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1. Introduction

By a hyperbolic 3-manifold we mean a complete orientable hyperbolic 3-manifold of
finite volume, that is a quotient H3/Γ with Γ ⊂ PSL2C a discrete subgroup of finite
covolume (here briefly “a Kleinian group”).

Among hyperbolic 3-manifolds, the arithmetic ones form an interesting, and in many
ways more tractable, subclass. The tractability comes from the availability of arithmetic
tools and invariants. For example, an arithmetic manifold M = H3/Γ is determined up
to commensurability by its defining field k (a number field with exactly one complex
place) and quaternion algebra A (which is ramified at all real places of k ). Any such pair
(k,A) determines a unique commensurability class of arithmetic hyperbolic 3-manifolds.

One aim of this paper is to try to extend arithmetic considerations to more general
hyperbolic 3-manifolds. For example, a commensurability invariant pair (k(M), A(M))
consisting of a non-totally-real number field and a quaternion algebra over it is defined
for any M = H3/Γ (Sects. 2 and 3; we also write (k(Γ), A(Γ)) ), but it fails to be a
complete commensurability invariant of M —non-commensurable M can have the same
A(M) (see Sect. 10 for examples). Nevertheless, k(M) and A(M) do contain useful
information—for instance (Theorem 3.2 and Proposition 3.3) ramification of A(M) at
a finite prime forces subgroups of Γ to have non-trivial abelianizations, A(M) gives a
good amphicheirality test (Proposition 3.4), and k(Γ) composes under amalgamation of
Kleinian groups along a non-elementary Kleinian group (Theorem 2.8 and [NR1]) and is
therefore a mutation invariant.

The trace field Q(tr Γ) of Γ is not a commensurability invariant and the field k(Γ)
is in fact the smallest field among the trace fields of finite index subgroups of Γ. We
call it the invariant trace field of Γ. We show that the trace field Q(tr Γ) is a Galois
(Z/2)m-extension of the invariant trace field k(Γ) and there is a precise Galois relation-
ship between subgroups of Γ and their trace fields, the largest subgroup of Γ with trace
field k(Γ) being normal with quotient (Z/2)m (Theorem 2.2).

It turns out that the existence of parabolic elements in Γ facilitates many arithmetic
questions. For example, in this case A(Γ) is just the matrix algebra M2(k(Γ)). More-
over, k(Γ) equals the field generated by the tetrahedral parameters of the ideal tetrahedra
of any ideal triangulation of H3/Γ (Theorem 2.4). If one conjugates Γ so that three
parabolic fixed points are at 0, 1, and ∞ in C ∪ {∞} = ∂H3 , then k(Γ) is also the
field generated by all parabolic fixed points (Lemma 2.5).

As another example, an arithmetic orbifold with cusps cannot have geodesics shorter
than 0.431277313 (cf. Theorem 4.6 and Corollary 4.7); a corresponding result for com-
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pact orbifolds is conjectured (with a bound of 0.09174218 ) but depends on Lehmer’s
conjecture of number theory.

We illustrate the greater tractability of non-compact manifolds also by doing some ex-
plicit computations for a family of manifolds related to Dehn surgeries on one component
of the Whitehead link. Before describing this we need some terminology.

The most striking dichotomy in the arithmetic of hyperbolic groups is a result of
Margulis (cf. [Z, Ch. 6]). Define the “commensurator of Γ ” to be

Comm(Γ) = {g ∈ Isom(H3) : [Γ:Γ ∩ g−1Γg] <∞},

and let Comm+(Γ) be its orientation preserving subgroup. Margulis shows that
Comm+(Γ) is discrete (and hence contains Γ with finite index) if and only if Γ is
non-arithmetic. Thus in this case Comm+(Γ) is the unique maximal element of the
commensurability class of Γ. In the arithmetic case Borel showed that there are infinitely
many maximal elements in the commensurability class ([Bo]).

As several people have observed, Comm(Γ) can be defined purely group-theor-
etically. Define a “virtual automorphism” of Γ to be an isomorphism φ: Γ1 → Γ2

between subgroups of finite index in Γ and define two virtual automorphisms to be
“equivalent” if they agree on some subgroup of Γ of finite index. Then Mostow rigidity
easily implies that Comm(Γ) is the group of equivalence classes of virtual automor-
phisms under composition. (We like to call this version of Comm(Γ) the “abstract
commensurator” of Γ, since in geometric situations without rigidity, for instance Fuchs-
ian groups, it is much larger than the geometric commensurator. It has also been invented
by group theorists, since it is interesting for other groups too; a simple example is
Comm(Zn) = GLnQ. Bass and Kulkarni ([BK]) have investigated it for lattices on
trees.)

From a geometric point of view, a virtual automorphism φ: Γ1 → Γ2 for Γ represents
an isometry (or just an isotopy class of homeomorphisms) between the two finite covers
H3/Γ1 and H3/Γ2 of M = H3/Γ. We call such an isometry a “virtual symmetry” of
M . We call it a “hidden symmetry” if it does not lift from a symmetry of M , i.e., φ
lies in Comm(Γ) −N(Γ), where N(Γ) is the normalizer of Γ in Isom(H3). Define
virtual symmetries to be equivalent if they have a common lift to some mutual finite cover
of M (caution: the set of equivalence classes does not form a group). Thus Margulis’
theorem implies that arithmeticity of M is equivalent to the existence of infinitely many
non-equivalent hidden symmetries, while for non-arithmetic M there is a finite cover of
M whose symmetries give all virtual symmetries of M .

As an example, if Od is the ring of integers of Q(
√
−d), then Comm PSL2Od is

PGL2Q(
√
−d) extended by an orientation reversing involution (complex conjugation).

The existence of hidden symmetries for the orbifold M = H3/PSL2O1 is nicely illus-
trated by examples occurring in the literature: the complement B of the Borromean rings
in S3 covers M in at least two inequivalent ways—an embedding of π1B as a normal
subgroup of PSL2O1 is given in [FN] and a non-normal embedding is given in [Ri]; it
is not hard to check that an element of Comm PSL2O1 which conjugates one of these
embeddings to the other cannot generate a discrete group with PSL2O1 .
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Note that the question about whether hidden symmetries exist for M = H3/Γ is just
the question about whether Comm(Γ) (hidden symmetries) equals the normalizer of Γ
(symmetries), i.e., whether Γ is normal in Comm(Γ).

In Sections 5–8 of this paper we consider the manifold C(p, s) which is the comple-
ment of a p link chain in S3 with s left half twists (or −s right half twists) pictured in
Fig. 1 (we also make sense of this manifold—up to commensurability—for p = 0 ). We
show it has a hyperbolic structure if and only if {|p+s|, |s|} 6⊆ {0, 1, 2} and determine its
commensurator (i.e., the commensurator of its fundamental group) and some arithmetic
invariants in this case. These computations use that C(p, s) is commensurable with the
result of (p, s/2) Dehn surgery on one component of the Whitehead link (one can make
sense of (p, q) surgery for q a half-integer; see Sect. 5). These Dehn surgeries on the
Whitehead link are also discussed in [HMW].

Figure 1. C(p, s) for p = 6, s = −3

We give the finite list of (p, s) for which C(p, s) is arithmetic—it is then commen-
surable with PSL2Od with d ∈ {1, 2, 3, 7, 15} so the commensurator is PGL2Q(

√
−d)

extended by complex conjugation. In all other cases we show that π1C(p, s) is normal
in its orientation preserving commensurator, with quotient the “obvious” group of orien-
tation preserving symmetries of C(p, s), and an orientation reversing commensuration
exists if and only if p+ s = ±s or p+ s = 0 or s = 0.

We say Γ (or H3/Γ ) has integral traces if {tr γ : γ ∈ Γ} consists of algebraic
integers; it then follows that Γ can be conjugated to a subgroup of PSL2A, where A

is the ring of algebraic integers. In [Ba2] Bass shows that if a hyperbolic manifold
M = H3/Γ has no closed incompressible surface of genus > 1 then Γ has integral
traces. Note that the property of having integral traces is a commensurability invariant
(since an element γ ∈ PSL2C has algebraic integer trace if and only if it has algebraic
integer eigenvalues, which is true if it is true for some power of γ ). In Theorem 6.3 we
determine which C(p, s) have non-integral traces, namely those with p + s = ±s and
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s equal to ±2 times an odd prime power. These appear to be the first examples in the
literature of hyperbolic manifolds with non-integer traces.

In Sections 9 and 10 we collect some questions and comments.

Acknowledgments. The first author acknowledges support of the NSF for this research.
Both authors acknowledge useful conversations and correspondence with C. Adams and
R. Riley. They are also most grateful to T. Chinburg for several pages of useful comments
to the first version of this paper.

2. Trace-fields

2.1. Let Γ be a Kleinian group of finite covolume. It is well known, and follows from
rigidity, that the trace field Q(tr Γ) has finite degree over Q. However, Q(tr Γ) is not
an invariant of the commensurability class of Γ (see [Bo], [R3], and Sect. 6 of this paper
for examples), although it is not far removed. For if we denote Γ(2) = gp{γ2 : γ ∈ Γ},
then Γ(2) is normal in Γ with Γ/Γ(2) finite abelian of exponent 2, and the following
was proved in [R3].

Theorem 2.1. With Γ as above, Q(tr Γ(2)) is an invariant of the commensurability class
of Γ. Moreover

Q(tr Γ(2)) = Q
(

(tr γ)2 : γ ∈ Γ
)

.

Notation. We shall denote Q(tr Γ(2)) by k(Γ) throughout the rest of this paper. We
call it the invariant trace field.

Theorem 2.1 implies that Q(tr Γ) = k(Γ)(
√
r1, . . . ,

√
rm) for some r1, . . . , rm ∈

k(Γ), and hence Gal(Q(tr Γ)/k(Γ)) = (Z/2)m . The following theorem describes the
relationship between subgroups of Γ and their trace fields.

Theorem 2.2. Assume Γ has no 2-torsion. Let K be a field satisfying k(Γ) ⊆ K ⊆
Q(tr Γ).
(1) ΓK : = {γ ∈ Γ : tr γ ∈ K} is a normal subgroup of Γ with Γ/ΓK finite abelian of

exponent 2.
(2) There is a non-singular bilinear pairing

Γ/ΓK ⊗ Gal(Q(tr Γ)/K) → Z/2 = {±1};
γ ⊗ g 7→ (tr γ)g

tr γ

in particular, Γ/Γk(Γ) = (Z/2)m.
(3) The above results hold in the presence of 2-torsion if, when tr γ = 0 (i.e., γ 2 = 1 ),

one replaces tr γ in the above definitions by tr γ ′ for an element γ′ ∈ γΓ(2) with
non-zero trace.

Recall that any cusped hyperbolic 3-manifold M = H3/Γ is topologically the interior
of a compact manifold-with-boundary M , whose boundary consists of tori. The following
result was proved in [R3] for knot complements.
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Corollary 2.3. Let M = H3/Γ be a manifold (that is, Γ has no torsion). If
Cok(H1(∂M ; Z) → H1(M ; Z)) is finite of odd order then k(Γ) = Q(tr Γ). In par-
ticular, this holds if M is the complement of a link in a Z/2-homology sphere.

Proof of Corollary. Note that if P is the subgroup of Γ generated by parabolic elements,
then Γ/P = Cok(H1(∂M ; Z) → H1(M ; Z)), so Γ/Γ(2)P is the largest quotient of
Cok(H1(∂M ; Z) → H1(M ; Z)) of exponent 2. Thus the condition of the corollary is
equivalent to: Γ = Γ(2)P . But certainly P ⊆ Γk(Γ) , so Γ = Γk(Γ) , so k(Γ) = Q(tr Γ).

Proof of Theorem 2.2. (1) For any B ∈ SL2C one has the matrix equation B2 −
tr (B)B + I = 0. Left-multiplying this by A and taking trace gives

tr (B) tr (AB) = tr (AB2) + trA.

If A ∈ Γ(2) then this equation implies tr (B) tr (AB) ∈ k(Γ), so if B ∈ ΓK then
AB ∈ ΓK (no element of Γ has trace 0 by our exclusion of 2-torsion). Thus Γ(2)ΓK ⊆
ΓK . Now suppose both A and B are in ΓK . Then B2A ∈ Γ(2)ΓK ⊆ ΓK , so
AB2 ∈ ΓK (since B2A and AB2 have the same trace). The above equation thus
implies tr (AB) ∈ K , so AB ∈ ΓK . Since trivially A ∈ ΓK implies A−1 ∈ ΓK , ΓK

is a subgroup. It is normal with Γ/ΓK finite abelian of exponent 2 because this is so for
any supergroup of Γ(2) in Γ.

(2) It is trivial that the pairing of (2) is linear in g if one fixes γ . For the linearity in
γ , let α and β be elements of Γ represented by matrices A and B . By Theorem 2.1,
trA =

√
a and trB =

√
b for some a, b ∈ k(Γ). Moreover, AB2 ∈ ΓQ(

√
a),

so trAB2 = c
√
a for some c ∈ k(Γ). The above trace equation gives trAB =

((c+1)/b)
√
ab, from which the desired linearity follows. The pairing of (2) is nonsingular

by definition of ΓK , and part (3) of the theorem is also clear.

2.2. In this subsection we give a geometric description of the invariant trace field k(Γ)
in case M = H3/Γ is a cusped hyperbolic manifold.

By [EP], M has at least one triangulation by ideal tetrahedra:

M = S1 ∪ S2 ∪ . . . ∪ Sn,

where each Sj is an ideal tetrahedron in H3. As discussed in [T, chapt. 4], the
tetrahedron Sj is described up to isometry by a single complex number zj with positive
imaginary part (the tetrahedral parameter of Sj ) such that the Euclidean triangle cut off
any vertex of Sj by a horosphere section is similar to the triangle in C with vertices 0,
1, zj . Alternatively, zj is the cross-ratio of the vertices of Sj (considered as points of
P1(C) = C ∪ {∞} ). This tetrahedral parameter depends on a choice (an edge of Sj or
an oriented ordering of its vertices); changing the choice replaces zj by 1/(1 − zj) or
1−1/zj . Denote the field Q(zj : j = 1, . . . , n) by k∆M or k∆Γ. A priori k∆Γ might
depend on the choice of triangulation, but we have:

Theorem 2.4. k∆Γ = k(Γ).

Proof. Denote k∆Γ by k∆ for short. If we lift the triangulation of M to H3 we get
a tesselation of H3 by ideal tetrahedra. Let V be the set of vertices of these tetrahedra
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in the sphere at infinity. Let k1 be the field generated by all cross ratios of 4-tuples of
points of V . Position V by an isometry of H3 (upper half-space model) so that three of
its points are at 0, 1, and ∞, and let k2 be the field generated by the remaining points
of V . This k2 does not depend on which three points we put at 0, 1, ∞; in fact:

Lemma 2.5. k1 = k2 = k∆ .

Proof. k1 ⊆ k2 since k1 is generated by cross-ratios of elements of k2 while k2 ⊆ k1

because the cross-ratio of 0, 1, ∞, and z is just z. k∆ ⊆ k1 is trivial. Finally, put
three vertices of one tetrahedron of our tesselation at 0, 1, and ∞, and then k2 ⊆ k∆

is a simple induction on noting that, for any field l, if three vertices and the tetrahedral
parameter of an ideal tetrahedron S ⊆ H3 are in l ∪ {∞}, then so is the fourth vertex.

Now suppose we have positioned V as above. Any element γ ∈ Γ maps 0, 1, and
∞ to points w1 , w2 , and w3 of V ⊆ k∆ ∪ {∞}. Thus γ is given by a matrix

(

a b
c d

)

whose entries satisfy

b − dw1 = 0,

a + b − cw2 − dw2 = 0,

a − cw3 = 0.

We can solve this for a, b, c, d in k∆ and then γ2 is represented by the element

1

ad− bc

(

a b
c d

)2

∈ PSL2k∆.

Thus k(Γ) = Q(tr Γ(2)) ⊆ k∆ .
For the reverse inclusion we shall use the following lemma which was observed

in [R4]. Indeed, given the lemma, which says that Γ can be conjugated to lie in
PSL2Q(tr Γ), the points of V , which are the fixed points of parabolic elements of Γ, lie
in Q(tr Γ), since the fixed point of a parabolic element

(

a b
c d

)

is b/(1− a) = (1− d)/c.
Thus, by Lemma 2.5, k∆ ⊆ Q(tr Γ). On the other hand, k∆ is clearly an invariant of
the commensurability class of Γ, so we can apply this to Γ(2) to see k∆ ⊆ Q(tr Γ(2)) =
k(Γ).

Lemma 2.6. A non-cocompact finite volume Kleinian group Γ has a faithful discrete
representation in PSL2Q(tr Γ).

Proof. By putting a lift of a cusp at ∞, another lift of a cusp at 0, and the image of
0 under a parabolic element T1 which fixes ∞ at 1, we arrange that Γ contains the
elements

T1 =

(

1 1
0 1

)

and T2 =

(

1 0
α 1

)

(T2 is any parabolic which fixes 0 ). Since T1T2 has trace 2+α we see that α ∈ Q(tr Γ).
The lemma now follows from [Mac, Prop. 3.1] which says that the coefficient field of a
non-abelian subgroup Γ of PSL2C is generated by Q(tr Γ) and the coefficients of any
two non-commuting elements of Γ.
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2.3. A horospherical section of a cusp of a hyperbolic manifold M is a flat torus. This
torus is isomorphic to C/Λ, for some lattice Λ ⊂ C, and the ratio of two generators of
Λ is the conformal parameter of the flat torus, which we call the cusp parameter of the
cusp of M . It depends on the choice of generators of Λ, but a different choice changes it
by an integral Möbius transformation, so the field it generates is independent of choices.
The field generated by the cusp parameters of all the cusps of M = H3/Γ is called the
cusp field of M (or of Γ ). The cusp field is clearly a commensurability invariant, so we
define the cusp field of an orbifold to be the cusp field of some manifold cover.

Since an ideal triangulation of M induces triangulations of the cusp tori, from which
the cusp parameters may be computed, Theorem 2.4 has the corollary:

Proposition 2.7. The cusp field of a hyperbolic orbifold is contained in the invariant
trace field.

As we point out in Sect. 10, the cusp field can be smaller than the invariant trace field,
even for hyperbolic knot complements.

2.4. The following theorem is from [NR1]. Our formulation here is stronger, but the
proof in [NR1] applies verbatim.

Theorem 2.8. If the Kleinian group Γ is generated by subgroups Γ1 and Γ2 and Γ1∩Γ2

is non-elementary then k(Γ) = k(Γ1)k(Γ2) (join of fields).

3. Quaternion algebras

3.1. In this section we associate to a Kleinian group Γ a quaternion algebra over the
trace field Q(tr Γ). Namely, let Γ be the inverse image of Γ ⊂ PSL2C in SL2C and
denote by QΓ the algebra of all Q-linear combinations of elements of Γ. It follows
from the characteristic equation

A2 − (trA)A+ I = 0

that QΓ contains τI for any τ in the trace field Q(tr Γ). Hence QΓ is an algebra over
Q(tr Γ) (and equals kΓ for any subfield k of Q(tr Γ) ). It is in fact a quaternion algebra
over this field (cf. [Ba1, Prop. 2.2] or [Ba2]).

Note that the result of Macbeath quoted in the proof of Lemma 2.6 follows from
the observation that a quaternion algebra is generated over its base field by any two
non-commuting elements. For the same reason, although QΓ is not a commensurability
invariant, QΓ(2) is. Together with the trace field Q(tr Γ), this commensurability invariant
determines QΓ by the equation

QΓ = QΓ(2) ⊗k(Γ) Q(tr Γ) .

Notation. We shall denote QΓ(2) by A(Γ) and call it the invariant quaternion algebra
of Γ.

Lemma 2.6 tells us that the invariant quaternion algebra A(Γ) gives no more infor-
mation than the invariant trace field k(Γ) when Γ has cusps—A(Γ) then equals the
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matrix algebra M2(k(Γ)). However, in general A(Γ) is more interesting, for instance
A(Γ) is a complete commensurability invariant for arithmetic Γ and equals M2(k(Γ))
in this case if and only if Γ has cusps, as we discuss in the next section.

Recall ([Vig]) that a quaternion algebra A over a number field k is determined up to
isomorphism by the set S(A) of primes of k (finite or infinite) at which A is ramified;
S(A) has a finite even number of elements and any finite even set of primes of k is the
ramification set of some quaternion algebra over k.

Little seems to be known about what the invariant A(Γ) of Γ says about the geometry
of H3/Γ. If Γ is arithmetic then Clozel [Cl] has shown

Theorem 3.1. If Γ is arithmetic and S(A(Γ)) contains no finite primes of k = k(Γ) (or,
more generally, if for each finite ν ∈ S(A(Γ)), the local field kν contains no quadratic
extension of Qp, where p is the rational prime that ν divides), then Γ has a subgroup
of finite index with infinite abelianization—in particular, H3/Γ is almost sufficiently
large.

On the other hand, using an observation of [KLS], the existence of finite ramification
for A(Γ) also implies strong results about abelian quotients of finite index subgroups of
Γ, as we now describe. We formulate the result in terms of QΓ, so let Γ be a Kleinian
group and denote Q(tr Γ) = k and QΓ = A.

Theorem 3.2. Suppose A is ramified at the finite prime ν and let p be the rational
prime that ν divides. Then Γ has a normal subgroup ∆ with finite cyclic quotient (of
order dividing pt − 1 for some t ≤ 2[k:Q] ) which is residually finite p, that is, the
intersection of all normal subgroups of ∆ of p-power index is trivial.

Before we prove this theorem, we point out that being residually finite p is a strong
property. Since finite p-groups are nilpotent, it implies that the lower central p-series of
∆ intersects in the trivial group (this is the series of subgroups

∆ = ∆0(p) ⊃ ∆1(p) ⊃ ∆2(p) ⊃ . . . ,

where ∆i(p)/∆i+1(p) is defined inductively to be the largest exponent p quotient of
∆i(p)/[∆,∆i(p)] ). Moreover

Proposition 3.3. Every non-abelian subgroup of a residually finite p group has a
Z/p× Z/p quotient.

Proof. The subgroup is residually finite p, so it has a non-abelian p-group quotient.
But any non-abelian p-group G has a Z/p × Z/p quotient—if G/[G,G] were cyclic,
then G/[G, [G,G]] would be a central extension of a cyclic group, hence abelian, so
[G,G] = [G, [G,G]], which contradicts the fact that a finite p-group is nilpotent.

Proof of Theorem 3.2. (Following [KLS], see also [Vig].) Γ is represented into A1 ,
the group of elements of A of reduced norm 1, and hence into A1

ν . The discrete valuation
on the local field kν extends to one on Aν . Let Oν be the valuation ring (elements of
non-negative valuation in Aν ) and Pν its maximal ideal. Then A1

ν is contained in the
multiplicative group O×

ν of Oν and this multiplicative group has a Hausdorff filtration

O
×
ν ⊃ (1 + Pν) ⊃ (1 + P

2
ν) ⊃ . . .
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whose quotients after the first are Z/p-vector spaces and whose first quotient is the
multiplicative group of the residue class field lν of a certain quadratic extension lν of
kν (the unique unramified extension of kν ). lν is an extension of degree t ≤ 2[k:Q] of
the field of p elements, so its multiplicative group is cyclic of order pt − 1.

A result of G. Mess [Me] is interesting in reference to Theorem 3.2 and Proposi-
tion 3.3—he shows that a 3-manifold group with a Z/p×Z/p quotient must either have
a finite index subgroup with infinite abelianization or the sizes of the successive quotients
of the derived series must grow rapidly.

3.2. The trace field, invariant trace field, and invariant quaternion algebra are quite
strong invariants. The following proposition is trivial (and also applies to the cusp field).

Proposition 3.4. Let M = H3/Γ be a hyperbolic orbifold. If M is amphicheiral (has an
orientation reversing symmetry) then Q(tr Γ) = Q(tr Γ), and if M is commensurably
amphicheiral (has an orientation reversing commensurability) then k(Γ) = k(Γ) and
A(Γ) = A(Γ), where the bar is complex conjugation.

For arithmetic Γ, commensurable amphicheirality is equivalent to conjugation sym-
metry of the invariant quaternion algebra (and is also equivalent to the existence of
Fuchsian subgroups—see [R1]), but this is probably false in general. Nevertheless, in
practice the proposition gives an effective test for amphicheirality and commensurable
amphicheirality.

4. Short geodesics in arithmetic orbifolds

The main results of this section are Theorem 4.6 and its Corollary, which set strong limits
on the possible lengths of short geodesics in arithmetic cusped hyperbolic orbifolds,
thus giving a necessary condition for arithmeticity. We also describe a conjectural
statement of the same type for closed arithmetic orbifolds, dependent on the “Lehmer
Conjecture” of number theory. We first recall some basic relevant facts about arithmeticity
of Kleinian groups, including the algebraic characterization of arithmeticity given in [MR]
and [R1, Chap. 2].

4.1. Arithmetic Kleinian groups are obtained as follows (cf., [Bo] and [Vig, Chap. 4],
also [Vig] for relevant details on quaternion algebras).

Let k be a number field with one complex place and A a quaternion algebra over
k ramified at all real archimedean places of k (this means A ⊗ kR is the algebra of
hamiltonian quaternions for each real embedding k ↪→ R ). Let O be an order of A
(a finitely generated subring of the set of A-integers, which contains the ring Rk of
k-integers and generates A as a k-vectorspace) and O1 the group of elements of norm 1
in O. The complex place k ↪→ C induces an embedding ρ:A ↪→M2(C) which restricts
to ρ: O1 ↪→ SL2C. Then Pρ(O1) is a Kleinian group of finite covolume. An arithmetic
Kleinian group is one commensurable with a group of the type Pρ(O1). We say it is
derived from a quaternion algebra if it is actually a subgroup of some Pρ(O1). We call
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M = H3/Γ arithmetic or derived from a quaternion algebra if Γ is arithmetic or derived
from a quaternion algebra.

The field k and quaternion algebra A associated as above with an arithmetic Kleinian
group Γ are the same as the invariant trace field k(Γ) and invariant quaternion algebra
A(Γ) of the previous section (see Theorem 4.3 below and subsequent remarks). The
arithmetic Kleinian group Γ has cusps if and only if A is M2(k), which holds if and
only if A is unramified at all places (see e.g., [Vig, Chap. 3]). We thus obtain (see also
[H]):

Proposition 4.1. A non-cocompact Kleinian group Γ of finite covolume is arithmetic if
and only if Γ is conjugate in PSL2C to a group commensurable with some “Bianchi
group” PSL2Od , where Od is the ring of integers in Q(

√
−d).

4.2. We shall make use of the characterization theorems for arithmetic Kleinian groups
given in [MR] and [R1] in the special case of cusped orbifolds. We first recall these
results in the general case.

Theorem 4.2. Let Γ be a Kleinian group of finite covolume. Then Γ is arithmetic if and
only if Γ(2) is derived from a quaternion algebra.

Theorem 4.3. With Γ as in Theorem 4.2, Γ is derived from a quaternion algebra if and
only if the following conditions hold:
(i) k = Q(tr Γ) has just one complex place;
(ii) the set tr Γ consists of algebraic integers;
(iii) for every real place σ: k ↪→ R the set |σ(tr Γ)| is bounded.

Remarks. 1. The arguments of [R1] and [Tak] show that |σ(tr Γ)| bounded can be
replaced by |σ(tr Γ)| ≤ 2.
2. It follows that when Γ is derived from a quaternion algebra, the associated quaternion
algebra is defined over Q(tr Γ).

When Γ contains parabolic elements we may deduce from these theorems (see [H]
and [R1] for details):

Proposition 4.4. Let Γ be a non-cocompact Kleinian group of finite covolume. Then:
(a) Γ is arithmetic if and only if k(Γ) = Q(

√
−d) for some square-free d ∈ N and

tr Γ consists of algebraic integers.
(b) Γ is derived from a quaternion algebra if and only if tr Γ ⊂ Od for some d.

Corollary 4.5. If Γ is arithmetic and satisfies the condition of Corollary 2.3 (or, more
generally, Γ = Γ(2)P ), then Γ is derived from a quaternion algebra. In particular, this
holds if M = H3/Γ is a link complement in a Z/2-homology sphere.

4.3. The main result of this section is the following theorem and its corollary.

Theorem 4.6. Let M 3 = H3/Γ be a cusped arithmetic hyperbolic orbifold. If M
contains a geodesic of length less than arccosh 3

2 = 0.9624236501. . . then Γ is com-
mensurable with PSL2Od with d ∈ {1, 2, 3, 7, 11, 15, 19} and the geodesic has length
one-half a value listed in Table 1.
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Moreover, if Γ is derived from a quaternion algebra, then the above can be improved
by a factor of 2: a geodesic of length less than 2 arccosh 3

2 = 1.9248473002. . . has
length listed in Table 1 and Γ is commensurable with a PSL2Od as above.

Table 1
length d

0.8625546276620610 3
0.9624236501192069 1
1.0612750619050357 1
1.0870701449957391 3
1.2659486384018949 7
1.3169578969248167 2
1.4183161349689732 2
1.4657153519472905 1
1.4860221248769271 7
1.5343944365026389 11
1.5667992369724111 3
1.6628858910586211 3
1.7251092553241221 3
1.7365960799226493 11
1.7400216453048509 15
1.7627471740390861 1 or 2
1.8522660627003648 1
1.9079255392337773 19

Corollary 4.7. If the cusped hyperbolic 3-orbifold M = H3/Γ contains a geodesic of
length less than 0.431277313 (0.862554627 if Γ = Γ (2)P ) then M is non-arithmetic.

Remarks. 1. Let O be any maximal order of M2(Q(
√
−d)). Using the standard

description of types of maximal orders in M2(Q(
√
−d)) (see [Vig, p. 100, ex. 4.7]), it

follows that H3/PO1 always contains a geodesic of length 2 arccosh 3
2 , so Theorem 4.6

cannot be improved.
2. The proof of Theorem 4.6 gives the same results for closed arithmetic 3-orbifolds
M = H3/Γ with invariant trace field k(Γ) = Q(

√
−d).

Proof of Theorem 4.6. Since for any arithmetic Γ, Γ(2) is derived from a quaternion
algebra, we need only consider the case that Γ is derived from a quaternion algebra.

We first introduce some notation. Let M 3 = H3/Γ have finite volume and let γ ∈ Γ
be a loxodromic or hyperbolic element with tr γ = λ+ λ−1 with |λ| > 1.

Notation. The length of the geodesic in M determined by γ is 2 log |λ| and will be
denoted by `0(γ). It is the real part of the “complex length" `(γ) = 2 logλ whose
imaginary part is the holonomy of the geodesic determined by γ .



284 Walter D. Neumann and Alan W. Reid

Note that, with γ as above, tr γ = ±2 cosh `(γ)
2 , so

| tr γ| =
∣

∣

∣
e

1

2
`(γ) + e−

1

2
`(γ)

∣

∣

∣
≤

∣

∣

∣
e

1

2
`(γ)

∣

∣

∣
+

∣

∣

∣
e−

1

2
`(γ)

∣

∣

∣

= e
1

2
`0(γ) + e−

1

2
`0(γ)

= 2 cosh
`0(γ)

2
.

Hence, if | tr γ| ≥ 2,

`0(γ) ≥ 2 arccosh
| tr γ|

2
,

so that for γ with | tr γ| ≥ 3 we have `0(γ) ≥ 2 arccosh 3
2 .

Now suppose Γ contains an element γ with `0(γ) < 2 arccosh 3
2 . Then | tr γ| < 3.

But by Proposition 4.4 (a), tr γ ∈ Od . Thus if tr γ where real, it would be in Z, and
γ would be parabolic or elliptic, contrary to assumption. The existence of a non-real
τ ∈ Od with |τ | < 3 imposes strong conditions on d and τ , as we now describe.

If d 6≡ −1 (mod 4 ) then τ = a + b
√
−d with a, b ∈ Z and b 6= 0. Then

|τ |2 = a2 + db2 , whence d < 9. If d ≡ −1 (mod 4 ) then τ = (a + b
√
−d)/2 with

a ≡ b (mod 2 ) and b 6= 0. In this case |τ |2 = (a2 + db2)/4, and it follows that
d < 35. We thus get a finite list of possible d and for each such d there is a short
finite list of τ ∈ Od with |τ | < 3. It is thus a simple matter to list the d and τ with
Re(2 arccosh τ

2 ) < 2 arccosh 3
2 , giving Table 1.

4.4. For closed hyperbolic 3-orbifolds we conjecture a similar result to Corollary 4.7:

Conjecture 4.8. There is a universal lower bound for the lengths of geodesics in closed
arithmetic hyperbolic orbifolds. (The current guess is approximately 0.09174218, or
twice this, 0.18348436, if the orbifold is derived from a quaternion algebra, see Sect. 4.5
below.)

This conjecture would be a consequence of a classical conjecture of number theory
due to D.H. Lehmer [Le] (see also [Boy] for a discussion). Suppose P (x) is a monic
integral polynomial of degree n with roots θ1, . . . , θn. The Mahler measure of P is

M(P ) =

n
∏

i=1

max(1, |θi|).

Lehmer’s Conjecture. There exists m > 1 such that M(P ) ≥ m for all non-cyclotomic
P . The currently conjectured value of m is approximately 1.176780821 (see Sect. 4.5
below).

That Lehmer’s conjecture implies Conjecture 4.8 follows from the following lemma,
part of which is implicit in [R1] and [Tak].

Lemma 4.9. Let Γ be a Kleinian (or Fuchsian) group derived from a quaternion algebra.
Let γ ∈ Γ be a loxodromic or hyperbolic element, and write tr γ = u+u−1 with |u| > 1.
Then u is an algebraic integer and u−1 is a conjugate of u. Moreover,
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(a) if γ is loxodromic, then u is not real, and exactly four conjugates of u lie off the
unit circle;

(b) if γ is hyperbolic, then u is real, and exactly two conjugates of u lie off the unit
circle;

(c) `0(γ) = logM(P ) or 2 logM(P ) according as γ is loxodromic or hyperbolic,
where P = P (x) is the monic integral polynomial of u.

Proof. We prove the Kleinian case; the Fuchsian case is similar. Note that u+ u−1 =
tr γ ∈ k(Γ) = k. On the other hand, u is not in k: u ∈ k implies that the quaternion
algebra is a matrix algebra, so k = Q(

√
−d) and u is a unit in this field, which contradicts

the assumption |u| > 1. Thus u has degree 2 over k and u−1 is the other root of the
minimal polynomial u2 − u tr γ + 1 = 0.

For any real embedding σ: k ↪→ R, extend σ to ψ: k(u) → C. We claim that
|ψ(u)| = 1. Indeed, if |ψ(u)| 6= 1 then for sufficiently large positive integers t we
have |σ(tr γt)| = |ψ(ut + u−t)| > 2, which contradicts Theorem 4.3 and its following
Remark 1. Parts (a) and (b) of the Lemma now follow. Moreover, M(P ) = |u|2 or |u|
according as u is complex or real, so part (c) also follows.

4.5. Lemma 4.9 has a converse, as pointed out to us by Ted Chinburg:

Lemma 4.10. Suppose u is an algebraic integer such that |u| > 1, u−1 is a conjugate
of u, and u satisfies one of conditions (a) or (b) of Lemma 4.9. Then, in case (a) (resp.
case (b)) there is a Kleinian (resp. Fuchsian) group Γ derived from a quaternion algebra
and a loxodromic (resp. hyperbolic) element γ ∈ Γ with tr γ = u + u−1. Moreover,
in case (b) we can require Γ to be a subgroup of a Kleinian group Γ0 derived from a
quaternion algebra.

Before we prove this converse, we describe its implications for short geodesics.
The conjectured smallest Mahler measure of approximately 1.176780821 is attained by
an example P1(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1 due to Lehmer
[Le] given in 1933 (see [Boy] for a discussion). It has just one real root outside the
unit circle. The smallest known Mahler measure for a polynomial with a complex
root outside the unit circle is approximately 1.2013961862, attained by an example
P2(x) = x18 + x17 + x16 − x13 − x11 − x9 − x7 − x5 + x2 + x + 1 of D. W. Boyd
[Boy]. Lemma 4.10 implies the existence of a hyperbolic 3-orbifold M1 containing
a hyperbolic 2-suborbifold N1 with a hyperbolic geodesic of length 2 logM(P1) ≈
0.324715228, and also a hyperbolic 3-orbifold M2 with a loxodromic geodesic of
length logM(P2) ≈ 0.18348436; all these orbifolds being derived from quaternion
algebras. By Lemma 4.9, these are the conjectural shortest lengths for hyperbolic resp.
loxodromic geodesics in hyperbolic 2- or 3-orbifolds derived from quaternion algebras.
The conjectural shortest lengths in arithmetic orbifolds would be half these (approx.
0.162357614 resp. 0.09174218 ), and can also be realized in examples by the following
theorem of Chinburg (private communication), which we prove below.

Theorem 4.11. Suppose Γ is a Kleinian or Fuchsian group which is derived from a
quaternion algebra and γ ∈ Γ is a loxodromic or hyperbolic element. Then there is a
group Γ0 commensurable with Γ containing an element γ0 with γ2

0 = γ in PSL2C.
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Proof of Lemma 4.10. As in the proof of Lemma 4.9 we deal with the Kleinian group
case; the Fuchsian case is analogous. Thus assume that u is not real and has exactly
four conjugates off the unit circle. Since u−1 is assumed to be a conjugate of u, the
conjugates of u which are not on the unit circle are exactly u, u−1 and their complex
conjugates. Hence the only non-real conjugates of θ = u+ u−1 are itself and u+ u−1.
In particular the field l0 = Q(θ) has exactly one complex place whilst the field l = Q(u)
is totally imaginary as u has no real conjugates. Also note that l has degree 2 over l0.
We now construct a quaternion algebra over l0 in which l embeds.

Let S be the set of real places of l0 and ν a finite place of l0 which is inert in l.
Now define the set S1 to be S when |S| is even and S ∪ {ν} otherwise. Since |S1|
is even, the classification theorem for quaternion algebras over number fields (see for
example [Vig, Chapter 3]) guarantees the existence of a quaternion algebra A over l0
with S1 as ramification set. Moreover, by construction, l embeds in A—since the real
places of l0 are ramified in l and ν is inert in l (see [Vig, Theorems 1.2.8 and 3.3.8]).

Thinking of l as a subfield of A, u is an algebraic integer in l. Thus, to complete
the proof we need to find an order of A containing u. By assumption u−1 is the
distinct conjugate of u over l0. Hence u has l/l0-norm 1. Now A is a 2-dimensional
l-vector space, so let τ1, τ2 be a basis. Then Λ = Rlτ1 ⊕ Rlτ2 is an ideal of A (see
[Vig, Chap. 1]), where Rl is the ring of integers of l, so OΛ = {x ∈ A : xΛ ⊂ Λ}
(the left order of Λ in the terminology of [Vig, Chap. 1]) is an order of A which clearly
contains Rl and hence u. The final sentence of Lemma 4.10 follows from [MR] or
[R1].

Proof of Theorem 4.11 (Chinburg). We may assume Γ = Pρ(O1), where O is an order
in the quaternion algebra A = A(Γ) (cf. Sects. 4.1 and 3.1). Let γ = Pρ(u) for some
u ∈ O

1 . Since γ is loxodromic or hyperbolic, tr γ = u + u−1, and we can assume
|u| > 1. As in the proof of Lemma 4.9, u has degree 2 over the center k of A. Since
u ∈ O1, the k(u)/k-norm of u is 1. By Hilbert’s Theorem 90, there is a u0 ∈ k(u) with
u0/σ(u0) = u, where σ is the non-trivial element of Gal(k(u)/k). By multiplying u0

by a suitable element of Rk (the ring of integers of k ), we may assume u0 ∈ Rk(u) . Now
σ(u2

0/u) = (σ(u0))
2/σ(u) = (u0/u)

2/u−1 = u2
0/u, so u2

0/u ∈ k∗. It will now suffice
to find an arithmetic group Γ0 commensurable with Γ and containing γ0 = Pρ(u0),
since γ2

0 = γ in A∗/k∗.
As in the proof of Lemma 4.10, we can find a maximal order O in A containing u0.

Let Rf be the (finite) set of finite places of k over which A ramifies. Let S be a finite
set of places of k such that u0 is an S -unit. For ν /∈ Rf ∪ S and ν finite, u0 is in
the unit group of Oν = O ⊗Rk

Rν , where Rν is the ring of integers of the completion
kν . Hence u0 fixes the vertex Pν of the Bruhat-Tits building at ν which is fixed by
O∗

ν . Suppose now that ν ∈ S −Rf . Because u has reduced norm 1, u fixes the vertex
Pν in the building at ν which is fixed by O∗

ν , though u0 need not fix Pν . However,
since u2

0 = u in A∗/k∗, the action of u0 on the building at ν exchanges the vertices Pν

and u0Pν . Since the building is a tree, u0 fixes the mid-point Tν of the shortest path
between these vertices. (Note that Tν is either a vertex or a midpoint of an edge.) From
Borel’s description ([Bo, Prop. 4.4]) of the maximal elements in the commensurability
class of Γ, there is a group Γ0 in this commensurability class consisting of precisely
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those elements of A∗/k∗ which locally fix the same points as described above for u0 on
Bruhat-Tits buildings, i.e., they fix Pν (resp. Tν ) if ν is a finite place not in Rf ∪ S
(resp. in S −Rf ).

5. Commensurators of chain links

Let C(p, s) denote the complement of the link in S3 consisting of a p-link chain
with s left half-twists (if s is negative we mean −s right half-twists, cf. Fig. 1 for
(p, s) = (6,−3) or in Fig. 2 for (p, s) = (7, 0) ). C(p, s) has several symmetries: α the
symmetry that rotates the chain clockwise, taking each link into the next; β the rotation
by 180◦ about the circular axis of Fig. 2; and γ the 180◦ rotation about the horizontal
axis. These elements generate a group of symmetries of order 4p:

G(p, s) = 〈α, β, γ : αp = βs, β2 = 1, γ2 = 1, αβ = βα, γβ = βγ, γ−1αγ = α−1〉
∼= D2p × C2 if s is even
∼= D4p if s is odd,

where D2n and C2 denote the dihedral group of order 2n and the cyclic group of order
2.

γ

β

Figure 2

Theorem 5.1.
(i) C(p′, s′) is commensurable with C(p, s) if (p′+s′, s′) = ±(p+s, s) or ±(−s, p+

s) and is commensurable with C(p, s) with reversed orientation if (p′ + s′, s′) =
±(p+ s,−s) or ±(s, p+ s).

(ii) C(p, s) has a hyperbolic structure (complete of finite volume) if and only if
{|p+ s|, |s|} 6⊂ {0, 1, 2}.
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(iii) C(p, s) is arithmetic (and hence has infinitely many hidden symmetries) if and only if
(|p+s|, |s|) or (|s|, |p+s|) is in (3, 0), (3, 1), (3, 2), (3, 3), (4, 0), (4, 2), (4, 4),
(6, 0). The field of definition k(C(p, s)) is then Q(

√
−d) with d respectively 7,

1, 3, 1, 3, 7, 2, and 15.
(iv) If C(p, s) is hyperbolic and non-arithmetic then it has no orientation preserving

hidden symmetries and its full orientation preserving symmetry group is G(p, s)
(so π1C(p, s) is normal in its orientation preserving commensurator with quotient
G(p, s) ).

(v) If C(p, s) is hyperbolic and non-arithmetic then it has an orientation reversing
commensurability if and only if p+ s = ±s or p+ s = 0 or s = 0.

In the remainder of this section we give the topological part of the proof—part (i),
the “only if” of (ii), and the “if” of (v). In the next section we describe the hyperbolic
structures on chain link complements by means of Dehn surgery on a component of the
Whitehead link and compute some of their arithmetic invariants; (ii) of the theorem is a
side-product. In the subsequent two sections we prove parts (iii) and (iv) and (v).

We shall be using Dehn surgery a lot, so we briefly recall the basic terminology. Let
M be a 3-manifold with an end homeomorphic to T 2× [0,∞), where T 2 is the 2-torus.
We can cut off the end to get a 3-manifold M0 = M − T 2 × (1,∞) with a boundary
component T 2 = T 2×{1}. Let m, l be some chosen basis of H1(T

2; Z) and let (p, q)
be a coprime integer pair. We can paste a solid torus onto M0 at the boundary component
T 2 to kill the homology class pm + ql. This process is called “ (p, q) Dehn filling” the
chosen end of M . If the end of M resulted by removing a knot K from a manifold N ,
then we also speak of “ (p, q) Dehn surgery” on K .

We shall also need orbifold versions of Dehn filling and Dehn surgery. If (p, q) is
an integer pair that is not coprime, say d = gcd(p, q), then (p, q) Dehn filling means
the following: first perform (p/d, q/d) Dehn filling and then give the core circle of the
added solid torus a transverse angle of 2π/d, so that it becomes the singular set of an
orbifold structure with local group Cd (the cyclic group of order d ).

Figure 3

Let τ be the involution on T 2 which acts by multiplication by −1 on H1(T
2)

(Fig. 3). The orbit space P = T 2/τ is a 2-sphere with four order 2 orbifold points
(points with cone angle π ). The involution τ extends to any solid torus D2 × S1 that
T 2 bounds and (D2 × S1)/τ is the orbifold Q of Fig. 4 with ∂Q = P . Thus, given a
3-orbifold M with an end homeomorphic to P × [0,∞), and a chosen homology basis
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2 2

2 2

Figure 4

Figure 5

for the double cover T 2 of P , we can define (p, q) Dehn filling the end of M to mean
the process of cutting off the end and replacing it by Q in a way that induces (p, q) Dehn
filling by a solid torus in the double cover of the end.

Proof of (i) and “if” of (v) of Theorem 5.1. Let W denote the complement of the
Whitehead link pictured in Fig. 5. We can obtain C(p, 2q) by performing (p, q) Dehn
filling of W at one component of the Whitehead link (with respect to the standard
meridian/longitude pair) and then taking the p-fold cover of the resulting manifold or
orbifold (it is an orbifold if gcd(p, q) 6= 1 ). To obtain C(p, s) this way for s odd, one
can give an interpretation of (p, q) Dehn filling for q half-integral, but instead we shall
use a suitable quotient of W .

W double covers the orbifold W ′ pictured in Fig. 6, with one toral end and one end
whose cross section is a sphere with four order 2 orbifold points. (p, s) Dehn filling
the toral end of W ′ lifts to (p, s/2) Dehn filling of one end of W . In fact, the result
W ′(p, s) of this (p, s) Dehn filling is simply the quotient of C(p, s) by the subgroup
G0 = 〈α, β〉 of G(p, s). If we quotient W ′ by the symmetry γ we obtain the orbifold
W ′′ pictured in Fig. 7. Its underlying space is S3 with two balls removed, i.e., S2 × I .
We have re-drawn W ′′ in Fig. 8 in a more symmetric fashion; it has an order 2 rotational
symmetry about its vertical axis and reflection symmetries across appropriate vertical
planes.

Let W ′′(p, s) be the corresponding quotient of W ′(p, s) (so W ′′(p, s) results by
(p, s) Dehn filling one end of W ′ —the end is filled by the orbifold of Fig. 4). By drawing
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2

Figure 6
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Figure 7
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2
2

2

Figure 8

the curves killed by the Dehn filling (or by a homological calculation) it is not hard to see
that the rotational symmetry of W ′′ takes (p, s) Dehn filling to (p+ 2s,−p− s) Dehn
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filling, so W ′′(p, s) ∼= W ′′(p+2s,−p− s). Note that (p, s) and (−p,−s) Dehn filling
mean the same thing, and (p′, s′) = (p+2s,−p− s) implies (p′ + s′, s′) = (s,−p− s),
so the orientation preserving commensurability of the theorem is proved. The reflection
symmetries of W ′′ take (p, s) Dehn filling to (p,−p − s) and (p + 2s,−s) Dehn
filling, so W ′′(p, s) ∼= W ′′(p,−p− s) and W ′′(p+ 2s,−s). This gives the orientation
reversing commensurabilities of the theorem.

If W (p1, q1; p2, q2) denotes the result of Dehn filling at both cusps of W (that is,
(p1, q1) and (p2, q2) Dehn surgery on the two components of the Whitehead link) and
similarly for W ′′ then the same argument shows:

Proposition 5.2. W ′′(p1, s1; p2, s2) ∼= −W ′′(p1,−p1 − s1; p2 + 2s2,−s2), where the
minus sign signifies reversed orientation, so W (p1, q1; p2, q2) is commensurable with
−W (p1,−p1/2 − q1; p2 + 4q2,−q2).

Figure 9

Proof of “only if” of part (ii) of Theorem 5.1.. We must show non-hyperbolicity for
the cases claimed. For this it suffices, by the commensurability statement of part (i),
to consider the five cases (p, s) = (1, 0), (2, 0), (2,−1), (3,−1), and (4,−2). The
(p, s) chain link is then respectively the unknot, the (4, 2) cable link, the two component
unlink, the (3, 3) cable link, and the link pictured in Fig. 9, which has an essential
torus separating the pairs of parallel components. None of these admits a complete finite
volume hyperbolic structure.

6. Surgery on one component of the Whitehead link complement

6.1. In [T] Thurston describes how to obtain the complement W of the Whitehead link
(Fig. 5) by identifying faces of an ideal octahedron in pairs. The identification matches
face A with A′ , B with B′ , etc., in Fig. 10, so as to respect the labeling of the edges.

If the octahedron is taken to be a regular ideal octahedron in hyperbolic space, then
one obtains the complete finite volume hyperbolic structure on W . As described in
[T] (see also [NZ]), by deforming the octahedron to differently shaped ideal hyperbolic
octahedra one obtains incomplete hyperbolic structures on W , whose metric completions
are hyperbolic Dehn surgeries and generalized Dehn surgeries on the Whitehead link.

We refer the reader to [T] and [NZ] for details on generalized hyperbolic Dehn
surgery. The essential point is that a generalized Dehn surgery on W is parameterized by
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Figure 10

a “Dehn surgery parameter” (pi, qi) ∈ R2∪{∞} for each cusp of W . The result, denoted
W (p1, q1; p2, q2), of this generalized hyperbolic Dehn surgery is defined if the (pi, qi) are
sufficiently close to ∞. Moreover, if (pi, qi) = ∞ for i = 1 or 2 then the corresponding
cusp of W is complete—still a cusp—in W (p1, q1; p2, q2), and if (pi, qi) ∈ Z2 then
the cusp has been filled in by a geodesic along which W (p1, q1; p2, q2) has the structure
of a hyperbolic orbifold, or manifold if gcd(pi, qi) = 1, and the underlying topology
is that of topological Dehn surgery, described in the previous section. (Precisely, if
(pi, qi) = (rp′i, rq

′
i) with (p′i, q

′
i) a coprime integer pair and r > 0, then the cusp is

filled in by a geodesic with a transverse cone angle of 2π/r, while if pi/qi /∈ Q then the
cusp is filled by a single point at which W (p1, q1; p2, q2) is not topologically a manifold.)

As in the above references, it is convenient to use an ideal triangulation of W to
discuss the deformations, since the shape of an ideal hyperbolic tetrahedron is determined
by a single complex parameter in the upper half plane. By subdividing the octahedron of
Fig. 10 as in Fig. 11, we obtain an ideal triangulation of W with four simplices.

Figure 11

By cutting off the ends of W one obtains a compact manifold-with-boundary W
which can be obtained by identifying truncated tetrahedra as in Fig. 12. The two boundary
tori of W are triangulated as in Fig. 13, where the vertices are labeled according to the
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edges of the triangulation of W . Careful inspection shows that the standard topological
meridian and longitude of each component of the Whitehead link are as indicated in
Fig. 14, where we have also included labels for the complex parameters of the four
tetrahedra.

A note on orientations. In the discussion of Dehn surgery on the figure eight knot
complement in [T], and also throughout [NZ], a non-standard orientation convention
was used for the longitude/meridian pair at a cusp, due to the cusp torus being viewed
from inside the manifold rather than outside (this pair is drawn with standard orientation
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in Fig. 18 of [NZ], but this was inconsistent with the text). Thus (p, q) Dehn surgery
in those discussions would be (p,−q) Dehn surgery in the convention which we follow
here, affecting some signs in some formulae.

We can read off from Fig. 14 the consistency relations (see [NZ] or [T]) at the four
edges:

logw′′ + log z ′ + logx′′ + logw′ + logx′′ + log y′ + logw′′ + logx′ = 2πi

logw + logx+ log y + log z = 2πi

log z′′ + logw′ + log y′′ + log z ′ + log y′′ + logx′ + log z ′′ + log y′ = 2πi

logw + logx+ log z + log y = 2πi.

Here log denotes the standard branch of natural log on the complex plane split along
(−∞, 0]. Since x′ = x−1

x and x′′ = 1
1−x and similarly for w, y, z, these simplify to

the two relations:

logw + logx+ log y + log z = 2πi (6.1a)

log(1 − w) + log(1 − x) − log(1 − y) − log(1 − z) = 0 (6.1b)

Similarly, we can read off the parameters u1 , v1 , u2, v2 , which describe the
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holonomy of the meridians and longitudes m1, l1 , m2, l2, at the two cusps. They are

u1 = log y′′ + log z ′ + log z ′′ + logw′ − πi

v1 = log y′′ + log y + logx+ logx′ + logw′′ + log z ′ + logx′′

+ logx+ log y + log y ′ + log z ′′ + logw′ − 4πi

u2 = log z ′′ + log y′ + log y′′ + logw′ − πi

v2 = log z ′′ + log z + log x+ log x′ + logw′′ + log y′ + logx′′

+ logx+ log z + log z ′ + log y′′ + logw′ − 4πi

which, written in terms of x, y, z, w and simplified by (6.1), becomes

u1 = log(w − 1) + logx+ log y − log(y − 1) − πi (6.2a)

v1 = 2 logx+ 2 log y − 2πi (6.2b)

u2 = log(w − 1) + logx+ log z − log(z − 1) − πi (6.2c)

v2 = 2 logx+ 2 log z − 2πi. (6.2d)

(u1, u2) can be taken as the “analytic Dehn surgery parameter,” as discussed in [T]
and [NZ], in which case w, x, y, z, constrained by equations (6.1), become complex
analytic functions of this parameter.

The real Dehn surgery parameters (p1, q1) and (p2, q2) are determined by the equa-
tions

p1u1 + q1v1 = 2πi

p2u2 + q2v2 = 2πi.
(6.3)

For the complete structure on W we have u1 = v1 = u2 = v2 = 0, which, with
(6.1) and (6.2), easily implies x = y = z = w = i (this is also clear from the regularity
of the octahedron for the complete structure). We shall thus deform from these values of
x, y, z, w, maintaining the consistency relations (6.1).

6.2. We are only interested in generalized Dehn surgeries on one cusp of W , so we
always have (p1, q1) = ∞. The requirement that the first cusp is complete means
u1 = v1 = 0. From v1 = 0 and equation (6.2b) we deduce x = −y−1. Equation (6.1a)
then gives z = −w−1 and (6.1b) then gives y = w, so

(x, y, z, w) = (x,−x−1, x,−x−1).

Conversely, (x, y, z, w) = (x,−x−1, x,−x−1) satisfies the consistency relations (6.1)
and the cusp relations u1 = v1 = 0 and thus gives a structure on W which is complete
at the first cusp. We thus just have the one complex parameter x, in the upper half plane,
describing our deformations.

We abbreviate (u2, v2) = (u, v) and (p2, q2) = (p, q), and we shall write W (p, q)
for W (∞; p, q). The formulae (6.2) simplify to

u = logx+ log(x+ 1) − log(x− 1)

v = 4 logx− 2πi
(6.4)
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and the real Dehn surgery parameter (p, q) is determined by the equation

pu+ qv = 2πi. (6.5)

Thurston’s complex analytic parameter for hyperbolic Dehn surgery on one component
of the Whitehead link is u. We shall use the parameter x instead. Since x describes
the shape of an ideal simplex, which degenerates for x real, the natural domain for the
parameter x is the complex upper half plane U . The maps x 7→ u and x 7→ v take U
biholomorphically to the domains U and V, where U is the complex plane split along
the rays (−∞, 2 log(

√
2 − 1)] and [2 log(

√
2 + 1),∞) and V = {v ∈ C : −2πi <

Im v < 2πi}. Thus x ∈ U , u ∈ U, and v ∈ V are all equally good complex analytic
parameters for generalized hyperbolic Dehn surgery on one component of the Whitehead
link.

x
x −x−1

−x−1 m

l

−x−1 −x−1
x

x

Figure 15

The triangulation of the cusp torus of W (p, q) is shown in Fig. 15 with the meridian
m and longitude l drawn in. Its isomorphism type as a complex torus C2/Λ is described
by the complex parameter τ = λ2/λ1 with positive imaginary part, after choosing an
oriented base λ1, λ2 for the lattice Λ. We can consider m and l to represent generating
translations in the universal cover of the cusp torus, and we define:

Definition. The cusp parameter of W (p, q) is the parameter τ of the cusp torus with
respect to the oriented basis m,−l. We denote the cusp parameter for W (p, q) by
τ(W (p, q)). (We make this choice of basis for consistency with [T] and [NZ], as well
as because of Theorem 6.3 below, which says this τ is often an algebraic integer; the
seemingly “more natural” choice l,m replaces τ by −τ−1 . )
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Our next theorem says that τ(W (p, q)) determines W (p, q). To state it we need some
notation. Let N denote the closed parallelogram in R2 with vertices ±(−4, 1),±(0, 1)
(Fig. 16).

(0,1)(−4,1)

(0,−1) (4,−1)

p

q

Figure 16

It is known (and we shall show) that this is the “non-hyperbolic” domain in the space
of real Dehn surgery parameters. Since (p, q) Dehn surgery and (−p,−q) Dehn surgery
give the same result, the space of real surgery parameters for hyperbolic Dehn surgeries
is

H = (R2 ∪ {∞}− N)/± 1.

Theorem 6.1. The map (p, q) 7→ τ(W (p, q)) is a homeomorphism H → U , where U
is the complex upper half plane.

Proof. By elementary calculation from Fig. 15 one obtains τ in terms of x as

τ =
4x

1 − x2
− 2. (6.6)

By solving equation (6.6) for x in terms of τ one verifies that this map x 7→ τ is a
2-fold branched cover U → U , branched at x = i, and that x and −x−1 both map to
the same τ . Note that replacing x by −x−1 replaces u by −u, v by −v, and hence
(p, q) by (−p,−q). To prove the theorem we must thus show that the map x 7→ (p, q)
is a homeomorphism of U to R2 ∪ {∞} − N. We shall denote the map x 7→ (p, q) by
φ:U → R2 ∪ {∞}.

Thurston’s hyperbolic Dehn surgery theorem (cf., [T] or [NZ]) asserts that φ is
a homeomorphism from a neighborhood of the parameter value x = i corresponding
to the complete structure on W to a neighborhood of ∞. Elementary computation
shows that φ takes the boundary R ∪ {∞} of U homeomorphically to the boundary
of N (specifically, the intervals [−∞,−1], [−1, 0], [0, 1], [1,∞] go to the segments
[(4,−1), (0, 1)], [(0, 1), (−4, 1)], [(−4, 1), (0,−1)], [(0,−1), (4,−1)] respectively). It
therefore suffices to show that φ has non-vanishing Jacobian at all x ∈ U − {i}.
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Denote

a(x) = log x, b(x) = log
x− 1

x+ 1
.

Since a is a biholomorphic map a:U → A = {z ∈ C : 0 < Im z < π}, we may show
instead that φ ◦ a−1: a 7→ (p, q) has non-vanishing Jacobian away from a(i) = πi/2. In
other words, we must show that ∂a/∂p and ∂a/∂q are linearly independent over R for
a 6= πi/2. The defining equation for p and q is

p(a− b) + q(4a− 2πi) = 2πi.

Implicit differentiation of this equation with respect to p and q gives

∂a

∂p
(p− p

∂b

∂a
+ 4q) = b− a

∂a

∂q
(p− p

∂b

∂a
+ 4q) = 2πi− 4a,

so we must show that b − a and 2πi − 4a are linearly independent over R. However
the map b ◦ a−1: a(x) 7→ b(x) is conjugate by log to the order 4 Möbius transformation
x 7→ (x−1)/(x+1) and it is thus easy to see that if one divides A into four “quadrants”
by the vertical and horizontal lines through πi/2, then a 7→ b rotates each quadrant
clockwise into the next. It follows that the line from b to a never points in the same
direction as the line from the center πi/2 of rotation to a (unless a = πi/2 ). That is,
b− a and πi/2− a are independent over R, as was to be shown.

We now restrict to the case that (p, q) /∈ N and p ∈ Z and q ∈ 1
2Z. Recall that W

covers the orbifolds W ′ and W ′′ of Figs. 6 and 7 with covering groups C2 and C2×C2 .
W (p, q) thus branched covers W ′(p, 2q) and W ′′(p, 2q) in the notation of Sect. 5, and
these are hyperbolic orbifolds under our assumptions on p and q.

Note that (p, q) 7→ (p+2q, 2q) transforms the domain N into the square with vertices
(±2,±2), so part (ii) of Theorem 5.1 is proven. We next compute some arithmetic
invariants of our orbifolds.

Theorem 6.2. Denote z = x − x−1 (so τ = −4/z − 2 and Q(z) = Q(τ) ). The
invariant trace fields and trace fields for W (p, q), W ′(p, 2q), and W ′′(p, 2q) are as
follows:

k(π1W (p, q)) = Q(z)

Q(tr(π1W (p, q))) = Q(
√
z)

}

q ∈ Z ,

k(π1W
′(p, 2q)) = k(π1W

′′(p, 2q)) = Q(z)

Q(tr(π1W
′(p, 2q))) = Q(tr(π1W

′′(p, 2q))) = Q(
√
z, i)

}

q ∈ 1

2
Z .

In particular, the cusp field equals the invariant trace field for all these examples.

Remark. By Corollary 2.3 it follows that Q(z) = Q(
√
z) if q ∈ Z and p is odd. In

the examples we have checked, Q(z) 6= Q(
√
z) otherwise.
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a5

a0a3

a4

a2 a1

Figure 17

Proof. Denote the vertices of our original octahedron O by a0, . . . , a5 as in Fig. 17.
If we position O in H3 with these vertices at 0, 1, ∞, −1, x, x−1 , respectively,
then it is easy to compute that the four constituent tetrahedra (Fig. 12) have parameters
x, −x−1 , x, −x−1 , so O has the correct shape for the value x of our deformation
parameter.

Denote by a the element of PGL2C = Isom(H3) which translates O across its face
A, taking face A′ to A. Thus a takes 0, −1, x−1 to 1, 0, x respectively. Solving
for an element of PGL2C shows that a can be represented by the matrix

a =

(

1 1
1 − z 1

)

∈ PGL2C.

Similarly, if b, c, d are the translations across faces B , C , D respectively, one
computes that

b =

(

1 1
1 1 + z

)

, c =

(

1 1− z
1 1

)

, d =

(

1 + z 1
1 1

)

.

If q ∈ Z then π1W (p, q) is generated by a, b, c, and d. π1W
′(p, 2q) is generated by

the above elements and the additional element

β =

(

0 1
1 0

)

which rotates the octahedron about the axis through a1 and a3.
The vertices a0, . . . , a3 lie at the cusp of W ′(p, 2q) and are all in Q(z) ∪ {∞} and

the generators a, b, c, d, β , of π1W
′(p, 2q) have entries in Q(z). As in the proof of

Lemma 2.5, it follows that all lifts of the cusp are in Q(z), so k(π1W
′(p, 2q)) ⊂ Q(z).

But k(π1W
′(p, 2q)) must contain τ , which generates Q(z), so it equals this field.

Suppose q ∈ Z. To compute Q(trπ1W (p, q)) we must put the generators a, b,
c, d in SL2C by dividing each by the square root of its determinant, namely

√
z.

Their traces then evidently generate Q(
√
z), so Q(trπ1W (p, q)) contains Q(

√
z). On

the other hand our representation of π1W (p, q) then has image in PSL2Q(
√
z), so

Q(trπ1W (p, q)) is at most Q(
√
z).
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The additional generator β of π1W
′(p, 2q) is represented by the matrix ( 0 i

i 0 ) ∈
PSL2Q(

√
z, i), so Q(trπ1W

′(p, 2q)) ⊆ Q(
√
z, i). But a and βb have traces 1/

√
z

and i
√
z, so the trace field contains

√
z and i. The same argument applies to

π1W
′′(p, 2q), since the additional involution needed to generate π1W

′′(p, 2q) is the
180◦ rotation about the axis a0a2 , which is

γ =

(

i 0
0 −i

)

∈ PSL2Q(
√
z, i).

(Remark: γ does not respect the octahedron after Dehn surgery.)

Theorem 6.3. Suppose (p, q) ∈ Z× 1
2Z is not in N. τ = τ(W (p, q)) is not an algebraic

integer if and only if p = 0 and |q| is an odd prime power. π1W
′(p, 2q) fails to have

integral traces if and only if p = 0 or −4q and |q| is an odd prime power.

Proof. Since τ = −4/z−2, the integrality of τ is equivalent to that of 4/z. Moreover,
to check if trπ1W

′(p, 2q) consists of algebraic integers, it suffices to check a set of
generators and their pairwise products (cf. [Mag, p. 148]). Using the generators in the
above proof one obtains traces 2/

√
z,

√
z+ 2/

√
z, multiples of these by i, and rational

integral linear combinations of 1, z, and 4/z. So trπ1W (p, q) consists of algebraic
integers if and only if z and 4/z (and hence also their square roots) are algebraic integers.

By (6.4) and (6.5), x satisfies the equation
(

x(x + 1)

x− 1

)p

x4q = 1, (6.7)

which multiplies out to a monic polynomial with rational integer coefficients and constant
term ±1 unless p + 4q = 0. Thus x is a unit, whence z = x − x−1 is an algebraic
integer, if p + 4q 6= 0. On the other hand, if x satisfies equations (6.4) and (6.5) for
(p, q) then one checks that (1 − x)/(1 + x) satisfies (6.4) and (6.5) for (p + 4q,−q).
But replacing x by (1 − x)/(1 + x) replaces z = x − x−1 by 4/z. Thus 4/z—and
hence also 4/z—is an algebraic integer if p 6= 0.

To complete the proof it suffices to show that when p = 0, z is an algebraic
integer divisor of 4 if and only if |q| is not an odd prime power. (Recall, that since
q ∈ 1

2Z, 2q is an arbitrary integer.) Assume p = 0. Then (6.4) and (6.5) imply that
x/i = exp(2πi/4q), so z/i = exp(2πi/4q) + exp(−2πi/4q). Now z will be a divisor
of 4 if and only if ζ := (z/i) exp(2πi/4q) is. But ζ divides 4 if and only if its
norm divides 4. The norm of ζ = exp(2πi/2q) + 1 is Φ(1), where Φ is the minimal
polynomial for − exp(2πi/2q). Now, − exp(2πi/2q) is a primitive r-th root of unity
with r = |4q|, |q|, or |2q|, according as 2q is an odd integer, twice an odd integer, or
divisible by 4. Thus Φ is the r-th cyclotomic polynomial, and it is known that Φ(1) = 1
unless r is the power of a prime, in which case Φ(1) equals this prime (cf. e.g., [W]).
Thus Φ(1) fails to divide 4 if and only if r is an odd prime power, in which case q = ±r.

An interesting example is W (0, 3) (or W (12,−3), which is commensurable with
it). The invariant trace field k(π1W (0, 3)) is Q(

√
−3), but π1W (0, 3) has non-integral

traces, so it cannot be commensurable with PSL2O3. However its volume turns out to be
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20 times the volume of H3/PSL2O3 —this is 10/3 times the volume of a regular ideal
tetrahedron.

7. Arithmeticity of chain links

Proof of part (iii) of Theorem 5.1. Recall that C(p, s) is a cover of W ′(p, s) and if
W ′(p, s) is hyperbolic, then it is double branched covered by W (p, q) with s = 2q. We
claim that the geodesic γ(p, s) added by hyperbolic Dehn filling W ′ to form W ′(p, s)
has length

`0(γ(p, s)) = −d
s

Re(u) =
d

2p
Re(v), d = gcd(p, s), (7.1)

where u and v are as in equations (6.4) and (6.5). Indeed, if `(γ(p, s)) is the complex
length of the added geodesic then, by equation (6.5) and by [Th] or [NZ], we have
equations

pu+ s
v

2
= 2πi

p′u+ s′
v

2
= `(γ(p, s)),

where p′ and s′ are integers satisfying ps′ − sp′ = d. Multiplying the first of these two
equations by s′ and the second by s and subtracting gives du = 2πis′ − s`(γ(p, s)),
from which the first equality of (7.1) follows by taking real part; the second equality
follows similarly.

The computations that we now describe were computer-aided, so we omit some details.
We wish to find the (p, s) for which `0(γ(p, s)) ≥ 0.431277313 (cf. Corollary 4.7). We
use equations (7.1). First, by plotting level curves in the (p + s, s)-plane for Re(u)
and Re(v) one finds that the conditions |Re(u)| ≥ 0.43 and |Re(v)/2| ≥ 0.43 force
(p+ s, s) to lie in a bounded domain (which lies entirely within the circle of radius 15 ).
It is then quick to verify that the (p, s) for which `0(γ(p, s)) ≥ 0.431277313 are those
with (|p + s|, |s|) or (|s|, |p + s|) in {(n, 0) : 3 ≤ n ≤ 14} ∪ {(n, n) : 3 ≤ n ≤
7} ∪ {(3, 1), (3, 2), (4, 2)}. Thus, only in these cases might W ′(p, s) be arithmetic.

The table of Theorem 4.6 of possible short geodesic lengths in cusped arithmetic
orbifolds now eliminates all cases but those of part (iii) of Theorem 5.1, namely (|p +
s|, |s|) or (|s|, |p + s|) equal to one of (3, 0), (3, 1), (3, 2), (3, 3), (4, 0), (4, 2),
(4, 4), (6, 0). (We could also have eliminated all but these and (6, 6) by the observation
that a cusped arithmetic orbifold can have torsion only of order 2, 3, 4, or 6, since the
trace of the square of the torsion element must be in some Od . )

To show that the above cases do give arithmetic orbifolds we use the characterization
of arithmeticity in Proposition 4.4. We must thus verify that in these cases the invariant
trace field k(π1W

′(p, s)) is Q(
√
−d) with d respectively 7, 1, 3, 1, 3, 7, 2, 15,

and that W ′(p, s) has integral traces. By Theorem 6.2 and the proof of Theorem 6.3
we must check that z and 4/z lie in the appropriate Od . This is evident from Table 2,
which includes also the non-arithmetic case (6, 6).
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Table 2. z and 4/z

{|p+ s|, |s|} z 4/z

{3, 0} −3+
√
−7

2
−3−

√
−7

2

{3, 1} −1 +
√
−1 2 − 2

√
−1

{3, 2} −1+
√
−3

2 −2− 2
√
−3

{3, 3} +
√
−1 −4

√
−1

{4, 0} −1 +
√
−3 −1−

√
−3

{4, 2} −1+
√
−7

2 −1−
√
−7

{4, 4} +
√
−2 −2

√
−2

{6, 0} −1+
√
−15

2
−1−

√
−15

2

{6, 6} +
√
−3 −4

√
−3

3

It is remarkable that the arithmetic W ′(p, s) are picked out exactly by Theorem 4.6.
We had conjectured the following alternate characterization of the arithmetic cases, and
T. Chinburg showed us a proof, which we sketch.

Proposition 7.1. k(π1W
′(p, s)) is a quadratic imaginary field if and only if (p, s) is

one of the arithmetic cases above or (|p+ s|, |s|) = (6, 6) (for which W ′(p, s) does not
have integral traces).

Sketch Proof. Suppose Q(z) is imaginary quadratic. Since z = x−x−1 , x has degree
at most 4 over Q. If p = 0 or p+4q = 0 then equation (6.7) shows that x, respectively
(x+ 1)/(x− 1), is a root of unity of degree at most 4 over Q. This gives finitely many
cases to check. If neither p nor p+ 4q is zero, then the proof of Theorem 6.3 shows that
z is an algebraic integer divisor of 4 in an imaginary quadratic number field. This again
gives finitely many cases to check.

We have computed the minimal polynomial for the generating element z of
k(π1W

′(p, s)) whenever |p + s| and |s| are at most 13. The degree is always at
most max{|p+ s|, |s|}−1, as is not hard to prove, but is often smaller, as Table 3 shows.

8. Commensurators of chain links: proofs

In this section we prove parts (iv) and (v) of Theorem 5.1.

Lemma 8.1. Let (p, s) be such that C(p, s) is non-arithmetic. The cusp parameter τ is
not in Q(

√
−1) or Q(

√
−3), unless (|p+ s|, |s|) = (6, 6).

Proof. Since τ +2 = −4/z we must just show that z is not in Q(
√
−1) or Q

√
−3). If

p = 0 then equations (6.4) and (6.5) give x = exp((s+2)πi/2s), and since z = x−x−1 ,
it is easy to see that z is in Q(

√
−1) or Q(

√
−3) if and only if |s| = 3, 4, or 6. The
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Table 3. [k(W ′(p, s)):Q]

|s| 0 1 2 3 4 5 6 7 8 9 10 11 12 13
|p+ s|

0 2 2 4 2 6 4 6 4 10 4 12
1 2 3 4 5 6 7 8 9 10 11 12
2 2 2 4 3 6 4 8 5 10 6 12
3 2 2 2 2 3 4 4 6 7 6 9 10 8 12
4 2 3 2 3 2 4 3 6 4 8 5 10 6 12
5 4 4 4 4 4 4 5 6 7 8 8 10 11 12
6 2 5 3 4 3 5 2 6 4 6 5 10 4 12
7 6 6 6 6 6 6 6 6 7 8 9 10 11 12
8 4 7 4 7 4 7 4 7 4 8 5 10 6 12
9 6 8 8 6 8 8 6 8 8 6 9 10 8 12
10 4 9 5 9 5 8 5 9 5 9 4 10 6 12
11 10 10 10 10 10 10 10 10 10 10 10 10 11 12
12 4 11 6 8 6 11 4 11 6 8 6 11 4 12
13 12 12 12 12 12 12 12 12 12 12 12 12 12 12

cases |s| = 3 or 4 are arithmetic, so the only case is |s| = 6. If p + 2s = 0 then
C(p, s) is commensurable with C(0, s) by part (i) of Theorem 5.1, so again, the only
non-arithmetic case with z in Q(

√
−1) or Q(

√
−3) is |s| = 6. Finally, if p 6= 0

and p + 2s 6= 0 then the proof of Theorem 6.3 shows that z is an algebraic integer
divisor of 4. The only algebraic integer divisors of 4 with positive imaginary part in
Q(

√
−1) or Q(

√
−3) are z = i, 2i, 4i, 1 + i, −1 + i, 2 + 2i, −2 + 2i, ω, 2ω,

4ω, −ω, −2ω, and −4ω, where ω = exp(2πi/3). One computes directly that these
correspond to (p + s, s) = (3, 3), (∞,∞), (3,−3), (1, 3), (3, 1), (1,−3), (3,−1),
(2, 3), (0, 4), (2,−3), (3, 2), (4, 0), (3,−2), respectively, which are arithmetic cases,
and thus excluded in the lemma.

Proof of Theorem 5.1 (iv). An orbifold cusp is called rigid if its fundamental group is
the non-abelian split extension of Z/n by (Z⊕Z) with n = 3, 4, or 6. In this case the
parameter τ of a flat torus covering a horosphere section of the cusp must be in Q(

√
−1)

or Q(
√
−3).

Suppose C(p, s) is nonarithmetic and (|p+s|, |s|) 6= (6, 6). By Lemma 8.1, C(p, s)
cannot cover an orbifold with a rigid cusp. On the other hand, by the Thurston/Jørgenson
theory (cf., [T, Chapter 5]) the quotient W ′′(p, s) of C(p, s) has volume less than
vol(W ′′) ≈ 0.918. If W ′′(p, s) non-trivially covered the orientable commensurator
quotient of C(p, s), then this commensurator quotient would have volume at most half
this value, namely <≈ 0.459. But this volume bound puts the commensurator quotient
on Adams’ list of smallest orientable orbifolds with non-rigid cusps ([A1]), and these
orbifolds are all arithmetic. Thus W ′′(p, s) is the orientable commensurator quotient.

Finally, suppose |(p+ s|, |s|) = (6, 6). By Table 2, the cusp parameter of W ′′(p, s)
lies in Q(

√
−3). Now, W ′′(p, s) cannot cover an orbifold with a non-rigid cusp by



304 Walter D. Neumann and Alan W. Reid

(0,3)

(0,4)
(1,−4)

(1,−3)

(1,3)
(1,4)

(2,−4)

(2,−3)

(2,3)

(2,4)

(3,−4)

(3,−3)
(3,−2)

(3,−1)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

(4,−4)
(4,−3)(4,−2)

(4,−1)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

0−1−2

2i

Figure 18

the argument of the previous paragraph, so if it non-trivially covers some orbifold, that
orbifold must have a (2, 3, 6) or (3, 3, 3) cusp. But W ′′(p, s) has volume 5v0/6, where
v0 is the volume of the regular ideal tetrahedron, and Adams, in these Proceedings ([A2]),
shows that the four orbifolds with rigid cusps of type (2, 3, 6) or (3, 3, 3) and with volume
less than v0/4 have volumes v0/12, v0/6, v0/6, or 5v0/24. W ′′(p, s) cannot cover
any of these because they are arithmetic (cf. [NR2]). Thus the orientable commensurator
quotient of W ′′(p, s) has volume at least v0/4, so π1W

′′(p, s) has index 1, 2, or 3 in
its orientation preserving commensurator. The cusp of W ′′(p, s) cannot 2-fold cover a
(2, 3, 6) or (3, 3, 3) cusp, because of the 3-torsion. If the commensurator had index 3
then either W ′′(p, s) or some 2-fold cover of W ′′(p, s) would have a 3-fold symmetry.
By considering the set of 3-orbifold points, it is not hard to eliminate the existence of
such a symmetry.

Proof of Theorem 5.1 (v). Recall that we have already shown that the C(p, s) of part
(v) of Theorem 5.1 have orientation reversing commensurabilities, so we must just show
that the others do not. If C(p, s) has an orientation reversing commensurability, then its
orientable commensurator quotient W ′′(p, s) admits an orientation reversing symmetry,
so the cusp of W ′′(p, s) also does. The result thus follows from the following lemma.
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Lemma 8.2. The cusp of W ′′(p, s) has an orientation reversing symmetry if and only if
p+ s = 0, s = 0, p+ s = ±s, or W ′′(p, s) is arithmetic.

Proof. The complex parameter of the cusp of W ′′(p, s) is τ(p, q)/2 with q = s/2

(by the parameter for a flat (2, 2, 2, 2)-orbifold we mean the parameter of its unique
2-fold torus covering space). In Fig. 18 we show the image in (τ/2)-space of the integer
lattice in (p + s, s)-space (excluding the non-hyperbolic region N ). The moduli space
of flat (2, 2, 2, 2)-orbifolds is the moduli space of flat tori, namely U/PSL2Z, where U
is complex upper half-space. Orientation reversal induces an involution on U/PSL2Z

(induced by τ 7→ −τ ) whose fixed point set gives the set of moduli of orbifolds which
admit an orientation reversing isometry. The lift of this set to U is shown in Fig. 19.
Fig. 20 superimposes the previous two figures—it is clear that the only (p+ s, s) lattice
points for which the cusp of W ′′(p, s) admits an orientation reversing isometry are those
with p+ s = 0, s = 0, or p+ s = ±s, or {|p+ s|, |s|} ∈ {{3, 1}, {3, 2}, {4, 2}}. By
Theorem 5.1 part (iii), this proves the lemma.
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9. The dodecahedral knots of Aitchison and Rubinstein

9.1. One of the original motivating questions for this work was the question: does
there exist a hyperbolic knot other than the figure-eight knot whose complement has
hidden symmetries (i.e., the commensurator of its fundamental group is larger than its
normalizer)?

Of course an arithmetic knot complement would have hidden symmetries, but by [R2],
the figure-eight knot complement is the only such.

Proposition 9.1. The following are equivalent for a hyperbolic knot complement other
than the figure-eight knot complement:
(1) it has hidden symmetries;
(2) its orientable commensurator quotient has a rigid cusp;
(3) the knot complement non-normally covers some orbifold.

Proof. Clearly (1) is equivalent to (3). A hyperbolic knot complement (even in a rational
homology sphere) has a homologically determined longitude, which must be preserved
up to sign by any isometry. Since the orientable isometry group must act effectively on the
cusp torus, it can only be cyclic or Z/2 extended by a cyclic group, so the quotient has a
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non-rigid cusp. Thus (2) implies (1). If a knot complement covers an orbifold with a non-
rigid cusp then the covering must be normal by Lemma 4 of [R2], so (1) implies (2).

We now describe a pair of knot complements, constructed by Aitchison and Rubinstein
in their paper [AR] in these Proceedings, which are mutually commensurable and which
do have hidden symmetries.

Let D denote the regular ideal dodecahedron in hyperbolic 3-space. All its dihedral
angles are π/3. As described in [AR] there exist two distinct hyperbolic knot comple-
ments Df and Ds obtained by identifying faces of two copies of D. Let Γ be the
group generated by the order 120 group of symmetries of the ideal dodecahedron D and
all reflections in faces of D. This Γ is clearly the tetrahedral group determined by the
tetrahedron T [5, 2, 2; 2, 3, 6], which is a fundamental domain for the symmetry group
of D. Let Γ+ be the orientation preserving subgroup of Γ. Clearly, the hyperbolic
3-orbifold H3/Γ+ has a rigid cusp of type (2, 3, 6) and is covered by Df and Ds . It is
in fact the orientable commensurator quotient of Df and Ds (and H3/Γ is therefore the
non-orientable commensurator quotient), for the following reason: by [Mey], H3/Γ+

has volume approximately 0.343003, and if there were a smaller quotient, it would have
to have volume at most half this, which would contradict the results of Adams [A2].

The question at the beginning of this section may now be updated:

Question 1. Does there exist a hyperbolic knot other than the figure-eight knot and the
two dodecahedral knots with hidden symmetries?

As pointed out in Sect. 8, if a hyperbolic manifold covers an orbifold with a rigid cusp
then the cusp parameter is in Q(

√
−1) or Q(

√
−3). The only knot complements with

this property that we know are the complements of the above three knots.

Question 1 ′ . Is there a knot other than one of the above three whose complement is
hyperbolic with cusp parameter in Q(

√
−1) or Q(

√
−3) ?

As described above, the dodecahedral knot groups are subgroups of a polyhedral
group, so they also answer the question studied by Y. W. Lee in [L1] and [L2]: can
a polyhedral group contain a knot group of finite index other than the figure-eight knot
group (which is in the polyhedral group PGL2O3 )? One can ask if these three knots are
the only examples of this phenomenon.

10. Further comments

10.1. We first discuss hyperbolic knot complements.

Question 2. When is the trace field equal to the cusp field for hyperbolic knot comple-
ments?

The only known examples where this fails are the two dodecahedral knots. They have
cusp field Q(

√
−3) and trace field Q(

√
−3,

√
5). Indeed, the cusp field is obvious. The

trace field certainly contains
√

5 because of the element of order 5 in (Γ+)(2) and is no
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bigger than Q(
√
−3,

√
5) because (Γ+)(2) can be generated by the three matrices

(

0 −1
1 0

)

,

(

0 −ω−1

ω (1 +
√

5)/2

)

,

(

0 −ω
ω−1 0

)

,

where ω = eπi/3 .

Question 3. Do hyperbolic knot complements always have integral traces?

We know no counterexamples. R. Riley has informed us that none of the examples
he has computed gives a counterexample. In many cases Bass’ theorem [Ba2], quoted
in the introduction, forces integral traces. Bass’ theorem does not apply to the knot 817

(this knot complement has a closed incompressible surface of genus 2, cf. [Lo]), but
Riley informs us that it nevertheless has integral traces. Note that, by Theorem 6.3, the
link complements C(p, 2q) with p = −4q and q an odd prime power have non-integral
traces. These chain links belong to a general class of links, called “star links” in [O],
which also includes knots. Thus the class of star knots might be a place to look for
counterexamples, but we doubt this.

If the answer to both questions 2 and 3 is positive for a particular knot complement other
than the figure-eight complement, then this knot complement has no hidden symmetries,
for if it did, then Proposition 4.4(a) would imply arithmeticity by the comments preceding
Question 1′.

In contrast to the situation for knot complements, it is easy to construct many 1-cusp
orbifolds with cusp field smaller than the invariant trace field. For example, take an
orbifold with two non-rigid cusps which are separated by a 2-sphere with three orbifold
points and perform Dehn filling of one of the cusps. This will not affect the cusp parameter
of the other one, so all the Dehn fillings will have the same cusp field, but their invariant
trace fields will differ. See [NR1] for more details.

10.2. We do not yet know an example of a cocompact Kleinian group Γ with invariant
quaternion algebra A(Γ) equal to the matrix algebra M2(k(Γ)), but they probably exist.

We have already seen an example of non-commensurable groups with the same A(Γ),
namely, π1W

′′(0, 6) is non-arithmetic but has A(Γ) = M2(Q(
√
−3)), the same as

PGL2O3. However, knot complement examples of this exist also. Namely, the knot
52 and the (−2, 3, 7)-pretzel knot both have invariant trace field equal to Q(θ) where
θ3−θ2+2θ−1 = 0, but they are non-commensurable because they have the same volume,
≈ 2.82812208, but different cusp volumes (cf. [HMW]; commensurable non-arithmetic
one-cusp orbifolds of the same volume must have the same cusp volume because they
have a mutual orbifold quotient—the commensurator). J. Weeks has pointed out that they
are cut-and-paste equivalent by cutting and pasting along an immersed geodesic thrice
punctured sphere.
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