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Abstract. We describe the quasi-isometric classification of fundamental groups

of irreducible non-geometric 3-manifolds which do not have “too many” arith-
metic hyperbolic geometric components, thus completing the quasi-isometric

classification of 3–manifold groups in all but a few exceptional cases.

1. Introduction

In [1] we discussed the quasi-isometry classification of fundamental groups of
3–manifolds with possibly empty toroidal boundary (which coincides with the
bilipschitz classification of the universal covers of these three-manifolds). This
classification reduces easily to the case of irreducible manifolds. Moreover, no
generality is lost by considering only orientable manifolds. So from now on we
use the term 3–manifolds to refer to those we need consider, namely the compact
connected orientable irreducible 3–manifolds of zero Euler characteristic (i.e., with
boundary consisting only of tori) since these are the orientable manifolds which, by
Perelman’s Geometrization Theorem [11, 12, 13], decompose along tori and Klein
bottles into geometric pieces (this decomposition removes the boundary tori and a
family of embedded tori and Klein bottles, so the pieces of the decomposition are
without boundary). The minimal such decomposition is what is called the geometric
decomposition.

We described (loc. cit.) the classification for geometric 3–manifolds as well
as for non-geometric 3–manifolds with no hyperbolic pieces in their geometric
decomposition (i.e., graph-manifolds). For geometric manifolds this was a summary
of work of others; our contribution was in the non-geometric case. In this paper we
extend to allow hyperbolic pieces. However, our results are still not quite complete:
at present we exclude manifolds with “too many” arithmetic hyperbolic pieces1.

In the bulk of this paper we restrict to non-geometric manifolds, all of whose
geometric components are hyperbolic and at least one of which is non-arithmetic
(we will call these N–manifolds for short). In the final section 8 we extend to the
case where Seifert fibered pieces are also allowed.

The classification for graph-manifolds in [1] was in terms of finite labeled graphs;
the labeling consisted of a color black or white on each vertex and the classification
was in terms of an equivalence relation called bisimilarity. Each bisimilarity class
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1The essential remaining case to address is when all pieces are arithmetic hyperbolic. These

behave rather differently from the other cases—more like arithmetic hyperbolic manifolds.
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contained a unique minimal two-colored graph, so these minimal two-colored graphs
served as classifying objects. For N –manifolds the classification is again in terms of
finite labeled graphs and a “bisimilarity” relation, with a unique minimal labeled
graph in each bisimilarity class which can serve as the classifying object. The
labeling is more complex: each vertex is labeled by the isomorphism type of a
hyperbolic orbifold2 and each edge is labeled by a linear isomorphism between
certain 2-dimensional Q–vectorspaces. We will call these graphs N–graphs if at
least one orbifold label is non-arithmetic (H–graphs without this condition). The
graphs that classify N–manifolds are the N–graphs that are minimal and balanced.
All these concepts will be defined in Section 3.

Finally, when both Seifert fibered and hyperbolic pieces occur the classifying
graphs are a hybrid of the two-colored graphs and the H–graphs, so we call them
HS–graphs. In the case that every component of the manifold obtained by removing
all Seifert fibered pieces is N we call the hybrid graphs NS–graphs and we call
irreducible non-geometric manifolds of this type good. For example, 3–manifolds
which contain a hyperbolic piece but no arithmetic hyperbolic piece provide a large
family of good manifolds.

The following three theorems summarize our main results. The second two theo-
rems complement the first, by making the classification effective, and then relating
the quasi-isometric and commensurability classification for some N–manifolds.

Classification Theorem. Each good 3–manifold has an associated NS–graph
and two such manifolds have quasi-isometric fundamental groups (in fact, bilips-
chitz equivalent universal covers) if and only if their NS–graphs are bisimilar, or
equivalently, the associated minimal NS-graphs are isomorphic.

Realization Theorem. The minimal NS–graph associated to a good 3–manifold
is balanced. Any minimal NS–graph which is balanced is the minimal NS–graph
for some quasi-isometry class of good 3–manifold groups.

Commensurablity Theorem. If two N–manifolds have quasi-isometric funda-
mental groups and their common minimal N–graph is a tree with manifold labels
then they (and in particular, their fundamental groups) are commensurable.

In the absense of the condition on existence of a non-arithmetic hyperbolic piece
our results are much weaker. There is no longer a unique minimal graph in each
bisimilarity class of HS–graphs; if the graph is not NS there are infinitely many.
We still have that manifolds with bisimilar HS–graphs have bilipschitz equivalent
universal covers, but we do not know the converse (Remark 4.3). The Realization
Theorem remains true: any bisimilarity class which contains a balanced HS–graph,
contains an HS–graph of some 3-manifold (Section 6 and end of Section 8).

We do not know to what extent our restrictive conditions on the minimal N–
graph in the Commensurability Theorem are needed; whether “N–manifolds are
quasi-isometric if and only if they are commensurable” holds in complete generality
remains a very interesting open question. In the presence of Seifert fibered pieces
commensurability is strictly more restrictive than quasi-isometry, c.f., [1, 9].

The converse part of the Realization theorem and the Commensurability Theorem
both depend on the “Cusp Covering Conjecture” in dimension 3, which we explain

2“Hyperbolic orbifold” always means an orientable complete hyperbolic 3–orbifold of finite
volume.
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in Section 5. Since the original version of this paper, Dani Wise has pointed out
that this conjecture follows from work in his preprint [15], and has now included a
proof as Corollary 18.11 of [15], see also [16]. Although not relevant to the present
results, we note that for dimension ≥ 4 the Cusp Covering Conjecture remains open.

A slightly surprising byproduct of this investigation are the minimal orbifolds of
section 2, which play a role similar to commensurator quotients but exist also for
cusped arithmetic hyperbolic orbifolds. Although their existence is easy to prove,
they were new to us. Minimal orbifolds are precisely the orbifolds that can appear
as vertex labels of minimal H–graphs.

2. Minimal orbifolds

We consider only orientable manifolds and orbifolds. Let N be a hyperbolic
3–orbifold (not necessarily non-arithmetic) with at least one cusp. Then each cusp
of N has a smallest cover by a toral cusp (one with toral cross section) and this
cover has cyclic covering transformation group FC of order 1, 2, 3, 4, or 6. We call
this order the “orbifold degree of the cusp.”

Proposition 2.1. Among the orbifolds N ′ covered by N having the same number
of cusps as N with each cusp of N ′ having the same orbifold degree as the cusp of
N that covers it, there is a unique one, N0, that is covered by all the others. We
call this N0 a minimal orbifold.

More generally the same conclusion holds if for each cusp of N we specify a
“target” in {1, 2, 3, 4, 6} that is a multiple of the cusp orbifold degree and replace
“having the same orbifold degree as the cusp of N . . . ” by “having orbifold degree
dividing the target degree for the cusp of N . . . ” in the above.

Proof. We first “neuter” N by removing disjoint open horoball neighborhoods of
the cusps to obtain a compact orbifold with boundary which we call N0. If we prove
the proposition for N0, with boundary components interpreted as cusps, then it
holds for N .

Let Ñ0 be the universal cover of N0. Any boundary component C of N0 is

isomorphic to the quotient of a euclidean plane C̃ by the orbifold fundamental group
πorb1 (C), which is an extension of a lattice Z2 by the cyclic group FC of order 1, 2,
3, 4, or 6. We choose an oriented foliation of this plane by parallel straight lines
and consider all images by covering transformations of this foliation on boundary

planes of Ñ0. Each boundary plane of Ñ0 that covers C will then have |FC | oriented
foliations, related by the action of the cyclic group FC . If the target degree nC for
the given cusp is a proper multiple of |FC |, we also add the foliations obtained by
rotating by multiples of 2π/nC .

We give the boundary planes of Ñ0 different labels according to which boundary
component of N0 they cover, and we construct foliations on them as above. So

each boundary plane of Ñ0 carries a finite number (1, 2, 3, 4, or 6) of foliations and
the collection of all these oriented foliations and the labels on boundary planes are

invariant under the covering transformations of the covering Ñ0 → N0. Let GN be

the group of all orientation preserving isometries of Ñ0 that preserve the labels of
the planes and preserve the collection of oriented foliations. Note that GN does not
depend on choices: The only relevant choices are the size of the horoballs removed
when neutering and the direction of the foliation we first chose on a boundary

plane of Ñ0. If we change the size of the neutering and rotate the direction of the
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foliation then the size of the neutering and direction of the image foliations at all
boundary planes with the same label change the same amount, so the relevant data
are still preserved by GN . It is clear that GN is discrete (this is true for any group
of isometries of H3 which maps a set of at least three disjoint horoballs to itself).

N0
0 := Ñ0/GN is thus an oriented orbifold; it is clearly covered by N0, has the

same number of boundary components as N0, and the boundary component covered
by a boundary component C of N0 has orbifold degree dividing the chosen target
degree nC . Moreover if N0

1 is any other orbifold covered by N0 and with the same

properties, then Ñ0
1 = Ñ0 and the labelings and foliations on Ñ0

1 and Ñ0 can be
chosen the same, so N0

0 is also the minimal orbifold for N0
1 . The proposition thus

follows. �

Note that a minimal orbifold may have a non-trivial isometry group (in contrast
with commensurator quotients of non-arithmetic hyperbolic manifolds).

3. H–graphs and N -graphs

The graphs we need will be finite, connected, undirected graphs; note that we
allow multiple edges as well as self-loops. We take the viewpoint that an edge of an
undirected graph consists of a pair of oppositely directed edges. The reversal of a
directed edge e will be denoted ē and the initial and terminal vertices of an edge
will be denoted ιe and τe (= ιē).

We will label the vertices of our graph by hyperbolic orbifolds so we first introduce
some terminology for these. A horosphere section C of a cusp of a hyperbolic orbifold
N will be called the cusp orbifold. Although the position of C as a horosphere
section of the cusp involves choice, as a flat 2–dimensional orbifold, C is canonically
determined up to similarity by the cusp. We thus have one cusp orbifold for each
cusp of N .

Since a cusp orbifold C is flat, away from the orbifold points its tangent space
TC is independent of which point on C we choose, up to the action of the finite
cyclic group FC . TC naturally contains the maximal lattice Z2 ⊂ πorb1 (C), so it
makes sense to talk of a linear isomorphism between two of these tangent spaces as
being rational, i.e., given by a rational matrix with respect to oriented bases of the
underlying integral lattices. Moreover, such a rational linear isomorphism will have
a well-defined determinant.

Definition 3.1 (H–graph). An H–graph is a finite connected graph with the
following data labeling its vertices and edges:

(1) Each vertex v is labeled by a hyperbolic orbifold Nv plus a map e 7→ Ce from
the set of directed edges e exiting that vertex to the set of cusp orbifolds
Ce of Nv. This map is injective, except that an edge which begins and ends
at the same vertex may have Ce = Cē.

(2) The cusp orbifolds Ce and Cē have the same orbifold degree.
(3) Each directed edge e is labeled by a rational linear isomorphism `e : TCe →

TCē, with `ē = `−1
e . Moreover `e reverses orientation (so det(`e) < 0).

(4) We only need `e up to right multiplication by elements of Fe := FCe ; in
other words, the relevant datum is really the coset `eFe rather than `e itself.
This necessitates:
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(5) `e conjugates the cyclic group Fe to the cyclic group Fē, i.e., `eFe = Fē`e
(this holds automatically if the orbifold degree is ≤ 2; otherwise it is
equivalent to saying that `e is a similarity for the euclidean structures).

Definition 3.2. We call an H–graph balanced if the product of the determinants
of the linear maps on edges around any closed directed path is equal to ±1.

We call the H–graph integral if each `e is an integral linear isomorphism (i.e., an
isomorphism of the underlying Z–lattices). Integral clearly implies balanced.

Definition 3.3. An integral H–graph contains precisely the information to specify
how to glue neutered versions N0

v of the orbifolds Nv together along their boundary
components to obtain a H–orbifold M , called the associated orbifold. Conversely,
any H–orbifold M has an associated integral H–graph Γ(M), which encodes its
decomposition into geometric pieces.

We next want to define morphisms of H–graphs.

Definition 3.4 (Morphism). A morphism of H–graphs, Γ → Γ′, consists of the
following data:

(1) an abstract graph homomorphism φ : Γ→ Γ′, and
(2) for each vertex v of Γ, a covering map πv : Nv → Nφ(v) of the orbifolds

labeling v and φ(v) which respects cusps (so for each departing edge e at v
one has πv(Ce) = Cφ(e)), subject to the condition:

(3) for each directed edge e of Γ the following diagram commutes

TCe

��

`e // TCē

��
TCφ(e)

`φ(e) // TCφ(ē)

Here the vertical arrows are the induced maps of tangent spaces and commutativity
of the diagram is up to the indeterminacy of item (4) of Definition 3.1.

Morphisms compose in the obvious way, so a morphism is an isomorphism if and
only if φ is a graph isomorphism and each πv has degree 1.

Definition 3.5. Existence of a morphism between H–graphs is a binary relation on
the set of H–graphs. It generates an equivalence relation which we call bisimilarity.
An H–graph is minimal if every morphism to an H–graph is an isomorphism

Note that a morphism from an H–graph to itself is an isomorphism, and thus
if an H–graph admits morphisms from every H–graph in its bisimilarity class it is
minimal.

Definition 3.6. If at least one of the vertex labels of an H–graph is non-arithmetic,
we call the graph an N–graph.

Theorem 3.7. Every bisimilarity class of N–graphs contains a unique (up to
isomorphism) minimal member, and every N–graph in the bisimilarity class has a
morphism to this unique minimal member.

N–graphs play an analogous role to the two-colored graphs that we used in
[1] to classify graph-manifold groups up to quasi-isometry. For those graphs the
morphisms were called “weak coverings”—they were color preserving open graph
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homomorphisms (i.e., open as maps of 1–complexes). The term “bisimilarity” was
coined in that context, since the concept is known to computer science under this
name. We postpone the proof of Theorem 3.7 to the next section, since it follows
naturally from the discussion there.

Theorem 3.8. If Γ→ Γ′ is a morphism of H–graphs and Γ is balanced, then so is
Γ′. In particular, a bisimilarity class contains a balanced H–graph if and only if it
contains a minimal H–graph which is balanced. Hence, for a balanced N–graph the
unique minimal graph is balanced.

Proof. We will denote the negative determinant of the linear map labeling an edge
e of an N–graph by δe, so δe = δ−1

ē > 0.
Assume Γ is balanced. We will show Γ′ is balanced. We only need to show

that the product of the δe’s along any simple directed cycle in Γ′ is 1. Let C =
(e′0, e

′
1, . . . , e

′
n−1), be such a cycle, so τe′i = ιe′i+1 for each i (indices modulo n).

Denote

(1) D :=

n−1∏
i=0

δe′i ,

so we need to prove that D = 1.
From now on we will restrict attention to one connected component Γ0 of the

full inverse image of C under the map Γ→ Γ′.
Let e be an edge of Γ0 which maps to an edge e′ of C (e′ may be an e′i or an ē′i).

The initial and terminal segments of this edge can each be associated with the cusp
orbifold which covers the cusp orbifold corresponding to the 3–orbifold boundary
associated to the initial or terminal segment of e′ with covering degrees that we
shall call de and dē respectively. We claim that

(2) deδe′ = δedē .

Indeed, if the cusp orbifolds are all tori, this equation (multiplied by −1) just repre-
sents products of determinants for the two ways of going around the commutative
diagram in part (3) of Definition 3.4. In general, de and dē are the determinants
multiplied by the order of the cyclic group Fe, but this is the same factor for each
of de and dē so the equation remains correct.

Let C̃ → C be the infinite cyclic cover of C, and Γ̃0 → Γ0 the pulled back infinite
cyclic cover of Γ0. Define de or δe for an edge of either of these covers as the value
for the image edge.

If (e1, e2, . . . , em) is a directed path in Γ̃0 then the product of the equations (2)
over all edges of this path gives

∏m
i=1 deiδπei =

∏m
i=1 δeidēi , so

m∏
i=1

δπei
δei

=

m∏
i=1

dēi
dei

.

Since Γ̃0 and C̃ are both balanced, it follows that
∏m
i=1

dēi
dei

only depends on the

start and end vertex of the path. Thus, if we fix a base vertex v0 of Γ̃0 and define

(3) c(v) :=

m∏
i=1

δπei
δei

=

m∏
i=1

dēi
dei

for any path from v0 to v ,
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we get a well defined invariant of the vertices of Γ̃0. For an edge e this invariant
satisfies

c(ιē)

c(ιe)
=
c(τe)

c(ιe)
=
dē
de
,

whence

ζ(e) :=
de
c(ιe)

is an invariant of the undirected edge: ζ(e) = ζ(ē).

Denote the map Γ̃0 → C̃ by π. Number the vertices sequentially along C̃ by

integers i ∈ Z, and for each vertex v of Γ̃0 let i(v) ∈ Z be the index of π(v). Let

h : Γ̃0 → Γ̃0 be the covering transformation: h(v) is the vertex of Γ̃0 with the same
image in Γ0 as v but with i(h(v)) = i(v) + n.

Note that the equations (1) and (3) and the fact that Γ0 is balanced implies that

c(h(v)) = Dc(v) for any vertex v of Γ̃0, so

(4) ζ(h(e)) = D−1ζ(e) .

From now on consider the edges of Γ̃0 directed only in the direction of increasing
i(v). Denote by Z(j) the sum of ζ(e) over all edges with i(τe) = j.

The sum of the de’s over outgoing edges at a vertex v of Γ̃0 equals the sum of dē’s
over incoming edges at v, since each sum equals the degree of the covering map from

the orbifold labeling v to the one labeling vertex π(v) of C̃. Since ζ(e) = de/c(v)
for an outgoing edge and ζ(ē) = dē/c(v) for an incoming one, the sum of ζ(e) over
outgoing edges at v equals the sum of ζ(e) for incoming ones. Thus Z(j) is the sum
of ζ(e) over all edges with i(ιe) = j. These are the edges with i(τe) = j + 1, so
Z(j) = Z(j + 1). Thus Z(j) is independent of j. Clearly Z(j) > 0. Equation (4)
implies Z(j + n) = D−1Z(j), so D = 1, as was to be proved. (We are grateful to
Don Zagier for help with this proof.) �

We close this section with an observation promised in the introduction.

Proposition 3.9. An orbifold can be a vertex label in a minimal H–graph if and
only if it is a minimal orbifold.

Proof. We first prove “only if.” In condition (3) of the definition of a morphism,
`φ(e) is determined by `e since the vertical arrows are isomorphisms (but `e may
not be determined by `φ(e), since the indeterminacy Fφ(e) of `φ(e) may be greater
than the indeterminacy Fe of `e). Thus for any H–graph there is an outgoing
morphism to a new H–graph for which the underlying graph homomorphism is an
isomorphism and every orbifold vertex label is simply replaced in the new graph by
the corresponding minimal orbifold; the new edge labels are then as just described.

For the converse, if N is a minimal orbifold, any H–graph which is star-shaped,
with N labeling the middle vertex and with one-cusp non-arithmetic commensurator
quotients labeling the outer ones, is minimal. One needs a one-cusp commensurator
quotient for each cusp degree in {1, 2, 3, 4, 6} for this construction; these are not
hard to find. �

4. Minimal N -graphs classify for quasi-isometry

Let M = M3 be a N–manifold. For simplicity of exposition we first discuss the
case that M has no arithmetic pieces, and then discuss the modifications needed
when arithmetic pieces also occur.
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M is then pasted together from pieces Mi, each of which is a neutered non-
arithmetic hyperbolic manifold. We can choose neuterings in a consistent way,
by choosing once and for all a neutering for the commensurator quotient in each
commensurability class of non-arithmetic manifolds, and choosing each Mi to cover
one of these “standard neutered commensurator quotients.”

The pasting identifies pairs of flat boundary tori with each other by affine maps
which may not be isometries. To obtain a smooth metric on the result we glue a
toral annulus T 2 × I between the two boundaries with a metric that interpolates
between the flat metrics at the two ends in a standard way (if g0 and g1 are the flat
product metrics induced on T 2 × I by the flat metric on its left and right ends we
use (1− ρ(t))g0 + ρ(t)g1 where ρ : [0, 1]→ [0, 1] is some fixed smooth bijection with
derivatives 0 at each end). This specifies the metric on M up to rigid translations
of the gluing maps, so we get a compact family of different metrics on M .

The universal cover M̃ is glued from infinitely many copies of the M̃i’s with
“slabs” R2 × I interpolating between them. Each slab admits a full R2 of isometric

translations. The pieces M̃i will be called “pieces” and each boundary component
of a piece will be called a “flat” and will be oriented as part of the boundary of the
piece it belongs to.

Let M ′ be another such manifold and M̃ ′ its universal cover, metrized as above.

Kapovich and Leeb [6] show that any quasi-isometry f : M̃ → M̃ ′ is a bounded
distance from a quasi-isometry that maps slabs to slabs and geometric pieces to
geometric pieces. Then a theorem of Schwartz [14] says that f is a uniformly

bounded distance from an isometry on each piece M̃i. Our uniform choice of
neuterings assures that we can change f by a bounded amount to be an isometry
on each piece and an isometry followed by a shear map on each slab (a “shear map”
R2 × I → R2 × I will mean one of the form (x, t) 7→ (x+ ρ(t)v, t) with v ∈ R2 and
ρ : I → I as described earlier). We then say f is straightened.

Consider now the group3

I(M̃) := {f : M̃ → M̃ | f is a straightened quasi-isometry} .

I(M̃) acts on the set of pieces of M̃ ; the pieces M̃i that cover a given piece Mi

of M are all in one orbit of this action, but the orbit may be larger. The subgroup

I
M̃i

(M̃) of I(M̃) that stabilizes a fixed piece M̃i of M̃ acts discretely on M̃i, so

M̃i/IM̃i
(M̃) is an orbifold (which clearly is covered by Mi)

The subgroup IS(M̃) ⊂ I(M̃) that stabilizes a slab S ⊂ M̃ acts on S by isometries
composed with shear maps. It acts discretely on each boundary component of S but
certainly not on S. But an element that is a finite order rotation on one boundary
component must be a similar rotation on the other boundary component (and is in

fact finite order on the slab; the group IS(M̃) is abstractly an extension of Z2 × Z2

by a finite cyclic group FS of order 1, 2, 3, 4, or 6; the two Z2’s are the translation
groups for the two boundaries of S).

We form anN –graph Ω(M̃) as follows. The vertices of Ω(M̃) correspond to I(M̃)–
orbits of pieces and the edges correspond to orbits of slabs—the edge determined
by a slab connects the vertices determined by the abutting pieces. We label each

vertex by the corresponding orbifold M̃i/IM̃i
(M̃) and each edge by the derivative

3Note that I(M̃) → QI(M̃) is an isomorphism, where QI denotes the group of quasi-isometries

(defined by identifying maps that differ by a bounded distance).
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of the affine map between the flats that bound a corresponding slab S (this map is
determined up to the cyclic group FS).

Proposition 4.1. The N–graph Ω(M̃) constructed above is determined up to

isomorphism by M̃ . The manifold M̃ is determined up to bilipschitz diffeomorphism

by Ω(M̃).

Proof. The first sentence of the proposition is true by construction.

We describe how to reconstruct M̃ from Ω(M̃). Ω(M̃) gives specifications for
inductively gluing together pieces that are the universal covers of the orbifolds
corresponding to its vertices, and slabs between these pieces, according to a tree: we

start with a piece Ñ corresponding to a vertex v of Γ and glue slabs and adjacent
pieces on all boundary components as specified by the outgoing edges at v in

Ω(M̃), and repeat this process for each adjacent piece, and continue inductively.
(There is an underlying tree for this construction which is the universal cover of
the graph obtained by replacing each edge of Γ by a countable infinity of edges.)
The construction involves choices, since each gluing map is only determined up to a
group of isometries of the form R2 o FS , where S is the slab. We need to show that
the resulting manifold is well defined up to bilipschitz diffeomorphism.

The constructed manifold X and the original M̃ can both be constructed in the

same way from Ω(M̃), but they potentially differ in the choices just mentioned. We

can construct a bilipschitz diffeomorphism f : X → M̃ inductively, starting with

an isometry from one piece of X to one piece of M̃ and extending repeatedly over
adjacent pieces. At any point in the induction, when extending to an adjacent piece
across an adjacent slab S, we use an isometry of the adjacent piece Xi of X to the

adjacent piece Mi of M̃ that takes the boundary component Xi ∩ S of Xi to the
boundary component Mi ∩ S of Mi. Restricted to this boundary component E, this
isometry is well defined up to the action of a lattice Z2, so there is a choice that can
be extended across the slab S with an amount of shear bounded by the diameter
of the torus E/Z2. Since only finitely many isometry classes of such tori occur in
the construction, we can inductively construct the desired diffeomorphism using a
uniformly bounded amount of shear on slabs. This diffeomorphism therefore has a
uniformly bounded bilipschitz constant, as desired. �

We now describe how the above arguments must be modified if M has arithmetic
pieces. Let M1 be an arithmetic hyperbolic piece which is adjacent to a non-
arithmetic hyperbolic piece M2. We have already discussed how M2 is neutered; we
take an arbitrary neutering of M1 (and any other arithmetic pieces) which we will
adjust later. As before, the notation Mi refers to the neutered pieces and we glue
M from these pieces mediating with toral annuli T 2 × I between them.

We aim to show that we can adjust the neutering of the arithmetic pieces so that

any quasi-isometry of M̃ can be straightened as in the beginning of this section to
be an isometry on pieces and a shear map on slabs.

Consider M̃1 as a subset of H3 obtained by removing interiors of infinitely many

disjoint horoballs. Schwartz [14] shows that any quasi-isometry of M̃1 is a bounded

distance from an isometry of M̃1 to a manifold obtained by changing the sizes of
the removed horoballs by a uniformly bounded amount.

In the universal cover M̃ choose lifts M̃1 and M̃2 glued to the two sides ∂1S and

∂2S of a slab S ∼= R2 × I. Consider a quasi-isometry f of M̃ which maps S to a
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bounded Hausdorff distance from itself. We can assume that f is an isometry on M̃2.

By the previous remarks, the map f restricted to M̃1 is a bounded distance from an

isometry of M̃1 which moves its boundary component ∂1S to a parallel horosphere

(if we consider M̃1 as a subset of H3); by inverting f if necessary, we can assume

the diameter of the horosphere has not decreased. Thus M̃1 can be positioned in
H3 = {(z, y) ∈ C×R : y > 0} so that ∂1S is the horosphere y = 1 and f(∂1S) is the
horosphere y = λ for some λ ≤ 1. Using a smooth isotopy of f which is supported in
an ε–neighborhood of the region between f(∂1S) and ∂1S, and which moves f(∂1S)
to ∂1S, we can adjust f to map ∂1S to itself. This moves each point of f(∂1S) to its
closest point on ∂1S by a euclidean similarity, scaling distance uniformly by a factor
of λ. The resulting adjusted f is still a quasi-isometry, so restricted to S we then
have a quasi-isometry which scales metric on ∂1S by λ and is an isometry on ∂2S.

This is only possible if λ = 1, so f , once straightened on M̃1, maps ∂1S to itself.

Now consider the subgroup of the group of quasi-isometries of M̃ which takes M̃1

to itself, and just consider its restriction to M̃1, which we can think of as embedded
in H3. By straightening, we have a group of isometries of H3 which preserves a
family of disjoint horoballs (the ones that are bounded by images of ∂1S). Any
subgroup of Isom(H3) which preserves an infinite family of disjoint horoballs is
discrete. Thus, from the point of view of the construction above, M1 behaves like a
non-arithmetic piece. By repeating the argument, this behavior propagates to any
adjacent arithmetic pieces, hence, so long as at least one piece is non-arithmetic, the

construction of the graph Ω(M̃) goes through as before and the proof of Proposition
4.1 extends.

We have not yet proved Theorem 3.7, which says that there is a unique minimal

graph in each bisimilarity class. The proof that Ω(M̃) is minimal will follow.

Proof of Theorem 3.7. The construction of the proof of Proposition 4.1 works for

any N–graph Γ, gluing together infinitely may copies of the universal covers Ñi
of the orbifolds that label the vertices, with slabs between them, according to an
infinite tree (the universal cover of the graph obtained by replacing each edge of Γ
by countable-infinitely many). We get a simply connected Riemannian manifold
X(Γ) which, as long as Γ is finite, is well defined up to bilipschitz diffeomorphism
by the same argument as before.

The group of straightened self-diffeomorphisms I(X(Γ)), when restricted to a

piece Ñi, includes the covering transformations for the covering Ñi → Ni. It follows
that the construction of a N–graph from X(Γ), as given in the first part of this
section, yields an N–graph Ω(X(Γ)) together with a morphism Γ→ Ω(X(Γ)).

If Γ → Γ′ is a morphism of N–graphs, then X(Γ) and X(Γ′) are bilipschitz
diffeomorphic, since the instructions for assembling them are equivalent. Hence
Ω(X(Γ)) = Ω(X(Γ′)); call this graph m(Γ). Since m(Γ) = m(Γ′) and the existence
of a morphism generates the relation of bisimilarity of N–graphs, m(Γ) is the same
for every graph in the bisimilarity class. It is also the target of a morphism from
every Γ in this class. Thus it is the unique minimal element in the class. Thus
Theorem 3.7 is proved. �

Proposition 4.2. For any N–manifold M , Ω(M̃) is balanced, and is the minimal
N–graph in the bisimilarity class of the N–graph Γ(M) associated with M (Definition
3.3).
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Proof. By construction, there is a morphism Γ(M)→ Ω(M̃). In particular, Ω(M̃)
is in the bisimilarity class of Γ(M). It is balanced by Theorem 3.8, since Γ(M) is
integral.

If M is an N–orbifold and Γ = Γ(M) its associated integral N–graph, then

X(Γ) is bilipschitz homeomorphic to M̃ , so Ω(M̃) = Ω(X(Γ)) = m(Γ), and is hence
minimal by the previous proof, so Proposition 4.2 now follows. �

Proof of Classification Theorem for N–manifolds. Since M̃ is quasi-isometric to
π1(M), a quasi-isometry between fundamental groups of M and M ′ induces a

quasi-isometry M̃ → M̃ ′. We have already explained how this can then be straight-
ened and thus give an isomorphism of the corresponding minimal N–graphs. �

For the Classification Theorem to be a complete classification of quasi-isometry
types of fundamental groups of good manifolds we will need to know that every
minimal balanced N–graph is realized by an N–manifold. This is the content of
the Realization Theorem which we prove later.

Remark 4.3. In the above proof of Theorem 3.7, we showed that N -manifolds M ,
M ′ with bisimilar N -graphs Γ, Γ′ have bilipschitz diffeomorphic universal covers,
since the common X(Γ) = X(Γ′) is a model for the universal covers. A slight
modification of the proof shows that it is also true that H–manifolds with bisimilar
graphs have bilipschitz universal covers. For an H–manifold which is not an N–
manifold there is no longer a unique minimal H–graph in the bisimilarity class. The
existence of this unique minimum was essential to the above proof of the converse:
that bilipschitz universal covers of N–manifolds implies bisimilar graphs.

In fact, we prove in [2] that in the “all-arithmetic” case every H–graph has
infinitely many minimal elements in its bisimilarity class.

5. Covers and RFCH

For our realization theorem, and also for our commensurability theorem, we need
to produce covers of 3–manifolds with prescribed boundary behavior. The covers
we need can be summarized by the following purely topological conjecture, which
we find is of independent interest.

Cusp Covering Conjecture 5.1 (CCCn). Let M be a hyperbolic n-manifold.
Then there exists an assignment of a sublattice ΛC of π1(C) for each cusp C of
M such that, for any assignment of a sublattice Λ′C ⊂ ΛC for each C, there exists
a finite cover M ′ of M whose cusps covering each cusp C of M are the covers
determined by Λ′C .

We only need this conjecture for n = 3, which, as we mention in the Introduction,
follows from work of Dani Wise [15, Corollary 18.11].

We now show that the general version of the conjecture follows from the well-
known residual finiteness conjecture for hyperbolic groups (RFCH).

Theorem 5.2. The residual finiteness conjecture for hyperbolic groups (RFCH)
implies CCCn for all n.

Proof. The Dehn surgery theorem for relatively hyperbolic groups of Osin [10]
and Groves and Manning [3] guarantees the existence of sublattices ΛC of π1(C)
for each cusp so that, given any subgroups Λ′C ⊂ ΛC for each C, the result of
adding relations to π1(M) which kill each Λ′C gives a group G into which the groups
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π1(C)/Λ′C inject and which is relatively hyperbolic relative to these subgroups. If
the Λ′C are sub-lattices, then G is relatively hyperbolic relative to finite (hence
hyperbolic) subgroups, and is hence itself hyperbolic. By RFCH we may assume G
is residually finite, so there is a homomorphism of G to a finite group H such that
each of the finite subgroups π1(C)/Λ′C of G injects. The kernel K of the composite
homomorphism π1(M)→ G→ H thus intersects each π1(C) in the subgroup Λ′C .
The covering of M determined by K therefore has the desired property. �

Let Γ be a N–graph. For an edge e of Γ let Te be the tangent space of the
cusp orbifold corresponding to the start of e. We can identify Te with Tē using the
linear map `e, so we will generally not distinguish Te and Tē. Then Te contains two
Z–lattices, the underlying lattices for the cusp orbifolds associated with the initial
and terminal segments of e, and we will denote their intersection by Λe. Thus, a
torus Te/Λ is a common cover of the cusp orbifolds at the two ends of e if and only
if Λ ⊂ Λe.

From CCC3, we can now choose a sublattice Λ′e of Λe for each edge e of Γ such
that for each vertex v of Γ the corresponding orbifold Nv has a cover Mv with the
following property:

Property 5.3. For each cusp of Nv corresponding to an edge e departing v, all
cusps of Mv which cover it are of type Te/Λ

′
e.

This property is precisely the consequence of the CCC3 that we use in our proofs
of the Realization and Commensurability Theorems.

6. Realizing graphs

We already proved the first sentence of the Realization Theorem of the Introduc-
tion to this paper. We now prove the second part.

Proof of Realizability Theorem for H–manifolds. Let Γ be a balanced H–graph. We
want to show there is some H–manifold which realizes a graph in its bisimilarity
class. As pointed out in the previous section, this is equivalent to finding an integral
H–graph in the bisimilarity class.

Using CCC3, after we choose a sublattice Λ′e of Λe for each edge e of Γ, we may
assume Property 5.3 holds.

Let dv be the degree of the cover Mv → Nv. For an edge e departing v let de
be the degree of the corresponding cover of cusp orbifolds of Mv and Nv, i.e., the
index of the lattice Λ′e in the fundamental group of the boundary component Ce
of Nv corresponding to e (this is slightly different from the usage in the proof of
Theorem 3.8). Since the cusps of the Mv corresponding to the two ends of e are
equal, we have

(5) deδe = dē .

(Recall that δe denotes the determinant of the linear map `e.)
Since Γ is balanced, we can assign a positive rational number m(v) to each vertex

with the property that for any edge e one has m(τe) = δem(ιe). Thus, by (5),

(6)
m(τe)

dē
=
m(ιe)

de
.

Choose a positive integer b such that n(v) := bm(v)
dv

is integral for every vertex of Γ

(so b is some multiple of the lcm of the denominators of the numbers m(v)
dv

). Let



QUASI-ISOMETRIC CLASSIFICATION OF NON-GEOMETRIC 3-MANIFOLD GROUPS 13

M ′v be the disjoint union of n(v) copies of Mv, so M ′v is a bm(v)–fold cover of Nv.
Let πv : M ′v → Nv be the covering map.

For an edge e of Γ from v = ιe to w = τe, the number of boundary components
of M ′v covering the boundary component Ce of Nv corresponding to e is bm(v)/de.
By (6) this equals bm(w)/dē, which is the number of boundary components of M ′w
covering the boundary component Cē of Nw. Thus π−1

v Ce and π−1
w Cē have the

same number of components, and each component is Te/Λ
′, so we can glue M ′v to

M ′w along these boundary components using any one-one matching between them.
Doing this for every edge gives a manifold M whose H–graph has a morphism to
Γ; if M is disconnected, replace it by a component (but one can always do the
construction so that M is connected). This proves the theorem. �

7. Commensurability

Proof of Commensurability Theorem. Let M1 and M2 be two N–manifolds whose
N–graphs are bisimilar. Assume that their common minimal N–graph is a tree
and all the vertex labels are manifolds. We want to show that M1 and M2 are
commensurable.

Let Γ be the common minimal N–graph for M1 and M2. Using CCC3 we may
assume Property 5.3 holds. Accordingly, for each vertex of Γ we may take a common
cover N ′v of all the pieces of M1 that cover Nv and then choose the lattices Λ′e, as
in the previous section, to be subgroups of the cusp groups of these manifolds N ′v.
In this way we arrange that the pieces Mv of the manifold M constructed in that
section are covers of N ′v, and hence of the pieces of M1. Elementary arithmetic
as in the proof of the Realization Theorem shows that there is a b0 so that if the
number b of that proof is a multiple of b0 then we can choose the gluing in that
proof to make M a covering space of M1. Call the resulting manifold M ′1. If we
initially choose N ′v to also cover the type v pieces of M2 then we can also construct
a covering space M ′2 of M2 out of copies of pieces Mv. The decompositions of M ′1
and M ′2 then give N –graphs whose vertices are labeled by Mv’s and whose edges are
labeled by Z–isomorphisms. It suffices to show that M ′1 and M ′2 are commensurable.

We can encode the information needed to construct M ′1 in a simplified version
Γ0(M ′1) of its N–graph. The underlying graph is still just the graph describing the
decomposition of M ′1 into pieces, but the labeling is simplified as follows. Each
vertex w of Γ0(M ′1) corresponds to a copy of some Mv, which is a normal covering
of the orbifold Nv. We say vertex w is of type v. The covering transformation group
for the covering Mv → Nv induces a permutation group Pv on the edges of Γ0(M ′1)
exiting w. We record the type and permutation action for each vertex of Γ0(M ′1).
It is easy to see that the graph Γ0(M ′1) with these data records enough information
to reconstruct M ′1 up to diffeomorphism from its pieces. A covering of such a graph
induces a covering of the same degree for the manifolds they encode.

A graph with fixed permutation actions at vertices as above is called symmetry
restricted in [8]. The graphs Γ0(M ′1) and Γ0(M ′2) have the same universal covering
as symmetry restricted graphs.

So we would like to know that when two such graphs have a common universal
covering, then they have a common finite covering. A generalization, proved in [8] of
Leighton’s theorem [7] (which deals with graphs without the extra structure) shows
that this is true if the underlying graph is a tree, so we are done. �
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The results of [8] allow one to carry out the above proof under slightly weaker
assumptions on the minimal graph than being a tree, but not sufficiently general to
warrant going into details.

8. Adding Seifert fibered pieces

We will modify Definition 3.1 to allow the inclusion of Seifert fibered space pieces.
The graphs we use are called NS–graphs, and we define them below.

We will need to consider Seifert fibered orbifolds among the pieces, so we first
describe a coarse classification into types. As always, the manifolds and orbifolds
we consider are oriented. We will distinguish two types: the oriented Seifert fibered
orbifold N is type “o” or “n” according as the Seifert fibers can be consistently
oriented or not. N is type “o” if and only if the base orbifold S of the Seifert
fibration is orientable. This can fail in two ways: the topological surface underlying
S may be non-orientable, or S may be non-orientable because it has mirrors. The
latter arises when parts of N look locally like a Seifert fibered solid torus D2 × S1

factored by the involution (z1, z2) 7→ (z1, z2) (using coordinates in C2 with |z1| ≤ 1
and |z2| = 1). The fibers with z1 ∈ R in this local description are intervals (orbifolds
of the form S1/(Z/2)), and the set of base points of such interval fibers of N form
mirror curves in S which are intervals and/or circles embedded in the topological
boundary of S. If any of these mirror curves are intervals, so they merge with
part of the true boundary of S (image of boundary of N), then the corresponding
boundary component of N is a pillow orbifold (topologically a 2–sphere, with four
2–orbifold points).

If two type “o” Seifert fibered pieces in the decomposition of M are adjacent
along a torus, and we have oriented their Seifert fibers, then there is a sense in
which these orientations are compatible or not. We say the orientation is compatible
or positive if, when viewing the torus from one side, the intersection number in the
torus of a fiber from the near side with a fiber from the far side is positive. Note
that this is well defined, since if we view the torus from the other side, both its
orientation and the order of the two curves being intersected have changed, so the
intersection number is unchanged.

We define NS–graphs below, with the geometric meanings of the new ingredients
in square brackets. But there is a caveat to these descriptions. Just an an N–
graph can be associated to the geometric decomposition of an N–manifold, an
NS–graph can be associated with the decomposition of a good manifold or orbifold
M (see the Introduction for the definition of “good”). However, the N–graph
associated with a geometric decomposition is a special kind of N–graph (it is
“integral” in the terminology of Section 3), and an NS–graph coming from the
geometric decomposition of a good manifold is similarly special. The geometric
explanations therefore only match precisely for special cases of NS–graphs. Recall
that a subgraph Γ′ of Γ is full if for each vertices a, b ∈ Γ′ any edges connecting
them in Γ, are also in Γ′.

Definition 8.1. An NS–graph Γ is a finite connected graph with decorations on
its vertices and edges as follows:

(1) Vertices are partitioned into two types: hyperbolic vertices and Seifert
vertices. The full subgraphs of Γ determined by the hyperbolic vertices, re-
spectively the Seifert vertices, are called the hyperbolic subgraph, respectively
the Seifert subgraph.
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(2) The hyperbolic subgraph is labeled as in Definition 3.1, so that each of
its components is an N–graph. In particular, each hyperbolic vertex v is
labeled by a hyperbolic orbifold Nv and there is a map e 7→ Ce from the
set of directed edges e exiting that vertex to the set of cusp orbifolds Ce of
Nv. This map is defined on the set of all edges exiting e, not just the edges
in the hyperbolic subgraph. As before, it is injective, except that an edge
which begins and ends at the same vertex may have Ce = Cē.

(3) Each Seifert vertex is labeled by one of two colors, black or white [for an
NS–graph coming from a geometric decomposition this encodes whether the
Seifert fibered piece in the geometric decomposition of M contains boundary
components of the ambient 3–manifold or not, as in [1]]. It is also labeled
by a Seifert fibration type “o” or “n”, as described above.

(4) For an edge e starting at a Seifert vertex the group Fe = Fe is {1} or {±1}.
If Fe is {±1} then the Seifert vertex is type “n”.

(5) For each edge e from a hyperbolic vertex to a Seifert vertex the group Fe
associated to the cusp section Ce is either trivial or {±1}. The edge is
labeled by a non-zero rational vector in TCe called the slope se, determined
up to the action of Fe. [se encodes the direction and length of the fibers of
the adjacent Seifert fibered piece.]

(6) Each edge e connecting a type “o” Seifert vertex with a type “o” Seifert
vertex or a hyperbolic vertex has a sign label εe = ±1 with εe = εe [this
describes compatibility of orientations of Seifert fibers of adjacent pieces
or—if the edge connects a Seifert and a hyperbolic vertex—of Seifert fiber
and slope].

(7) The data described in items (5) and (6) are subject to the equivalence
relation generated by the following moves:
(a) For any type “o” Seifert vertex the signs at all edges adjacent to it may

be multiplied by −1 [reversal of orientation of the Seifert fibers].
(b) The slope se of item (5) can be multiplied by −1 while simultaneously

multiplying εe by −1.
(c) For any Seifert vertex, the slopes at all adjacent hyperbolic vertices

may be multiplied by a fixed non-zero rational number.

Note that the data encoded by the sign weights modulo the equivalence relation
of item (7a) are equivalent to an element of H1(Γ \ Γn,Γh;Z/2), where Γh is the
hyperbolic subgraph and Γn the full subgraph on Seifert vertices of type “n”.

We define a morphism of NS–graphs, π : Γ → Γ′, to be an open graph homo-
morphism which restricts to a N–graph morphism of the hyperbolic subgraphs
(Definition 3.4), preserves the black/white coloring on the Seifert vertices, and on
the edges between hyperbolic and Seifert vertices preserves the slope (in the sense
that the slope at the image edge is the image under the tangent map on cusp
orbifolds of the slope at the source edge). Moreover, it must map type “n” vertices
to type “n” vertices, and when an “o” vertex v is mapped to an “n” vertex w, then
the preimage of each edge at w must either include edges of different signs, or an
edge terminating in a type “n” Seifert vertex.

As in Section 3, the existence of morphisms between NS–graphs generates an
equivalence relation which we call bisimilarity.

Proof of Classification Theorem. To prove the Classification Theorem we will show
that each bisimilarity class of NS–graphs has a minimal element, and if a NS–graph
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comes from a non-geometric manifold M then the minimal NS–graph determines

and is determined by M̃ up to quasi-isometry.

We first explain why the qi-type of the universal cover M̃ (or equivalently of

π1(M)) determines a minimal NS–graph Ω(M̃).

As in Section 4, we can straighten any quasi-isometry M̃ → M̃ ′ and assume
it takes geometric pieces to geometric pieces and slabs to slabs. We may also

assume it is an isometry on hyperbolic pieces. A Seifert piece in M̃ is bi-Lipschitz
homeomorphic to a fattened tree times R, so the fibration by R fibers is coarsely
preserved, and we can straighten it so it is actually preserved. Moreover, if an
adjacent piece is hyperbolic, then the straightened quasi-isometry is an isometry on
the corresponding flat, so the affine structure on fibers of the Seifert piece is coarsely
preserved, and we can straighten so that it is actually preserved. However, where
a Seifert piece is adjacent to a Seifert piece the R × R product structure on the
corresponding flat (given by Seifert fibers on the two sides) is coarsely preserved, but
the affine structures on the R fibers need only be preserved up to quasi-isometry.

Considering straightened quasi-isometries in the above sense, we denote again

I(M̃) := {f : M̃ → M̃ | f is a straightened quasi-isometry} .

As in Section 4, the underlying graph for our minimal NS–graph Ω(M̃) has a

vertex for each orbit of the action of I(M̃) on the set of pieces of M̃ and edge for
each orbit of the action on the set of slabs. The labeling of the hyperbolic subgraph
is as before; in particular, any vertex corresponding to an orbit of hyperbolic pieces
is labeled by the hyperbolic orbifold obtained by quotienting a representative piece

in the orbit by its isotropy subgroup in I(M̃). A Seifert vertex of the NS–graph is

of type “n” if some element of I(M̃) takes a corresponding Seifert fibered piece to
itself reversing orientations of fibers, and is otherwise of type “o”. For each type “o”
vertex we choose an orientation of the fibers of one piece in the corresponding orbit
and then extend equivariantly to the other pieces in the orbit.

For a Seifert vertex adjacent to at least one hyperbolic vertex the fibers of the

corresponding pieces in M̃ carry an affine structure which is defined up to affine
scaling. We choose a specific scale for each such vertex, so we can speak of length
along fibers, and then the slope of item (5) of Definition 8.1 is given by a tangent
vector of unit length, viewed in the adjacent cusp.

The sign weights of item (6) of Definition 8.1 are then defined, and item (7) of
that definition reflects the choices of orientation and scale which were made.

By construction, the isomorphism type of Ω(M̃) is determined by M̃ and thus
two manifolds with quasi-isometric fundamental group have the same associated

graph. It remains to show that the isomorphism type of Ω(M̃) determines the

bilipschitz homeomorphism type of M̃ .

Construct a labeled graph Ω̃ from Ω = Ω(M̃) by first replacing each edge of Ω
by infinitely many edges, keeping the weights on edges, but adding sign weights to
edges at type “n” vertices with infinitely many of each sign, and then taking the
universal cover of the resulting weighted graph. Finally, “o” and “n” labels are now
irrelevant and can be removed.

To associate a manifold X = X(Ω̃) to this labeled graph, we must glue together

appropriate pieces according to the tree Ω̃, with appropriate choices for the gluing
between slabs. The pieces for hyperbolic vertices will be universal covers of the
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hyperbolic orbifolds which label them, while for a Seifert vertex we take the universal
cover of some fixed Seifert fibered manifold with base of hyperbolic type and having
a boundary component for each incident edge in Ω and—if the vertex is a black
vertex—an additional boundary component to contribute to boundary of X. (The
universal cover Y of this Seifert piece is then a fattened tree times R, and, as in [1],
it is in fact only important that there is a bound B such that for each boundary
component of Y there are boundary components of all “types” within distance B of
the give boundary component.)

The choices in gluing depend on the types of the abutting pieces: Between
hyperbolic pieces, the gluing map is, as before, determined up to a group of
isometries of the form R2 o FS , where S is the slab. Between Seifert fibered pieces
the gluing will be an affine map such that the fibers from the two pieces then
intersect in the intervening flat with sign given by the sign label of the edge. Finally,
between a Seifert fibered and a hyperbolic piece the gluing will be an affine map
matching unit tangent vector along fibers with the slope vector for the hyperbolic
piece. For each edge of Ω we make a fixed choice of how to do the gluing subject to

the above constraints and do it this way for every corresponding edge of Ω̃.
To complete the proof, it remains to show that, independent of these choices,

there exists a bilipschitz homeomorphism from M̃ to X.
As in the proof of Proposition 4.1, the desired bilipschitz homeomorphism is built

inductively, starting with a homeomorphism from one piece of M̃ to a piece of X
and then extending via adjacent slabs to adjacent pieces. There are four cases: (1),
when both adjacent pieces are hyperbolic, this is exactly the case of Proposition 4.1;
(2), when both pieces are Seifert fibered; (3), extending from a hyperbolic piece to
an adjacent Seifert fibered piece; and (4), extending from a Seifert fibered piece to
an adjacent hyperbolic piece. For Case (2) we use [1, Theorem 1.3] (as in the proof
of [1, Theorem 3.2]) to extend over the adjacent Seifert fibered piece, respecting the
“types” of boundary components (i.e., belonging to boundary of M or not, and if not,
then the “type” is given by the edge of Ω that the boundary component corresponds
to). Case (3) is essentially the same argument, and Case (4) is immediate.

Thus we obtain the desired bilipschitz homeomorphism, completing the proof. �

If we remove the restriction that the components of the hyperbolic subgraph
be N–graphs in the Definition 8.1 of an NS–graph we get the definition of an
HS–graph. Any irreducible non-geometric 3–manifold has an associated HS–graph.

Proof of Realization Theorem. The construction of Ω(M̃), given above, has built in
a morphism from the HS–graph associated to M . Since the graph associated to M

is balanced, it follows from Proposition 4.2 that Ω(M̃) is balanced.
The balanced condition is only a constraint on H–graph components of an HS–

graph. Thus, from the case of H–graphs which we established in Section 6, we
may conclude that every balanced HS–graph is in the bisimilarity class of some
HS–graph of an HS–manifold. In particular, a minimal balanced NS–graph is the
minimal graph for some quasi-isometry class of good 3–manifold groups. �
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