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Abstract. An explanation is given for the initially surprising ubiquity of sep-
arating sets in normal complex surface germs. It is shown that they are quite
common in higher dimensions too. The relationship between separating sets
and the geometry of the metric tangent cone of Bernig and Lytchak is de-
scribed. Moreover, separating sets are used to show that the inner Lipschitz
type need not be constant in a family of normal complex surface germs of
constant topology.
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1. Introduction

Given a complex algebraic germ (X,x0), a choice of generators x1, . . . , xN of its
local ring gives an embedding of (X,x0) into (CN , 0). It then carries two induced
metric space structures: the “outer metric” induced from distance in CN and the
“inner metric” induced by arc-length of curves on X. In the Lipschitz category
each of these metrics is independent of choice of embedding: different choices give
metrics for which the identity map is a bi-Lipschitz homeomorphism. The inner
metric, which is given by a Riemannian metric off the singular set, is the one that
interests us most here. It is determined by the outer metric, so germs that are
distinguished by their inner metrics are distinguished by their outer ones.

These metric structures have so far seen much more study in real algebraic
geometry than in the complex algebraic world. In fact, until fairly recently conven-
tional wisdom was that bi-Lipschitz geometry would have little to say for normal
germs of complex varieties. For example, it is easy to see that two complex curve
germs with the same number of components are bi-Lipschitz homeomorphic (inner
metric). So for curve germs bi-Lipschitz geometry is equivalent to topology. The
same holds for outer bi-Lipschitz geometry of plane curves: two germs of complex
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curves in C2 are bi-Lipschitz homeomorphic for the outer metric if and only if
they are topologically equivalent as embedded germs [18, 12]. However, it has re-
cently become apparent that the bi-Lipschitz geometry of complex surface germs
is quite rich; for example, they rarely have trivial geometry (in the sense of being
bi-Lipschitz homeomorphic to a metric Euclidean cone). We give here an expla-
nation which shows that the same holds in higher dimensions too. The particular
bi-Lipschitz invariants we will discuss are “separating sets”.

Let (X,x0) be a germ of a k-dimensional semialgebraic set. A separating set
of (X,x0) (see Section 2) is a subgerm (Y, x0) ⊂ (X,x0) of dimension less than k
which locally separates X into two pieces A and B which are “fat” at x0 while Y
itself is “thin” (i.e., the k–dimensional densities at x0 of A and B are nonzero and
the (k − 1)–dimensional density at x0 of Y is zero).

There are trivial ways a separating set can occur—for example as the inter-
section of the components of a complex germ (X,x0) which is the union of two
irreducible components of equal dimension. The intersection of the two compo-
nents clearly separates X and it is thin because its real codimension is at least 2.
Fig. 1 illustrates schematically a codimension 1 example of a separating set. The
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Figure 1. Separating set

interesting question is whether such separating sets exist “in nature”—for isolated
singularities in particular.

For real algebraic singularities examples can be constructed (see [2]), but
they do not seem to arise very naturally. But for normal complex surface singu-
larities they had turned out to be surprisingly common: already the the simplest
singularities, namely the Kleinian surfaces singularities Ak = {(x, y, z) ∈ C3 :
x2 + y2 + zk+1 = 0}, have separating sets at the origin when k > 1 (see [4]). This
paper is devoted to the investigation of this phenomena in all complex dimensions
≥ 2. We restrict to isolated complex singularities.

Our first result (Theorem 3.1) is that if X is a weighted homogeneous complex
surface C3 with weights w1 ≥ w2 > w3 and if the zero set X ∩ {z = 0} of the
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variable z of lowest weight has more than one branch at the origin, then (X, 0) has
a separating set. This reproves that Ak has a separating set at the origin when
k > 1, and shows more generally that the same holds for the Brieskorn singularity

X(p, q, r) := {(x, y, z) ∈ C3 | xp + yq + zr = 0}

if p ≤ q < r and gcd(p, q) > 1.
It also proves that for t 6= 0 the singularity Xt from the Briançon-Speder

family [9]

Xt = {(x, y, z) ∈ C3 | x5 + z15 + y7z + txy6 = 0}
has a separating set at the origin. On the other hand, we show (Theorem 4.1) that
Xt does not have a separating set when t = 0. Thus the inner bi-Lipschitz type of
a normal surface germ is not determined by topological type, even in a family of
singularities of constant topological type (and is thus also not determined by the
resolution graph).

We also show (see Theorem 5.4) that if the tangent cone Tx0
X of an isolated

complex singularity (X,x0) has a non-isolated singularity and the non-isolated
locus is a separating set of Tx0

X, then (X,x0) has a separating set.
It follows, for instance (see [6]), that all quotient surface singularities C2/G

(with G ⊂ GL(2,C) acting freely on C2 \{0}) have separating sets except the ones
that are obviously conical (C2/µn with the group µn of n–th roots of unity acting
by multiplication) and possibly, among the simple singularities, E6, E7, E8 and
the Dn series. Moreover, for any k one can find cyclic quotient singularities with
more than k disjoint non-equivalent separating sets. Theorem 5.4 also easily gives
examples of separating sets for isolated singularities in higher dimension.

It is natural to ask if the converse to 5.4 holds, i.e., separating sets in (X,x0)
always correspond to separating sets in Tx0

X, but this is not so: the tangent cone
of the Briançon-Speder singularity Xt, which has a separating set for t 6= 0, is C2.
But in Theorem 5.7 we give necessary and sufficient conditions for existence of a
separating set in terms of the “metric tangent cone” Tx0X, the theory of which
was recently developed by Bernig and Lytchak [7].

Tx0
X is defined as the Gromov-Hausdorff limit as t → 0 of the result of

scaling the inner metric of the germ (X,x0) by 1
t . Another way of constructing

Tx0X, and the one we actually use, is as the usual tangent cone of a “normal re-
embedding” [8] of X (for a complex germ, such a normal re-embedding may only
exists after forgetting complex structure and considering (X,x0) as a real germ
[5]).

2. Separating sets

Let X ⊂ Rn be a k-dimensional rectifiable subset. Recall that the inferior and
superior k–densities of X at the point x0 ∈ Rn are defined by:

Θk(X,x0) = lim
ε→0+

inf
Hk(X ∩ εB(x0))

ηεk
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and

Θ
k
(X,x0) = lim

ε→0+
sup
Hk(X ∩ εB(x0))

ηεk
,

where εB(x0) is the n–dimensional ball of radius ε centered at x0, η is the volume
of the k–dimensional unit ball and Hk is k–dimensional Hausdorff measure in Rn.
If

Θk(X,x0) = θ = Θ
k
(X,x0) ,

then Θ is called the k–dimensional density of X at x0 (or simply k–density at xo).

Remark 2.1. Recall that if X ⊂ Rn is a semialgebraic (even subanalytic) subset,
then the above two limits are equal and the k–density of X is well defined for any
point of Rn. Moreover, the vanishing or non-vanishing of these densities is a bi-
Lipschitz invariant invariant, since a bi-Lipschitz homeomorphism clearly changes
them by a factor that is bounded by k and the Lipschitz constant. See [15].

Definition 2.2. Let X ⊂ Rn be a k-dimensional semialgebraic set and let x0 ∈ X
be a point such that the link of X at x0 is connected and the k–density of X at
x0 is positive. A (k− 1)–dimensional closed rectifiable subset Y ⊂ X with x0 ∈ Y
is called a separating set of X at x0 if (see Fig. 1)

• for some small ε > 0 the subset
(
εB(x0)∩X

)
\ Y has at least two connected

components A and B,
• the superior (k − 1)–density of Y at x0 is zero,
• the inferior k–densities of A and B at x0 are nonzero.

More generally, we need only require that the above is true locally, in the sense
that it holds after replacing X by the union of {x0} and a neighborhood of Y \{x0}
in X \ {x0}. For simplicity of exposition we will leave to the reader to check that
our results remain correct with this more general definition.

Proposition 2.3 (Lipschitz invariance of separating sets). Let X and Z be two
real semialgebraic sets. If there exists a bi-Lipschitz homeomorphism of germs
F : (X,x0) → (Z, z0) with respect to the inner metric, then X has a separating
set at x0 ∈ X if and only if Z has a separating set at z0 ∈ Z.

Proof. The result would be immediate if separating sets were defined in terms of
the inner metrics on X and Z. So we must show that separating sets can be defined
this way.

LetX ⊂ Rn be a connected semialgebraic subset. Consider the setX equipped
with the inner metric and with the Hausdorff measure HkX associated to this met-
ric. Let Y ⊂ X be a k-dimensional rectifiable subset. We define the inner inferior
and superior densities of Y at x0 ∈ X with respect to inner metric on X as follows:

Θk(X,Y, x0) = lim
ε→0+

inf
HkX(Y ∩ εBX(x0))

ηεk

and

Θ
k
(X,Y, x0) = lim

ε→0+
sup
HkX(Y ∩ εBX(x0))

ηεk
,
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where εBX(x0) denotes the closed ball in X (with respect to the inner metric)
of radius ε centered at x0. The fact that separating sets can be defined using the
inner metric now follows from the following proposition, completing the proof. �

Proposition 2.4. Let X ⊂ Rn be a semialgebraic connected subset. Let W ⊂ X
be a k-dimensional rectifiable subset and x0 ∈ X. Then, there exist two positive
constants κ1 and κ2 such that:

κ1Θk(X,W, x0) ≤ Θk(W,x0) ≤ κ2Θk(X,W, x0)

and

κ1Θk(X,W, x0) ≤ Θ
k
(W,x0) ≤ κ2Θ

k
(X,W, x0) .

Proof. If we used the outer metric instead of the inner metric in the definition of

Θk(X,W, x0) and Θk(X,W, x0) we’d just get Θ
k
(W,x0) and Θk(W,x0). Thus the

proposition follows immediately from the Kurdyka’s “Pancake Theorem” ([14],
[8]) which says that if X ⊂ Rn is a semialgebraic subset then there exists a

finite semialgebraic partition X =
⋃l
i=1Xi such that each Xi is a semialgebraic

connected set whose inner metric and outer (Euclidean) metric are bi-Lipschitz
equivalent. �

The following Theorem shows that the germ of an isolated complex singu-
larity which has a separating set cannot be metrically conical, i.e., bi-Lipschitz
homeomorphic to the Euclidean metric cone on its link.

Theorem 2.5. Let (X,x0) be a (n + 1)-dimensional metric cone whose base is a
compact connected Lipschitz manifold (possibly with boundary). Then, X does not
have a separating set at x0.

Proof. Let M be an n-dimensional compact connected Lipschitz manifold with
boundary. For convenience of exposition we will suppose that M is a subset of the
Euclidean sphere Sk−1 ∈ Rk centered at 0 and with radius 1 and X the cone over
M with vertex at the origin 0 ∈ Rk. Suppose that Y ⊂ X is a separating set, so
X \Y = A∪B with A and B open in X \Y ; the n–density of Y at 0 is equal to zero
and the inferior (n+1)–densities of A and B at 0 are unequal to zero. In particular,
there exists ξ > 0 such that these inferior densities of A and B at 0 are bigger
than ξ. For each t > 0, let ρt : X ∩ tDk → X be the map ρt(x) = 1

tx, where tDk

is the ball about 0 ∈ Rk of radius t. Denote Yt = ρt(Y ∩ tDk), At = ρt(A ∩ tDk)
and Bt = ρt(B ∩ tDk). Since the n–density of Y at 0 is equal to zero, we have:

lim
t→0+

Hn(Yt) = 0 .

Also, since the inferior densities of A and B at 0 are bigger than ξ, we have that
Hn+1(At) > ξ and Hn+1(Bt) > ξ for all sufficiently small t > 0.

Let r be a radius such that X ∩rDk has volume ≤ ξ/2 and denote by X ′, A′t,
B′t, Y

′
t the result of removing from each of X, At, Bt, Yt the intersection with the

interior of the ball rBk. Then X ′ is a Lipschitz (n+ 1)–manifold (with boundary),
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A′t and B′t subsets of (n + 1)–measure > ξ/2 separated by Yt of arbitrarily small
n–measure.

The following lemma then gives the contradiction to complete the proof. �

Lemma 2.6. Let X ′ be a (n+1)-dimensional compact connected Lipschitz manifold
with boundary. Then, for any ξ > 0 there exists ε > 0 such that if Y ′ ⊂ X ′ is a
n-dimensional rectifiable subset with Hn(Y ′) < ε, then X ′ \ Y ′ has a connected
component A of (n + 1)–measure exceeding Hn+1(X ′) − ξ/2 (so any remaining
components have total measure < ξ/2).

Proof. If X ′ is bi-Lipschitz homeomorphic to a ball then this follows from standard
isoperimetric results: for a ball the isoperimetric problem is solved by spherical caps
normal to the boundary (Burago and Maz’ja [10] p. 54, see also Hutchins [13]).
The isoperimetric problem is often formulated in terms of currents, in which case
one uses also that the mass of the current boundary of a region is less than or equal
to the Hausdorff measure of the topological boundary ([11] 4.5.6 or [16] Section
12.2).

Let {Ti}mi=1 be a cover of X ′ by subsets which are bi-Lipschitz homeomorphic
to balls and such that

Ti ∩ Tj 6= ∅ ⇒ Hn+1(Ti ∩ Tj) > 0.

Without loss of generality we may assume

ξ/m < min{Hn+1(Ti ∩ Tj) | Ti ∩ Tj 6= ∅} .

Since Ti is bi-Lipschitz homeomorphic to a ball there exists εi satisfying the
conclusion of this lemma for ξ/m. Let ε = min(ε1, . . . , εm). So if Y ′ ⊂ X ′ is an
n–dimensional rectifiable subset such that Hn(Y ′) < ε, then for each i the largest
component Ai of Ti \ Y ′ has complement Bi of measure < ξ/2m.

We claim
⋃m
i=1Ai is connected. It suffices to show that

Ti ∩ Tj 6= ∅ ⇒ Ai ∩Aj 6= ∅ .

So suppose Ti ∩ Tj 6= ∅. Then Bi ∪Bj has measure less than ξ, which is less than
Hn(Ti ∩ Tj), so Ti ∩ Tj 6⊂ Bi ∪Bj . This is equivalent to Ai ∩Aj 6= ∅.

Thus there exists a connected component A of X ′\Y ′ which contains
⋃m
i=1Ai.

Its complement B is a subset of
⋃m
i=1Bi and thus has measure less than ξ/2. �

3. Separating sets in normal surface singularities

Theorem 3.1. Let X ⊂ C3 be a weighted homogeneous algebraic surface with respect
to the weights w1 ≥ w2 > w3 and with an isolated singularity at 0. If

(
X \ {0}

)
∩

{z = 0} is not connected, then X has a separating set at 0.

Example. This theorem applies to the Brieskorn singularity

X(p, q, r) := {(x, y, z) ∈ C3 | xp + yq + zr = 0}
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if p ≤ q < r and gcd(p, q) > 1. In particular it is not metrically conical. This
was known for a different reason by [3]: a weighted homogeneous surface singu-
larity (not necessarily hypersurface) whose two lowest weights are distinct is not
metrically conical.

Proof of Theorem 3.1. Since X is weighted homogeneous, the intersection X ∩ S5

is transverse and gives the singularity link. By assumption,
(
X ∩ S5

)
∩ {z = 0}

is the disjoint union of two nonempty semialgebraic closed subsets Ã and B̃ ⊂(
X ∩ S5

)
∩ {z = 0}. Let M̃ be the conflict set of Ã and B̃ in X ∩ S5, i.e.,

M̃ := {p ∈ X ∩ S5 | d(p, Ã) = d(p, B̃)} ,
where d(·, ·) is the standard metric on S5 (euclidean metric in C3 gives the same

set). Clearly, M̃ is a compact semialgebraic subset and there exists δ > 0 such

that d(M̃, {z = 0}) > δ. Let M = C∗M̃ ∪ {0} (the closure of the union of C∗–
orbits through M̃). Note that the C∗–action restricts to a unitary action of S1,

so the construction of M̃ is invariant under the S1–action, so M = R∗M̃ , and
is therefore 3–dimensional. It is semi-algebraic by the Tarski-Seidenberg theorem.
We will use the weighted homogeneous property of M to show dim(T0M) ≤ 2,
where T0M denotes the tangent cone of M at 0, from which will follow that M
has zero 3–density. In fact, we will show that T0M ⊂ {x = 0, y = 0}.

Let T : M̃ × [0,+∞)→M be defined by:

T ((x, y, z), t) = (t
w1
w3 x, t

w2
w3 y, tz).

Clearly, the restriction T |
M̃×(0,+∞)

: M̃ × (0,+∞)→M \{0} is a bijective semial-

gebraic map. Let γ : [0, ε)→M be a semianalytic arc; γ(0) = 0 and γ′(0) 6= 0. We
consider φ(s) = T−1(γ(s)) for all s 6= 0. Since φ is a semialgebraic map and M is

compact, lim
s→0

φ(s) exists and belongs to M̃ × {0}. For the same reason, lim
s→0

φ′(s)

also exists and is nonzero. Therefore, the arc φ can be extended to φ : [0, ε) →
M̃ × [0,+∞) such that φ(0) ∈ M̃ × {0} and φ′(0) exists and is nonzero. We can
take the [0,∞) component of φ as parameter and write φ(t) = ((x(t), y(t), z(t), t).
Then γ(t) = (tw1/w3x(t), tw2/w3y(t), tz(t)), so

lim
t→0+

γ(t)

t
=

(
lim
t→0

t
w1
w3

t
x(t) , lim

t→0

t
w2
w3

t
y(t) , lim

t→0
z(t)

)
= (0, 0, z(0)) .

This is a nonzero vector (note |z(0)| > δ) in the set {x = 0, y = 0}, so we obtain
that

T0M ⊂ {x = 0, y = 0}.
Since M is a 3-dimensional semialgebraic set and dim(T0M) ≤ 2, we obtain

that the 3-dimensional density of M at 0 is equal to zero ([15]).
Now, we have the following decomposition:

X \M = A ∪B ,
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where Ã ⊂ A, B̃ ⊂ B, A and B are C∗–invariant and A ∩ B = ∅. Since A
and B are semialgebraic sets, the 4–densities density4(A, 0) and density4(B, 0) are
defined. We will show that these densities are nonzero. It is enough to prove that
dimR(T0A) = 4 and dimR(T0B) = 4. Let Γ ⊂ A be a connected component of
A ∩ {z = 0}. Note that Γ̄ = Γ ∪ {0} is a complex algebraic curve. We will show
that T0A contains the set {(x, y, v) | (x, y, 0) ∈ Γ̄, v ∈ C} if w1 = w2 (note that
Γ̄ is the line through (x, y, 0) in this case) or either the y–z or the x–z plane if
w1 < w2.

Given a smooth point (x, y, 0) ∈ Γ and v ∈ C, we may choose a smooth arc
γ : [0, ε) → A of the form γ(t) = (γ1(t), γ2(t), tmγ3(t)) with (γ1(0), γ2(0)) = (x, y)
and γ3(0) = v. Then, using the R∗–action, we transform this arc to the arc φ(t) =
tjγ(t) with j chosen so jw3 +m = jw2. Now φ(t) = (tjw1γ1(t), tjw2γ2(t), tjw2γ3(t))
is a path in A starting at the origin. Its tangent vector ρ at t = 0,

ρ = lim
t→0+

φ(t)

tjw2
,

is ρ = (x, y, v) if w1 = w2 and ρ = (0, y, v) if w1 > w2. If w1 > w2 and y = 0 then
the same argument, but with j chosen with jw3 + m = jw1, gives ρ = (x, 0, v).
This proves our claim and completes the proof that T0A has real dimension 4. The
proof for T0B is the same. �

4. The Briançon-Speder example

For each t ∈ C, let Xt = {(x, y, z) ∈ C3 | x5 + z15 + y7z + txy6 = 0}. This
Xt is weighted homogeneous with respect to weights (3, 2, 1) and has an isolated
singularity at 0 ∈ C3.

Theorem 4.1. Xt has a separating set at 0 if t 6= 0 but does not have a separating
set at 0 if t = 0.

Proof. As already noted, for t 6= 0 Theorem 3.1 applies, so Xt has a separating
set. So from now on we take t = 0. Denote X := X0. In the following, for each
sufficiently small ε > 0, we use the notation

Xε = {(x, y, z) ∈ X | ε|y| ≤ |z| ≤ 1

ε
|y|}.

We need a lemma.

Lemma 4.2. Xε is metrically conical at the origin with connected link.

Proof. Note that the lemma makes a statement about the germ of Xε at the origin.
We will restrict to the part of Xε that lies in a suitable closed neighborhood of
the origin.

Let P : C3 → C2 be the orthogonal projection P (x, y, z) = (y, z). The re-
striction PX of P to X is a 5-fold cyclic branched covering map branched along
{(y, z) | z15 + y7z = 0}. This is the union of the y–axis in C2 and the seven curves
y = ζz2 for ζ a 7–th root of unity. These seven curves are tangent to the z–axis.
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Let

Cε = {(y, z) ∈ C2 | ε|y| ≤ |z| ≤ 1

ε
|y|}.

Notice that no part of the branch locus of PX with |z| < ε is in Cε. In particular,
if D is a disk in C2 of radius < ε around 0, then the map PX restricted to Xε has
no branching over this disk. We choose the radius of D to be ε/2 and denote by
Y the part of part of Xε whose image lies inside this disk. Then Y is a covering of
Cε ∩D, and to complete the proof of the lemma we must show it is a connected
covering space and that the covering map is locally K–bi-Lipschitz for a fixed K.

Since it is a Galois covering with group Z/5, to show it is a connected cover it
suffices to show that there is a closed curve in Cε∩D which does not lift to a closed
curve in Y . Choose a small constant c ≤ ε/4 and consider the curve γ : [0, 1] →
Cε ∩D given by γ(t) = (ce2πit, c). A lift to Y has x–coordinate (c15 + c8e14πit)1/5,
which starts close to c8/5 (at t = 0) and ends close to c8/5e(14/5)πi (at t = 1), so it
is not a closed curve.

To show that the covering map is locally K–bi-Lipschitz, we note that locally
Y is the graph of the implicit function (y, z) 7→ x given by the equation x5 + z15 +
y7z = 0, so it suffices to show that the derivatives of this implicit function are
bounded. Implicit differentiation gives

∂x

∂y
= −7y6z

5x4
,

∂x

∂z
= −15z14 + y7

5x4
.

It is easy to see that there exists λ > 0 such that

|15z14 + y7| ≤ λ|z|4, |y7| ≤ λ|z14 + y7| and |15z14 + y7| ≤ λ|z14 + y7|,
for all (y, z) ∈ Cε ∩D. We then get∣∣∣∣∂x∂y

∣∣∣∣5 =
75|y30z5|

55|z14 + y7|4|z|4
≤ 75

55
λ4|y2z| < 75λ4ε3

5523

and ∣∣∣∣∂x∂z
∣∣∣∣5 =

|15z14 + y7|5

55|z14 + y7|4|z|4
≤ λ5

55
,

completing the proof. �

We now complete the proof of Theorem 4.1. Let us suppose that X has a
separating set. Let A,B, Y ⊂ X be subsets satisfying:

• for some small ε > 0 the subset [εB(x0) ∩ X] \ Y is the union of relatively
open subsets A and B,

• the 3-dimensional density of Y at 0 is equal to zero,
• the 4-dimensional inferior densities of A and B at 0 are unequal to zero.

Set

N ε = {(x, y, z) ∈ C3 | |z| ≤ ε|y| or |y| ≤ ε|z|}.
For each subset H ⊂ C3 we denote

Hε = H ∩ [C3 \N ε].
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We are going to prove that Θ4(X∩N ε)→ 0 as ε→ 0. We recall the following
statement of K. Kurdyka and G. Raby (Theorem 3.8 in [15]).

Proposition 4.3. Let Z be a subanalytic subset of Rn of dimension k. Given y ∈ Ȳ ,
let

C1 . . . , Cl

be the components of the tangent cone TyY . Let n1, . . . , nl ∈ N be the multiplicities
of Z at q along C1, . . . , Cl respectively. Then

Θk(Z, y) =

l∑
i=1

ni
volk(Cj ∩B(0, 1))

σk

where σk denotes the volume of the k-dimensional Euclidean ball.

The tangent cone of X ∩N ε at 0 is contained in the following set

T ε1 = {(0, y, z) ∈ C3 : |z| ≤ ε|y|} and T ε2 = {(0, y, z) ∈ C3 : |y| ≤ ε|z|}.

Since H4(T εi ∩B(0, 1))→ 0 as ε→ 0 (i = 1, 2), by the above proposition, it follows
that Θ4(X ∩N ε)→ 0 as ε→ 0.

Let 0 < 2δ < min{Θ4(A, 0),Θ4(B, 0)}. Since Θ4(X ∩N ε) → 0 as ε → 0, we
take ε > 0 small enough such that

Θ4(X ∩N ε, 0) < δ.

In particular, for all r > 0 small enough, we have

H4(X ∩N ε ∩B(0, r)) ≤ δr4. (4.1)

Then,

Θ4(A, 0) = lim inf
r→0+

(
H4(Aε ∩B(0, r))

r4
+
H4(A ∩N ε ∩B(0, r))

r4

)
and, by (4.1),

2δ < Θ4(A, 0) ≤ Θ4(Aε, 0) + δ,

hence Θ4(Aε, 0) > δ. In a similar way, we show that Θ4(Bε, 0) > δ. These facts
are enough to conclude that Y ε is a separating set of Xε. But in view of Lemma
4.2 this contradicts Theorem 2.5. �

5. Metric Tangent Cone and separating sets

Given a closed and connected semialgebraic subset X ⊂ Rm equipped with the
inner metric dX , for any point x ∈ X, we denote by TxX the metric tangent cone
of X at x; see Bernig and Lytchak [7]. Recall that the metric tangent cone of a
metric space X at a point x ∈ X is defined as the Gromov-Hausdorff limit

TxX = lim
t→0+

(B(x, t),
1

t
dX)
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where 1
t dX is the distance on X divided by t. Bernig and Lytchak show that for

a semialgebraic set the metric tangent cone exists and is semialgebraic. More-
over, a semialgebraic bi-Lipschitz homeomorphism of germs induces a bi-Lipschitz
equivalence of their metric tangent cones (with the same Lipschitz constant).

Recall that a connected semialgebraic set X ⊂ Rm is called normally embed-
ded if the inner dX and the outer de metrics on X are bi-Lipschitz equivalent.

Theorem 5.1 ([8]). Let X ⊂ Rm be a connected semialgebraic set. Then there exist a

normally embedded semialgebraic set X̃ ⊂ Rq and a semialgebraic homeomorphism

p : X̃ → X which is bi-Lipschitz with respect to the inner metric. X̃, or more

precisely the pair (X̃, p), is called a normal embedding of X.

The following result relates the metric tangent cone of X at x and the usual
tangent cone of the normally embedded set.

Theorem 5.2 ([7, Section 5]). Let X ⊂ Rm be a closed and connected semialgebraic

set and x ∈ X. If (X̃, p) is a normal embedding of X, then Tp−1(x)X is bi-Lipschitz
homeomorphic to the metric tangent cone TxX.

Theorem 5.3. If (X1, x1) and (X2, x2) are germs of semialgebraic sets which are
semialgebraically bi-Lipschitz homeomorphic with respect to the induced outer met-
ric, then their tangent cones Tx1X1 and Tx2X2 are semialgebraically bi-Lipschitz
homeomorphic.

Proof. This is proved in [5]. Without the conclusion that the bi-Lipschitz home-
omorphism of tangent cones is semi-algebraic it is immediate from Bernig and
Lytchak [7], since, as they point out, the usual tangent cone (which they call the
subanalytic tangent cone) is the metric cone with respect to the outer (Euclidean)
metric. �

Recall that a partition {Xi}k1 of X is called an L-stratification if each Xi is
a Lipschitz manifold and for each Xi and for each pair of points x1, x2 ∈ Xi there
exist two neighborhoods U1 and U2 and a bi-Lipschitz homeomorphisms h : U1 →
U2 such that for each Xj one has h(Xj∩U1) = Xj∩U2. An L-stratification is called
canonical if any other L-stratification can be obtained as a refinement of this one.
In [1] it is proved, by a slight modification of Parusinski’s Lipschitz stratification
[17], that any semialgebraic set admits a canonical semialgebraic L-stratification.
The collection of k-dimensional strata of the canonical L-stratification of X is
called the k-dimensional L-locus of X. By Theorem 5.2, the metric tangent cone
of a semialgebraic set admits a canonical L-stratification.

Let M ⊂ Rn be a semialgebraic subset of the unit sphere centered at the
origin 0 ∈ Rn. Let C(M) be the straight cone over M with the vertex at the origin
0 ∈ Rn. We say that a subset is a separating subcone of C(M) if:

• it is a straight cone over a closed subset N ⊂ M with vertex at the origin
0 ∈ Rn;
• M \N is not connected.
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Example. Consider the Brieskorn singularity defined by:

X(a1, . . . , an) := {(z1, . . . , zn) ∈ Cn | za11 + · · ·+ zann = 0, ,

with a1 = a2 = a ≥ 2 and ak > a for k > 2. The tangent cone at the origin is the
union of the a complex hyperplanes {z1 = ξz2} with ξ an a-th root of −1. These
intersect along the (n − 2)–plane V = {z1 = z2 = 0}. Thus, V is a separating
subcone of the tangent cone T0X(a1, . . . , an). The following theorem shows that
V is the tangent cone of a separating set in X(a1, . . . , an) (a special case of this is
again the Ak surface singularity for k > 1).

Theorem 5.4. Let X be an n–dimensional closed semialgebraic set and let x0 ∈ X
be a point such that the link of X at x0 is connected and the n–density of X at
x0 is positive. Any semialgebraic separating subcone of codimension ≥ 2 in the
tangent cone Tx0

X contains the tangent cone of a separating set of X at x0.

Proof. As usual we can suppose that the point x0 is the origin. Recall rB(0) means
the ball of radius r about 0. Observe that the function

f(r) = dHausdorff(T0X ∩ rB(0), X ∩ rB(0))

is semialgebraic, continuous and f(0) = 0. By the definition of the tangent cone
one has f(r) = arα + o(rα) for some a > 0 and α > 1.

For a semialgebraic set W ⊂ RN with 0 ∈ W , let U c,αW be the α-horn like
neighborhood of W , defined by:

U c,αW = {x ∈ RN | de(x,W ) < c‖x‖α}.
For some c > 0 and sufficiently small r > 0 one has X ∩ rB(0) ⊂ U c,αT0X

∩ rB(0).

We fix this r and replace X by X ∩ rB(0), so X ⊂ U c,αT0X

Let Y ⊂ T0X be a semialgebraic separating subcone of codimension ≥ 2. We
then have a partition

T0X = A ∪ Y ∪B ,
where A and B are disjoint open subsets of T0X of positive n–density. We can
assume Ā∩B̄ = Y (if not, replace A by A∪(Y \(Ā∩B̄))). Then U c,αT0X

= U c,αA ∪U
c,α
B ,

so X ⊂ U c,αA ∪ U c,αB . Let Z = U c,αA ∩ U c,αB and Y ′ = X ∩ Z. Then X \ Y ′ is the

disjoint union of the open sets A′ := (U c,αA ∩X) \ Z and B′ := (U c,αB ∩X) \ Z.

Now T0U
c,α
A = A and T0U

c,α
B = B, so T0Z ⊂ A ∩ B = Y so T0Y

′ ⊂ Y . It

follows that T0(A′) = A and T0(B′) = B, so A′ and B′ have positive n–density.
Thus ∂Y ′ separates X into open sets of which at least two have positive n-density.
Moreover ∂Y ′ is an (n−1)–dimensional semialgebraic set (if c is chosen generically)
and, since its tangent cone has dimension ≤ (n − 2), its (n − 1)–density is zero
([15]). So ∂Y ′ is a separating set. �

Remark 5.5. The Briançon-Speder example Xt presented in Section 4 has tangent
cone equal to the yz–plane, which is nonsingular and thus does not have separating
subcone in codimension 2, but Xt nevertheless has a semialgebraic separating set
at 0 if t 6= 0.
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Proposition 5.6. Let X be a n-dimensional closed semialgebraic set and let x ∈ X
be a point such that the link of X at x is connected and the n-density of X at
x is positive. If X is normally embedded and has a semialgebraic separating set
at x, then the tangent cone TxX contains a semialgebraic separating subcone of
codimension ≥ 2.

Proof. Suppose that X has a separating set Y ⊂ X at x. Let A,B ⊂ X such that

a. A ∩B = {x};
b. X \ Y = A \ {x} ∪B \ {x};
c. the n-densities of A and B at x are positive.

Recall the following notation:

SxZ = {v ∈ TxZ | |v| = 1}.

So C(SxZ) = TxZ. Since the (n − 1)-density of Y at x is equal to zero, SxY has
codimension at least two in SxX. Let us show that SxX \SxY is not connected. If
SxX \ SxY were connected, then (SxA \ SxY )∩ (SxB \ SxY ) 6= ∅. Let v ∈ (SxA \
SxY ) ∩ (SxB \ SxY ). Since v ∈ SxA and v ∈ SxB, there exist two semialgebraic
arcs γ1 : [0, r)→ A and γ2 : [0, r)→ B such that

|γi(t)− x| = t and |γi(t)− x| = t ∀ t ∈ [0, r)

and

lim
t→0+

γ1(t)− x
t

= v = lim
t→0+

γ2(t)− x
t

.

Since γ1(t) and γ2(t) belong to different components of X \ Y , any arc in X
connecting γ1(t) to γ2(t) meets Y . That is why

dX(γ1(t), γ2(t)) ≥ dX(γ1(t), Y ).

Since X is normally embedded, we conclude that

lim
t→0+

de(γ1(t), Y )

t
= 0.

Thus, v ∈ SxY .

Finally, the n-densities of TxA \TxY and TxB \TxY are positive (e.g., by [7,
Proposition 1.2]), so the proof is complete. �

Theorem 5.7. Let X be a closed semialgebraic set and let x ∈ X be a point such
that the link of X at x is connected. Then X has a semialgebraic separating set
at x if, and only if, the metric tangent cone TxX is separated by an L-locus of
codimension ≥ 2.

Proof. This follows directly from Proposition 5.5 and Proposition 5.7. �
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