometric structure, so the geometric version of JSJ decom-
position would not decompose it, even though the standard JSJ usually cuts it along
a torus. Such manifolds are completely understood (for a discussion close to the
current point of view see [20]) so:

Assumption. From now on we assume that M cannot be fibered over S1 with T 2

fiber.

Each piece Mi in the JSJ decomposition comes with a system of meridians (Def-
inition 3.1) by choosing the meridian in each boundary torus of Mi to be a Seifert
fiber of the piece across the torus from Mi. Thus the orbifold Euler characteristic
and Euler number invariants are both defined for the i-th piece Mi, and we call
them χi and ei.

The decomposition graph is the graph with a vertex for each piece Mi and an
edge for each gluing torus. The edge connects the vertices corresponding to the
pieces of M that meet along the torus. We decorate this graph with weights as
follows: At the vertex i corresponding to Mi we give the numbers χi and ei, writing
χi in square brackets to distinguish it. And for an edge E corresponding to a torus
T 2 we record the absolute value of the intersection number F.F ′, where F and F ′

are fibers in T 2 of the Seifert fibrations on the pieces Mi and Mj that meet along
T 2. For example, if M is glued from two Seifert fibered pieces, each of which has
one boundary component, then the decomposition graph has the form

[χ1]

e1

• p
.

[χ2]

e2

•

There is one problem with the definition of the decomposition graph. If a piece
Mi is the total space SMb of the unit tangent bundle of the Möbius band, then
weights on adjacent edges of the decomposition graph are not well-defined. This
is because SMb has two different Seifert fibrations, one as this circle bundle and
another by orbits of the action of the circle on SMb induced by the non-trivial S1

action on the Möbius band Mb. For this reason we always use the latter Seifert
fibration if such a piece occurs. However, we will usually want to go further and
avoid SMb pieces altogether. This can always be done by replacing M by a double
cover. In fact:

Proposition 4.1 ([20]). M always has a double cover whose JSJ decomposition
satisfies:

• Every piece of M has a Seifert fibration over a orientable base surface.
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• The fibers of each piece can be oriented so that the fiber intersection num-
ber in each torus is positive2.

• No SMb pieces occur and no piece is glued to itself across a torus.

If the first condition holds we say M is good and if the first two conditions hold
M is very good.

Remark 4.2. The third of the above conditions is a condition on the decomposition
graph: the absence of SMb pieces says that the χ–weight at each vertex is negative
(unless the graph consists of a single vertex with χ = 0), and the absence of “self-
gluings” is absence of edges that have both ends at the same vertex.

Even though the decomposition graph carries much less information than is
needed to reconstruct M , it determines M up to finite ambiguity:

Proposition 4.3. There are only finitely many different manifolds for any given
decomposition graph.

The proof of this is an exercise, based on the fact that there are only finitely
many 2-orbifolds with given orbifold Euler characteristic χ. But the number can
grow quite rapidly with χ, so already for simple decomposition graphs the number
of manifolds can be large. Nevertheless, the decomposition graph does determine
M up to commensurability (recall that manifolds are commensurable if they have
diffeomorphic finite covers):

Theorem 4.4 ([24]). If M1 and M2 are graph manifolds with no SMb pieces and
their decomposition graphs are isomorphic then there exist d-fold covers M̄1 and
M̄2 of M1 and M2 for some d ∈ N such that M̄1

∼= M̄2.

For many properties of M even less information suffices. Namely, the decom-
position matrix is the matrix A = (aij) with entries

aij = ei + 2
∑
iEi

1
|p(E)|

if i = j

=
∑
iEj

1
|p(E)|

if i 6= j ,

where iEj means E is an edge joining i and j, and p(E) is the fiber intersection
weight on this edge. So the decomposition matrix no longer retains the invariants
χi nor the exact number of edges joining a vertex to another.

It turns out that a variety of questions about M are answered in the litera-
ture completely in terms of the decomposition matrix (in some cases variations
of “good” or “very good” are needed, that are always achieved in some double
cover):

• Is M a singularity link ([20])?

2To get a well defined intersection number we view the separating torus from one side and inter-
sect the Seifert fibers in the torus in the order (fiber from the near side).(fiber from the far side). If
we look from the other side we reverse the orientation of the torus and reverse the order of the fibers,
so the intersection number stays the same.
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• Does M fiber over the circle ([20])?
• Does some cover of M fiber over the circle ([20])?
• Does M have an immersed incompressible surface of negative Euler num-

ber ([21])?
• Does some cover of M have an embedded incompressible surface of neg-

ative Euler number ([21])?
• Does M admit a metric of non-positive curvature ([1])?

For the first of these the answer is as follows:

Theorem 4.5. M is a singularity link if and only if it is very good and the decom-
position matrix is negative definite.

This is proved in [20] by a combinatorial argument, but we can give a geometric
reason why it might be expected. Grauert’s criterion [5] characterizes singularity
links among “plumbed manifolds” (another way of looking at graph manifolds) by
the negative definiteness of the intersection matrix of a resolution of the singularity.
Our decomposition matrix is the intersection matrix of a resolution, but not a full
resolution. The so-called log-canonical resolution of a surface singularity resolves
the singularity to the point where only cyclic quotient singularities remain. Al-
though we then do not yet have a smooth manifold, it is a Q-homology manifold,
so intersection numbers are still defined (they are rational numbers rather than inte-
gers). The resulting intersection matrix is the decomposition matrix. The theorem
can be interpreted to say that Grauert’s criterion still holds in this situation.

5. SPLICE DIAGRAMS FOR RATIONAL HOMOLOGY SPHERES

This section and the next describe joint work of the author and J. Wahl. We
will describe a different encoding of graph manifolds, that again brings focus to
some information by throwing away other information. We now restrict to graph
manifolds M which are rational homology spheres, that is H1(M ; Z) is finite.
We say, briefly, that M is a QHS. For the JSJ decomposition this implies that the
decomposition graph must be a tree, and, moreover, that the base of each Seifert
fibered piece is of genus zero. However, instead of using the JSJ decomposition we
now use the Waldhausen decomposition — the minimal decomposition into pieces
of the form (surface)×S1

We again form a graph for this decomposition. This graph, with weights on
edges to be described, is called a splice diagram.

The Waldhausen decomposition differs from the JSJ decomposition in that for
each singular fiber of a Seifert fibered piece we must cut out a D2 × S1 neighbor-
hood of that singular fiber. For example, the JSJ decomposition graph for a Seifert
fibered manifold consists of a single vertex (decorated with two numerical weights
e and χ), while the splice diagram is a star-shaped graph: a central node with an
edge sticking out for each singular fiber of the Seifert fibration. We weight the
edges by the degrees of the singular fibers. For example a Seifert fibered manifold
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with exactly three singular fibers of degrees 2, 3, 5 would have splice diagram

◦ 2 ◦ 3

5
◦

◦
(There are infinitely many such Seifert manifolds, all with the same splice diagram;
the corresponding decomposition graphs consist of a single vertex with weights
[χ = 1/30], e = q/30, with q an arbitrary integer prime to 30.)

In general a slice diagram is a finite tree with vertices only of valence 1 (“leaves”)
or ≥ 3 (“nodes”) and with non-negative integer weights decorating the edges
around each node, and such that the weights on edges from nodes to leaves are
≥ 2. In addition, we decorate a node with an additional “−” sign if the link-
ing number in M of two fibers of the corresponding Seifert piece is negative (this
never occurs for splice diagrams of links of singularities).

Here is an example of a splice diagram for a certain singularity link M .

◦ 2 ◦17 10

4
◦ 7 26

3
◦ 2

3
◦

◦ ◦ ◦
We describe the meaning of the weights by example of the weight 17. It is on an
edge joining the two nodes, and this edge corresponds to a torus T 2 which cuts M
into two pieces M1 and M2 (M1 is Seifert fibered and M2 is not). We look at the
piece M2 at the far side of T 2 and form a closed manifold M̄2 by gluing a solid
torus into its boundary, matching – as in the previous section – meridian of the
solid torus with the “meridian curve” on the boundary of M2 (recall that this is a
fiber in T 2 of the Seifert fibration across T 2 from M2). The weight 17 is the order
|H1(M̄2; Z)|. This procedure weights an edge leading to a leaf with degree of the
singular Seifert fiber corresponding to that leaf.

(It turns out that there is just one manifold with the above splice diagram. Its JSJ
decomposition graph, obtained from the splice diagram by removing all the leaves
and decorating with appropriate χi and ei weights, is

[−1
4

]

−5
4◦

[−2
3

]

−5
3◦

[−1
6

]

−7
6◦ )

Definition 5.1. The edge determinant of an edge connecting two nodes in a splice
diagram is defined to be the product of the two weights on that edge minus the
product of the weights adjacent to that edge.

For example, both edge determinants in the above splice diagram are 2 since
10× 17− 2× 4× 3× 7 = 2 and 7× 26− 10× 3× 2× 2 = 2.

Theorem 5.2. M is the link of a singularity if and only if no + decorations occur
in the diagram and every edge determinant is positive.

Again, although the splice diagram does not determine M uniquely in general, it
does determine M up to commensurability. In fact, recall that the universal abelian
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cover of a space M is the Galois cover whose covering transformation group is
H1(M ; Z).

Theorem 5.3 (??). If M1 and M2 are QHS graph manifolds with the same splice
diagram then the universal abelian covers of M1 and M2 are diffeomorphic.

The question marks are because we have not yet carefully written up a full proof
of this theorem in the generality claimed. It is certainly correct when M1 and M2

are singularity links (the case that interests us most here).
In general the universal abelian cover of a QHS graph manifold M may be

something quite horrible, with a complicated decomposition graph and lots of ho-
mology. But there is a case when we can describe it very nicely. For any splice
diagram with pairwise coprime weights around each node there is a unique inte-
gral homology sphere (ZHS) with the given splice diagram. It is its own universal
abelian cover, so the theorem implies that this ZHS is diffeomorphic to the univer-
sal abelian cover of any other graph manifold with the same splice diagram.

The splice diagram of a ZHS graph manifold always has pairwise coprime
weights around each node, so such diagrams classify ZHS graph manifolds (see
[3]).

We saw that the decomposition graph determines M up to finite ambiguity. The
same is true for the splice diagram, except in the case of one-node splice diagrams
(a one-node splice diagram always has infinitely many different manifolds associ-
ated with it). This is a consequence of Proposition 4.3 and the following:

Proposition 5.4 ([24]). The splice diagram of M and the order of H1(M ; Z) to-
gether determine the decomposition graph of M . The order of H1(M ; Z) is a
common divisor of the edge determinants of the splice diagram.

6. SINGULARITIES OF SPLICE TYPE

In general it has been very difficult to give explicit analytic realizations of sin-
gularities with given topology, but when the link is a QHS the recently discovered
“singularities of splice type” [28] often do this.

Singularities of splice type have very strong properties: the universal abelian
cover of a splice type singularity (by which we mean the maximal abelian cover
that is ramified only at the singular point) is a complete intersection, defined by
a quite elegant system of equations, and the covering transformation group acts
diagonally in the coordinates. So the singularity is described by explicit equations
and an explicit diagonal group action.

But, despite these strong properties, splice type singularities seem surprisingly
common. For example, it has long been known that weighted homogeneous singu-
larities with QHS link are of splice type ([18]), we (J. Wahl and the author) showed
in [27] that Hirzebruch’s quotient-cusp singularities are, and recently Okuma [32]
has confirmed our conjecture that every rational singularity is of splice type and
every minimally elliptic singularities with QHS link also is. Very recently we have
proved a conjecture we had struggled with for some time, the “End Curve Con-
jecture”, which postulated a characterization of this class of singularities in terms
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of curves through the singular point, and which has Okuma’s theorem as a conse-
quence.

To describe this result we need some terminology. Let (V, o) be a normal com-
plex surface singularity and π : (Y, E) → (V, o) a good resolution. Recall that this
means that π−1(o) = E, π is biholomorphic between Y −E and V −o, and E is a
union of smooth curves Ej that intersect each other transversally, no three through
a point. The link of the singularity is a QHS if and only if the resolution graph (the
graph with a vertex for each Ej and an edge for each intersection of two Ej’s) is
a tree and each Ej is a rational curve. Let Ej correspond to a leaf j of the tree,
so Ej intersects the rest of E in a single point x. An end-curve for j is a smooth
curve germ cutting Ej transversally in a point other than x. An end-curve function
for this leaf j is an analytic function germ zj : (V, o) → (C, 0) that “cuts out” an
end-curve for j, in the sense that its zero set is the image in V of an end-curve for
j (with some multiplicity).

Theorem 6.1 (End Curve Theorem, [30]). Suppose (V, o) is a normal complex
surface singularity with QHS link. It is of splice type if and only if an end-curve
function exists for each leaf of the resolution graph. In this case appropriate roots
of the end-curve functions can be used as coordinates on the universal abelian
cover.

The existence of end-curve functions is well known for rational singularities and
for QHS-link minimally elliptic ones, so Okuma’s theorem that these are of splice
type follows.

To give the analytic description of splice type singularities we start with the
weighted homogeneous case. Then there is a C∗–action on the singularity which
induces an S1–action on the link M , so the the link is Seifert fibered. The splice
diagram thus has the form

◦ p1 ◦ pt ◦

◦
p2

vvvvvvvv . . .

In this case it was shown in [18] that the universal abelian cover of the singularity
is a Brieskorn complete intersection

Ṽ ab ∼= {(z1, . . . , zt) ∈ Ck | ai1z
p1
1 + · · ·+ aikz

pt
t = 0, i = 1, . . . , t− 2} ,

for suitable coefficients aij . Moreover, an explicit action of H1(M ; Z) on this
Brieskorn complete intersection was given, with quotient the original singular-
ity. Note that the Brieskorn equations are weighted homogeneous of total weight
p1 . . . pt if we give the j-th variable weight p1 . . . p̂j . . . pt.

General splice type singularities generalize this situation. A variable zi is asso-
ciated to each leaf of the splice diagram, and for each node j of the diagram one
associates a collection of δ − 2 equations (δ the valence of the node) which are
weighted homogeneous with respect to a system of weights associated to the node
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(one also allows higher weight perturbations of these equations). Doing this for all
nodes gives a total of t− 2 equations, where t is the total number of leaves.

To describe these weights, fix the node v. The v-weight of the variable zi corre-
sponding to leaf i is the product of the weights directly adjacent to but not on the
path from v to i in the splice diagram. We denote this number `vi. For example, if
v is the left node in the splice diagram

z1 ◦ z4◦
∆ = ◦

2
UUUUUUUUUUU

3iiiiiiiiiii 37 7 ◦
3

iiiiiiiiiii
5 UUUUUUUUUUU

z2 ◦ z3◦

then the v-weights of the variables z1, z2, z3, z4 are:

`v1 = 3× 37 = 111, `v2 = 74, `v3 = 18, `v4 = 30 .

The weight of the equations that we want to write down is the product of the
weights at the node v, we denote this dv; in our example dv = 222. For each
of the edges e departing v we choose a monomial Me of total weight dv in the
variables corresponding to leaves beyond e from v. In this example the monomials
z2
1 , z3

2 , and z4
3z

5
4 are suitable. Our equations will be equations which equate δ − 2

generic linear combinations of these monomials to zero, where δ is the valence of
v. So in this case a there would be a single equation for the node v, of the form
az2

1 + bz3
2 + cz4

3z
5
4 = 0, for example

(1) z2
1 + z3

2 + z4
3z

5
4 = 0 .

Note that a monomial Me as above may not exist in general. The monomial
Me =

∏
i z

αi
i has weight

∑
i αi`vi, and the equation

dv =
∑

i

αi`vi

may not have a solution in non-negative integers αi as i runs through the leaves
beyond e. The solubility of these equations gives a condition on the splice diagram
that we call the semigroup condition. It is a fairly weak condition; for example the
fact that rational and QHS-link minimally elliptic singularities are of splice type
says that the semigroup condition is satisfied for the splice diagrams of the links of
such singularities.

If the semigroup condition is satisfied, then we can write down equations as
above for all nodes of the splice diagram, and we get a complete intersection sin-
gularity whose topology is the desired topology of a universal abelian cover. The
other ingredient in defining splice type singularities is the group action that gives
the covering transformations for the universal abelian cover. This group action in
computed in a simple way from the desired topology of the singularity (as encoded
by a resolution diagram; we describe this later), but the above equations will not
necessarily be respected by it. Being able to choose the monomials so that the
equations are respected is a further condition (on the resolution diagram for the
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singularity rather than just the splice diagram) which we call the congruence con-
dition. Again, it is a condition that is satisfied for the classes of singularities that
we mentioned above.

If both the semigroup condition and congruence condition are satisfied, so that
the monomials can be chosen appropriately, then the complete intersection sin-
gularity we have described is the universal abelian cover of a singularity with the
desired resolution diagram and the covering transformations are given by the group
action in question.

We will carry this out for the explicit example of the splice diagram above. This
is the splice diagram for a singularity with ZHS link. The universal abelian cover
is a trivial cover in this case, so the equations we construct will actually give such
a singularity.

We have already seen that a possible equation for the left node is given by equa-
tion (1). In a similar way, we see that a possible equation for the right node is

(2) z1z
2
2 + z5

3 + z3
4 = 0 .

The variety

V = {(z1, z2, z3, z4) | z2
1 + z3

2 + z4
3z

5
4 = 0, z1z

2
2 + z5

3 + z3
4 = 0}

thus has an isolated singularity at 0 whose link is the ZHS corresponding to the
above splice diagram.

However, suppose the singularity we are really interested in is not the singularity
with ZHS link, which has resolution graph

−2
◦

−3
◦−1

◦
HHHH

vv
vv

−7
◦

−2
◦

−2
◦

−3
◦

−2
◦

−2
◦

−2
◦

−2
◦

−2
◦

−2
◦

wwww
GG

GG−3
◦

−2
◦

−2
◦

−2
◦

−2
◦

but instead the singularity with resolution graph

−2
◦

−3
◦

Γ =
−2
◦

SSSSSSSSS

kkkkkkkkk
−3
◦

kkkkkkkkk

SSSSSSSSS
−3
◦

−5
◦ .

which has the same splice diagram, but its link M has first homology

H1(M ; Z) = Z/169 .

By what we have already said, we expect the above variety V to be the universal
abelian cover of what we want, so we want the Z/169 action on V . As we describe
in more detail below, the action of Z/169 is generated by the map

(z1, z2, z3, z4) 7→ (ξ9z1, ξ
6z2, ξ

38z3, ξ
7z4) ,

where ξ is a primitive 169-th root of unity. This multiplies the first equation by ξ18

and the second by ξ21, so it respects the equations and gives a free action of Z/169
on the variety. The theory developed in [28] proves that V ′ = V/(Z/169) has the
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desired topology and that V is its universal abelian cover.

To describe the action of H1(M ; Z) on Ct in general we first recall from [28]
how to construct the splice diagram from the resolution graph Γ. Denote the inci-
dence matrix of Γ by A(Γ) — this is the intersection matrix of the resolution: the
matrix whose diagonal entries are the self-intersection weights of Γ and which has
has an entry 1 or 0 in the kl position with k 6= l according as Γ does or does not
have an edge connecting vertices k and l. The cokernel of A(Γ) is isomorphic to
H1(M Z), so det(−A(Γ)) = |H1(M ; Z)|.

The splice diagram ∆ has the same shape as Γ but with vertices of valence
2 suppressed. The splice diagram weights can be computed as follows. If one
removes a node v of Γ and adjacent edges then Γ breaks into δ subgraphs, where δ
is the valence of v. The weights adjacent to v are the number det(−A(Γ′)) as Γ′

runs through these subgraphs.
This allows us to define a weight also adjacent to leaves of the splice diagram

∆, namely det(−A(Γ′)) where Γ′ is obtained by removing the leaf and adjacent
edge. We now define `ij for any pair of leaves as the product of weights adjacent
to the direct path from i to j (or just the weight adjacent to i if i = j).

With the leaves of ∆ numbered j = 1, . . . , t we define for each leaf i a diagonal
matrix

gi = diag(e2πi`ij/d; j = 1, . . . , t)
where d = |H1(M ; Z)|. These matrices generate a diagonal subgroup of GL(Ct)
which is isomorphic to H1(M ; Z). This gives the desired action of H1(M ; Z) on
Ct (see [28]).

In our particular example above, any one of g1, . . . , g4 generates the cyclic group
H1(M ; Z) = Z/169 and the actual element we gave above was g3.

The congruence condition is the condition that for any node of the splice dia-
gram we can choose the monomials Me so that they all transform the same way
under this group action. In this example the congruence condition turns out to be
satisfied for any choice of monomials.
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APPENDIX: CLASSICAL 3-MANIFOLD THEORY

This appendix gives a quick survey of some “classical” 3-manifold theory. It
is adapted from Chapter 2 of the notes [22]. Manifolds are always assumed to be
smooth (or at least piecewise smooth).

APPENDIX A. SOME BASICS

This section describes some fundamental classical tools of 3-manifold theory.
The proofs of the results in this section can be found in several books on 3-
manifolds, for example [8].

Theorem A.1 (Dehn’s Lemma). If M3 is a 3-manifold and f : D2 → M3 a map
of a disk such that for some neighborhood N of ∂D2 the map f |N is an embedding
and f−1(f(N)) = N . Then f |∂D2 extends to an embedding g : D2 → M3.

Dehn’s proof of 1910 [4] had a serious gap which was pointed out in 1927 by
Kneser. Dehn’s Lemma was finally proved by Papakyriakopoulos in 1956, along
with two other results, the loop and sphere theorems, which have been core tools
ever since. These theorems have been refined by various authors since then. The
following version of the loop theorem contains Dehn’s lemma. It is due to Stallings
[36].

Theorem A.2 (Loop Theorem). Let F 2 be a connected submanifold of ∂M3, N
a normal subgroup of π1(F 2) which does not contain ker(π1(F 2) → π1(M3)).
Then there is a proper embedding g : (D2, ∂D2) → (M3, F 2) such that [g|∂D2] 6∈
N .

Theorem A.3 (Sphere Theorem). If N is a π1(M3)-invariant proper subgroup of
π2(M3) then there is an embedding S2 → M3 which represents an element of
π2(M3)−N .

(These theorems also hold if M3 is non-orientable except that in the Sphere
Theorem we must allow that the map S2 → M3 may be a degree 2 covering map
onto an embedded projective plane.)

Definition A.4. An embedded 2-sphere S2 ⊂ M3 is essential or incompressible
if it does not bound an embedded ball in M3. M3 is irreducible if it contains no
essential 2-sphere.

Note that if M3 has an essential 2-sphere that separates M3 (i.e., M3 falls into
two pieces if you cut along S2), then there is a resulting expression of M as a con-
nected sum M = M1#M2 (to form connected sum of two manifolds, remove the
interior of a ball from each and then glue along the resulting boundary components
S2). If M3 has no essential separating S2 we say M3 is prime

Exercise 1. M3 prime ⇔ Either M3 is irreducible or M3 ' S1 × S2. Hint3.

3If M3 is prime but not irreducible then there is an essential non-separating S2. Consider a simple
path γ that departs this S2 from one side in M3 and returns on the other. Let N be a closed regular
neighborhood of S2 ∪ γ. What is ∂N? What is M3 −N?
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Theorem A.5 (Kneser and Milnor). Any 3-manifold has a unique connected sum
decomposition into prime 3-manifolds (the uniqueness is that the list of summands
is unique up to order).

We next discuss embedded surfaces other than S2. Although we will mostly
consider closed 3-manifolds (i.e., compact without boundary), it is sometimes nec-
essary to consider manifolds with boundary. If M3 has boundary, then there are
two kinds of embeddings of surfaces that are of interest: embedding F 2 into ∂M3

or embedding F 2 so that ∂F 2 ⊂ ∂M3 and (F 2 − ∂F 2) ⊂ (M3 − ∂M3). The
latter is usually called a “proper embedding.” Note that ∂F 2 may be empty. In
the following we assume without saying that embeddings of surfaces are of one of
these types.

Definition A.6. If M3 has boundary, then a properly embedded disk D2 ⊂ M3

is essential or incompressible if it is not “boundary-parallel” (i.e., it cannot be iso-
toped to lie completely in ∂M3, or equivalently, there is no ball in M3 bounded by
this disk and part of ∂M3). M3 is boundary irreducible if it contains no essential
disk.

If F 2 is a connected surface 6= S2, D2, an embedding F 2 ⊂ M3 is incompress-
ible if π1(F 2) → π1(M3) is injective. An embedding of a disconnected surface is
incompressible if each component is incompressibly embedded.

It is easy to see that if you slit open a 3-manifold M3 along an incompressible
surface, then the resulting pieces of boundary are incompressible in the resulting
3-manifold. The loop theorem then implies:

Proposition A.7. If F 2 6= S2, D2, then a two-sided embedding F 2 ⊂ M3 is
compressible (i.e., not incompressible) if and only if there is an embedding D2 →
M3 such that the interior of D2 embeds in M3−F 2 and the boundary of D2 maps
to an essential simple closed curve on F 2.

(For a one-sided embedding F 2 ⊂ M3 one has a similar conclusion except that
one must allow the map of D2 to fail to be an embedding on its boundary: ∂D2

may map 2-1 to an essential simple closed curve on F 2. Note that the boundary of
a regular neighborhood of F 2 in M3 is a two-sided incompressible surface in this
case.)

Exercise 2. Show that if M3 is irreducible then a torus T 2 ⊂ M3 is compressible
if and only if either

• it bounds an embedded solid torus in M3, or
• it lies completely inside a ball of M3 (and bounds a knot complement in

this ball).

A 3-manifold is called sufficiently large if it contains an incompressible sur-
face, and is called Haken if it is irreducible, boundary-irreducible, and sufficiently
large. Fundamental work of Haken and Waldhausen analyzed Haken 3-manifolds
by repeatedly cutting along incompressible surfaces until a collection of balls was
reached (it is a theorem of Haken that this always happens). A main result is
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Theorem A.8 (Waldhausen). If M3 and N3 are Haken 3-manifolds and we have
an isomorphism π1(N3) → π1(M3) that “respects peripheral structure” (that is,
it takes each subgroup represented by a boundary component of N3 to a a conju-
gate of a subgroup represented by a boundary component of M3, and similarly for
the inverse homomorphism). Then this isomorphism is induced by a homeomor-
phism N3 → M3 which is unique up to isotopy.

The analogous theorem for surfaces is a classical result of Nielsen.
We mention one more “classical” result that is a key tool in Haken’s approach.

Definition A.9. Two disjoint surfaces F 2
1 , F 2

2 ⊂ M3 are parallel if they bound a
subset isomorphic to F1 × [0, 1] between them in M3.

Theorem A.10 (Kneser-Haken finiteness theorem). For given M3 there exists a
bound on the number of disjoint pairwise non-parallel incompressible surfaces
that can be embedded in M3.

APPENDIX B. JSJ DECOMPOSITION

We shall give a quick proof, originating in an idea of Swarup (see [25]), of the
main “JSJ decomposition theorem” which describes a canonical decomposition of
any irreducible boundary-irreducible 3-manifold along tori and annuli. The char-
acterization of this decomposition that we actually use in these notes is here an
exercise (Exercise 3 at the end of this section). F. Costantino gives a nice exposi-
tion in [2] of a proof, based on this proof and ideas of Matveev, that directly proves
this characterization.

We shall just describe the decomposition in the case that the boundary of M3 is
empty or consists of tori, since that is what is relevant to these notes. Then only
tori occur in the JSJ decomposition (see section C.5). An analogous proof works in
the general torus-annulus case (see [25]), but the general case can also be deduced
from the case we prove here.

The theory of such decompositions for Haken manifolds with toral boundaries
was first outlined by Waldhausen in [41]; see also [42] for his later account of the
topic. The details were first fully worked out by Jaco and Shalen [9] and indepen-
dently Johannson [11].

Definition B.1. M is simple if every incompressible torus in M is boundary-
parallel.

If M is simple we have nothing to do, so suppose M is not simple and let
S ⊂ M be an essential (incompressible and not boundary-parallel) torus.

Definition B.2. S will be called canonical if any other properly embedded essen-
tial torus T can be isotoped to be disjoint from S.

Take a disjoint collection {S1, . . . , Ss} of canonical tori in M such that
• no two of the Si are parallel;
• the collection is maximal among disjoint collections of canonical tori with

no two parallel.



16 WALTER D. NEUMANN

A maximal system exists because of the Kneser-Haken finiteness theorem. The
result of splitting M along such a system will be called a JSJ decomposition of
M . The maximal system of pairwise non-parallel canonical tori will be called a
JSJ-system.

The following lemma shows that the JSJ-system {S1, . . . , Ss} is unique up to
isotopy.

Lemma B.3. Let S1, . . . , Sk be pairwise disjoint and non-parallel canonical tori
in M . Then any incompressible torus T in M can be isotoped to be disjoint from
S1 ∪ · · · ∪ Sk. Moreover, if T is not parallel to any Si then the final position of T
in M − (S1 ∪ · · · ∪ Sk) is determined up to isotopy.

By assumption we can isotop T off each Si individually. Writing T = S0, the
lemma is thus a special case of the stronger:

Lemma B.4. Suppose {S0, S1, . . . , Sk} are incompressible surfaces in an irre-
ducible manifold M such that each pair can be isotoped to be disjoint. Then
they can be isotoped to be pairwise disjoint and the resulting embedded surface
S0 ∪ . . . ∪ Sk in M is determined up to isotopy.

Proof. We just sketch the proof. We start with the uniqueness statement. Assume
we have S1, . . . , Sk disjointly embedded and then have two different embeddings
of S = S0 disjoint from T = S1 ∪ . . . ∪ Sk. Let f : S × I → M be a homotopy
between these two embeddings and make it transverse to T . The inverse image of
T is either empty or a system of closed surfaces in the interior of S × I . Now use
Dehn’s Lemma and Loop Theorem to make these incompressible and, of course,
at the same time modify the homotopy (this procedure is described in Lemma 1.1
of [40] for example). We eliminate 2-spheres in the inverse image of T similarly.
If we end up with nothing in the inverse image of T we are done. Otherwise each
component T ′ in the inverse image is a parallel copy of S in S × I whose funda-
mental group maps injectively into that of some component Si of T . This implies
that S can be homotoped into Si and its fundamental group π1(S) is conjugate into
some π1(Si). It is a standard fact (see, e.g., [37]) in this situation of two incom-
pressible surfaces having comparable fundamental groups that, up to conjugation,
either π1(S) = π1(Sj) or Sj is one-sided and π1(S) is the fundamental group of
the boundary of a regular neighborhood of T and thus of index 2 in π1(Sj). We
thus see that either S is parallel to Sj and is being isotoped across Sj or it is a
neighborhood boundary of a one-sided Sj and is being isotoped across Sj . The
uniqueness statement thus follows.

A similar approach to proves the existence of the isotopy using Waldhausen’s
classification [39] of proper incompressible surfaces in S × I to show that S0 can
be isotoped off all of S1, . . . , Sk if it can be isotoped off each of them. �

The thing that makes decomposition along incompressible annuli and tori spe-
cial is the fact that they have particularly simple intersection with other incom-
pressible surfaces.
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Lemma B.5. If a properly embedded incompressible torus T in an irreducible
manifold M has been isotoped to intersect another properly embedded incom-
pressible surface F with as few components in the intersection as possible, then
the intersection consists of a family of parallel essential simple closed curves on
T .

Proof. Suppose the intersection is non-empty. If we cut T along the intersection
curves then the conclusion to be proved is that T is cut into annuli. Since the Euler
characteristics of the pieces of T must add to the Euler characteristic of T , which
is zero, if not all the pieces are annuli then there must be at least one disk. The
boundary curve of this disk bounds a disk in F by incompressibility of F , and these
two disks bound a ball in M by irreducibility of M . We can isotop over this ball to
reduce the number of intersection components, contradicting minimality. �

Let M1, . . . ,Mm be the result of performing the JSJ-decomposition of M along
the JSJ-system {S1 ∪ · · · ∪ Ss}.

Theorem B.6. Each Mi is either simple or Seifert fibered by circles (or maybe
both).

Proof. Suppose N is one of the Mi which is non-simple. We must show it is Seifert
fibered by circles.

Since N is non-simple it contains essential tori. Consider a maximal disjoint
collection of pairwise non-parallel essential tori {T1, . . . , Tr} in N . Split N along
this collection into pieces N1, . . . , Nn. We shall analyze these pieces and show
that they are of one of nine basic types, each of which is evidently Seifert fibered.
Moreover, we will see that the fibered structures match together along the Ti when
we glue the pieces Ni together again to form N .

Consider N1, say. It has at least one boundary component that is a Tj . Since Tj

is not canonical, there exists an essential torus T ′ in N which essentially intersects
T1. We make the intersection of T ′ with the union T = T1 ∪ · · · ∪Tr minimal, and
then by Lemma B.5 the intersection consists of parallel essential curves on T ′.

Let s be one of the curves of Tj ∩ T ′. Let P be the part of T ′ ∩ N1 that has s
in its boundary. P is an annulus. Let s′ be the other boundary component of P . It
may lie on a Tk with k 6= j or it may lie on Tj again. We first consider the case

Case 1: s′ lies on a different Tk.

Tj Tk

P

FIGURE 1.
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In Fig. 1 we have drawn the boundary of a regular neighborhood of the union
Tj∪Tk∪P in N1. The top and the bottom of the picture should be identified, so that
the whole picture is fibered by circles parallel to s and s′. The boundary torus T of
the regular neighborhood is a new torus disjoint from the Ti’s, so it must be parallel
to a Ti or non-essential. If T is parallel to a Ti then N1 is isomorphic to X × S1,
where X is a the sphere with three disks removed. Moreover all three boundary tori
are Ti’s. If T is non-essential, then it is either parallel to a boundary component of
N or it is compressible in N . In the former case N1 is again isomorphic to X×S1,
but with one of the three boundary tori belonging to ∂N . If T is compressible then
it must bound a solid torus in N1 and the fibration by circles extends over this solid
torus with a singular fiber in the middle (there must be a singular fiber there, since
otherwise the two tori Tj and Tk are parallel).

We draw these three possible types for N1 in items 1,2, and 3 of Fig. 2, sup-
pressing the circle fibers, but noting by a dot the position of a possible singular
fiber. Solid lines represent part of ∂N while dashed lines represent Ti’s. We next

1 2 3

4 5 6

7 8 9

FIGURE 2.

consider
Case 2. s′ also lies on Tj , so both boundary components s and s′ of P lie on Tj .
Now P may meet Tj along s and s′ from the same side or from opposite sides,

so we split Case 2 into the two subcases:
Case 2a. P meets Tj along s and s′ both times from the same side;
Case 2b. P meets Tj along s and s′ from opposite sides.
It is not hard to see that after splitting along Tj , Case 2b behaves just like Case

1 and leads to the same possibilities. Thus we just consider Case 2a. This case has
two subcases 2a1 and 2a2 according to whether s and s′ have the same or opposite
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orientations as parallel curves of Tj (we orient s and s′ parallel to each other in
P ). We have pictured these two cases in Fig. 3 with the boundary of a regular
neighborhood of Tj ∪ P also pictured.

Tj P
T j P

FIGURE 3.

In Case 2a1 the regular neighborhood is isomorphic to X×S1 and there are two
tori in its boundary, each of which may be parallel to a Ti, parallel to a boundary
component of N , or bound a solid torus. This leads to items 1 through 6 of Fig. 2.

In Case 2b the regular neighborhood is a circle bundle over a möbius band with
one puncture (the unique such circle bundle with orientable total space). The torus
in its boundary may be parallel to a Ti, parallel to a component of ∂N , or bound a
solid torus. This leads to cases 7, 8, and 9 of Fig. 2. In all cases but case 9 a dot
signifies a singular fiber, but in case 9 it signifies a fiber which may or may not be
singular.

We now know that N1 is of one of the types of Fig. 2 and thus has a Seifert
fibration by circles, and therefore similarly for each piece Ni. Moreover, on the
boundary component Tj that we are considering, the fibers of N1 are parallel to the
intersection curves of Tj and T ′ and therefore match up with fibers of the Seifert
fibration on the piece on the other side of Tj . We must rule out the possibility that, if
we do the same argument using a different boundary component Tk of N1, it would
be a different Seifert fibration which we match across that boundary component.
In fact, it is not hard to see that if N1 is as in Fig. 2 with more than one boundary
component, then its Seifert fibration is unique. To see this up to homotopy, which
is all we really need, one can use the fact that the fiber generates a normal cyclic
subgroup of π1(N1), and verify by direct calculation that π1(N1) has a unique such
subgroup in the cases in question.

(In fact, the only manifold of a type listed in Fig. 2 that does not have a unique
Seifert fibration is case 6 when the two singular fibers are both degree 2 singular
fibers and case 9 when the possible singular fiber is in fact not singular. These are
in fact two Seifert fibrations of the same manifold T 1Mb, the unit tangent bundle
of the Möbius band Mb. This manifold can also be fibered by lifting the fibration
of the Möbius band by circles to a fibration of the total space of the tangent bundle
of Mb by circles.) �

An alternative characterization of the JSJ decomposition is as a minimal decom-
position of M along incompressible tori into Seifert fibered and simple pieces. In
particular, if some torus of the JSJ-system has Seifert fibered pieces on both sides
of it, the fibrations do not match up along the torus.
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Exercise 3. Verify the last statement.

APPENDIX C. SEIFERT FIBERED MANIFOLDS

In this section we describe all three-manifolds that can be Seifert fibered with
circle or torus fibers.

Seifert’s original concept of what is now called “Seifert fibration” referred to
3-manifolds fibered with circle fibers, allowing certain types of “singular fibers.”
For orientable 3-manifolds this gives exactly fibrations over 2-orbifolds, so it is
reasonable to use the term “Seifert fibration” more generally to mean “fibration
of a manifold over an orbifold.” So we start by recalling what we need about
orbifolds.

C.1. Orbifolds. An n-orbifold is a space that looks locally like Rn/G where G is
a finite subgroup of GL(n, R). Note that G varies from point to point, for example,
a neighborhood of [x] ∈ Rn/G looks like Rn/Gx where Gx = {g ∈ G | gx = x}.

We will restrict, for simplicity, to locally orientable 2-orbifolds (i.e., the above
G preserves orientation). Then the only possible local structures are R2/Cp, p =
1, 2, 3, . . . , where Cp is the cyclic group of order p acting by rotations. the local
structure is then a “cone point” with “cone angle 2π/p” (Fig. 4).

fundamental domain

FIGURE 4.

Topologically, a 2-orbifold is thus simply a 2-dimensional manifold, in which
certain points are singled out as being “orbifold points” where the total angle
around the point is considered to be 2π/p instead of 2π. The underlying 2-manifold
is classified by its genus g (we use negative numbers to refer to non-orientable sur-
faces, so genus −1,−2, . . . mean projective plane, Klein bottle, etc.). We can thus
characterize a 2–orbifold by a tuple of numbers (g; p1, . . . , pk) where g is the genus
and p1, . . . , pk describe the orbifold points.

C.2. General concept of Seifert fibrations via orbifolds. A map M → N is a
Seifert fibration if it is locally isomorphic to maps of the form (U×F )/G → U/G,
with U/G an orbifold chart in N (so U is isomorphic to an open subset of Rn with
an action of the finite group G) and F a manifold with G-action such that the
diagonal action of G on U × F is a free action. The freeness of the action is to
make M a manifold rather than just an orbifold.
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C.3. Seifert circle fibrations. We start with “classical” Seifert fibrations, that is,
fibrations with circle fibers, but with some possibly “singular fibers.” We first
describe what the local structure of the singular fibers is. This has already been
suggested by the proof of JSJ above.

We have a manifold M3 with a map π : M3 → F 2 to a surface such that all
fibers of the map are circles. Pick one fiber f0 and consider a regular neighborhood
N of it. We can choose N to be a solid torus fibered by fibers of π. To have a
reference, we will choose a longitudingal curve l and a meridian curve m on the
boundary torus T = ∂N . The typical fiber f on T is a simple closed curve, so it is
homologous to pl + rm for some coprime pair of integers p, r. We can visualize
the solid torus N like an onion, made up of toral layers parallel to T (boundaries
of thinner and thinner regular neighborhoods) plus the central curve f0. Each toral
shell is fibered just like the boundary T , so the typical fibers converge on pf0 as
one moves to the center of N .

Exercise 4. Let s be a closed curve on T that is a section to the boundary there.
Then (with curves appropriately oriented) one has the homology relation m =
ps + qf with qr ≡ 1 (mod p).

The pair (p.q) is called the Seifert pair for the fiber f0. It is important to note
that the section s is only well defined up to multiples of f , so by changing the
section s we can alter q by multiples of p. If we have chosen things so 0 ≤ q < p
we call the Seifert pair normalized.

By changing orientation of f0 if necessary, we may assume p ≥ 0. In fact:

Exercise 5. If M3 contains a fiber with p = 0 then M3 is a connected sum of lens
spaces. (A lens space is a 3-manifold obtained by gluing two solid tori along their
boundaries; it is classified by a pair of coprime integers (p, q) with 0 ≤ q < p
or (p, q) = (0, 1). One usually writes it as L(p, q). Special cases are L(0, 1) =
S2 × S1, L(1, 0) = S3. For p ≥ 0 L(p, q) can also be described as the quotient
of S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1} by the action of Z/p generated by
(z, w) 7→ (e2πi/pz, e2πiq/pw).)

We therefore rule out p = 0 and assume from now on that every fiber has p > 0.
Note that p = 1 means that the fiber f0 is a non-singular fiber, i.e., the whole
neighborhood N of f0 is fibered as the product D2 × S1. If p > 1 then f0 is a
singular fiber, but the rest of N consists only of non-singular fibers. In particular,
singular fibers are isolated, so there are only finitely many of them in M3.

Now let f0, . . . , fr be a collection of fibers which includes all singular fibers.
For each one we choose a fibered neighborhood Ni and a section si on ∂Ni as
above, giving a Seifert pair (pi, qi) with pi ≥ 1 for each fiber. Now on M0 :=
M3−

⋃ ∫
(Ni) we have a genuine fibration by circles over a surface with boundary.

Such a fibration always has a section, so we can assume that our sections si on
∂M0 have come from a global section on M0. This section on M0 is not unique.
If we change it, then each si is replaced by si + nif for some integers ni, and a
homological calculation shows that

∑
ni must equal 0. The effect on the Seifert

pairs (pi, qi) is to replace each by (pi, qi−nipi). In summary, we see that changing
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the choice of global section on M0 changes the Seifert pairs (pi, qi) by changing
each qi, keeping fixed:

• the congruence class qi (mod pi)
• e :=

∑ qi

pi

The above number e is called the Euler number of the Seifert fibration. We have
not been careful about describing our orientation conventions here. With a standard
choice of orientation conventions that is often used in the literature, e is more
usually defined as e := −

∑ qi

pi
.

Note that we can also change the collection of Seifert pairs by adding or deleting
pairs of the form (1, 0), since they correspond to non-singular fibers with choice of
local section that extends across this fiber. Up to these changes the topology of the
base surface F and the collection of Seifert pairs is a complete invariant of M3. A
convenient normalization is to take f0 to be a non-singular fiber and f1, . . . , fs to
be all the singular fibers and normalize so that 0 < qi < pi for i ≥ 1. This gives a
complete invariant:

(g; (1, q0), (p1, q1), . . . , (pr, qr)) with g = genus(F )

which is unique up to permuting the indices i = 1, . . . , r. A common convention
is to use negative g for the genus of non-orientable surfaces (even though we are
assuming M3 is oriented, the base surface F need not be orientable).

Exercise 6. Explain why the base surface F most naturally has the structure of an
orbifold of type (g; p1, . . . , pr).

Seifert manifolds can be given locally homogeneous Riemannian metrics (briefly
“geometric structures”). There are six underlying types for the geometric structure.
The orbifold Euler characteristic of this base orbifold and the Euler number e of
the Seifert fibration together determine the type of natural geometric structure that
can be put on M3.

There exist a few manifolds M3 that have more than one Seifert fibration. For
example, the lens space L(p, q) has infinitely many, all of them with base surface
S2 and at most two singular fibers (but if one requires the base to be a “good
orbifold”– one that is globally the quotient of a group action on a manifold), then
L(p, q) has only one Seifert fibration up to isomorphism).

C.4. “Seifert fibrations” with torus fiber. There are two basic ways a 3-manifold
M3 can fiber with torus fibers. The base must be 1-dimensional so it is either the
circle, or the 1-orbifold that one obtains by factoring the circle by the involution
z 7→ z. The latter is the unit interval [0, 1] considered as an orbifold.

In the case M3 fibers over the circle, we can obtain it by taking T 2 × [0, 1] and
then pasting T 2 × {0} to T 2 × {1} by an automorphism of the torus. Thinking
of the torus as R2/Z2, it is clear that an automorphism is given by a 2 × 2 integer
matrix of determinant 1 (it is orientation preserving since we want M3 orientable),
that is, by an element A ∈ SL(2, Z).

Exercise 7. Show the resulting M3 is Seifert fibered by circles if | tr(A)| ≤ 2.
Work out the Seifert invariants.
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If | tr(A)| > 2 then the natural geometry for a geometric structure on M is the
Sol geometry.

In case M3 fibers over the orbifold [0, 1] we can construct it as follows. The
manifold SMb mentioned in Section 4 of this paper can also be described as the
total space of the unique interval bundle over the Klein bottle with oriented total
space. From this point of view, SMb is fibered by tori that are the boundaries of
thinner versions of SMb obtained by shrinking the interval I , with the Klein bottle
zero-section as special fiber. Gluing two copies of SMb by some identification of
their torus boundaries gives M3. This M3 has a double cover that fibers over the
circle, and it is Seifert fibered by circles if and only this double cover is Seifert
fibered by circles, otherwise it again belongs to the Sol geometry.

C.5. Simple Seifert fibered manifolds. We said earlier that if M3 is irreducible
and all its boundary components are tori then only tori occur in the JSJ decompo-
sition. This is essentially because of the following:

Exercise 8. Let M3 be an orientable manifold, all of whose boundary components
are tori, which is simple (no essential tori) and suppose M3 contains an essential
embedded annulus (i.e., incompressible and not boundary parallel). Then M3 is
Seifert fibered over D2 with two singular fibers, or over the annulus or the Möbius
band with at most one singular fiber.

For manifolds with boundary, “simple” is often defined by the absence of essen-
tial annuli and tori, rather than just tori. The difference between these definitions
is just the manifolds of the above exercise. D2 × S1 is simple by either definition.
The only other simple Seifert fibered manifolds are those that are Seifert fibered
over S2 with at most three singular fibers or over P2 with at most one singular fiber
and which moreover satisfy e(M3 → F ) 6= 0.

APPENDIX D. GEOMETRIC VERSUS JSJ DECOMPOSITION

The JSJ decomposition does not give exactly the decomposition of M3 into
pieces with geometric structure. This is because of the fact that the manifold SMb
(that caused us problems in Section 4 of this paper) may occur as a Seifert fibered
piece in the decomposition, but it does not admit a geometric structure.

Recall (subsection C.4) that SMb has an embedded Klein bottle, and splitting
it along this Klein bottle gives T 2 × I . Thus, whenever SMb occurs as a piece in
the JSJ decomposition, instead of including the boundary of this piece as one of
the surfaces to split M3 along, we include its core Klein bottle. The effect of this
is simply to eliminate all such pieces without affecting the topology of any other
piece. The modified version of JSJ-decomposition that one gets this way is called
geometric decomposition.

REFERENCES

[1] Buyalo, S.V.; Kobel′skiı̌, V.L., Geometrization of graphmanifolds. II isometric geometrization,
St. Petersburg Math. J. 7 (1996), 387–404.

[2] F. Costantino, On a proof of the JSJ theorem, Rend. Sem. Mat. Univ. Pol. Torino 60 (2002),
129–146.



24 WALTER D. NEUMANN

[3] D. Eisenbud and W.D. Neumann, Three-dimensional link theory and invariants of plane curve
singularities. Ann. Math. Stud. 110, Princeton. Princeton Univ. Press (1985).
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