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1. Introduction

This paper describes “Snap”, a computer program for computing arithmetic in-
variants of hyperbolic 3-manifolds. Snap is based on Jeff Weeks’s program “Snap-
Pea” [41] and the number theory package “Pari” [5]. SnapPea computes the hy-
perbolic structure on a finite volume hyperbolic 3-manifold numerically (from its
topology) and uses it to compute much geometric information about the manifold.
Snap’s approach is to compute the hyperbolic structure to very high precision, and
use this to find an exact description of the structure. Then the correctness of the
hyperbolic structure can be verified, and the arithmetic invariants of Neumann and
Reid [27] can be computed. Snap also computes high precision numerical invariants
such as volume, Chern-Simons invariant, eta invariant, and the Borel regulator. As
sources of examples both “Snap” and “SnapPea” include the Hildebrand-Weeks
census of all 4, 815 orientable cusped manifolds triangulated by up to seven ideal
simplices (see [11]), and the Hodgson-Weeks census of 11, 031 low-volume closed
orientable manifolds having no geodesic of length less than 0.3 (see [13]). (“Snap-
Pea” also includes a census of nonorientable cusped manifolds.) Snap is available
from http://www.ms.unimelb.edu.au/˜snap.

2. Ideal Triangulations

SnapPea and Snap represent an orientable, finite volume, hyperbolic 3-manifold
as a set of ideal tetrahedra in H3 with face pairings. Identifying the sphere at
infinity of H3 with C̃ = C ∪ {∞}, the orientation preserving congruence class of a
tetrahedron is given by the cross ratio of its vertices; oriented tetrahedra, whose
vertices are numbered consistently with the orientation, correspond to cross ratios
with positive imaginary part. After choosing orderings for the vertices of each
tetrahedron, the tetrahedra are given by complex numbers {z1, . . . , zn}, called their
shape parameters, lying in the upper half plane. Changing the vertex ordering of a
tetrahedron may replace zj by 1− z−1

j or (1− zj)−1.
For the result of gluing these tetrahedra to represent a hyperbolic 3-manifold,

the following gluing conditions must be satisfied:
(1) Around each edge of the complex, the sum of the dihedral angles must be

2π, and the edge must be glued to itself without translation.
(2) Each cusp (neighborhood of an ideal vertex) must either (i) have a horo-

spherical torus cross section, or (ii) admit a compactification by adding a
closed geodesic around which there is an angle of 2π and no translation.

Remark 2.1. A probably more familiar situation is that of gluing the faces of a
compact polytope to obtain a closed geometric manifold. In this case the translation
condition is unnecessary since it is automatically satisfied.
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If every cusp has a horospherical torus cross section, the glued complex is a
complete hyperbolic 3-manifold. If some cusps require compactification, the result
is a Dehn filling of the glued complex. Ideal triangulations are described in much
more detail in [39].

The above conditions are equivalent to a set of equations in the zi which we
shall describe shortly. First we need to define a kind of “complex dihedral angle”
for the edges of an ideal tetrahedron. For each edge of an ideal tetrahedron, there
is a loxodromic transformation, having the edge as axis, and taking one of the two
adjacent faces onto the other. The logarithmic edge parameter of the edge is r+ iθ,
where r is the translation distance of the transformation, and θ is the angle through
which it rotates. For oriented tetrahedra, with consistently numbered vertices, we
can take θ ∈ (0, π). The corresponding edge parameter is er+iθ. If the tetrahedron
has shape parameter z, each edge parameter is one of z, 1− z−1, or (1− z)−1.

Condition 1 is that, for each edge of the 3–complex, the sum of the logarithmic
edge parameters is 2πi. Condition 2 can be similarly expressed; the exact set of
terms which are added depends on whether the cusp is complete or filled. We call
these the logarithmic gluing equations of the ideal triangulation.

When SnapPea is given a 3-manifold topologically, as a set of face pairings for
ideal tetrahedra, and perhaps also Dehn fillings for some of the cusps, it attempts
to solve the logarithmic gluing equations numerically. A solution is called geometric
if all the zi lie in the upper half plane. Corresponding ideal tetrahedra can then be
glued together, along some of the faces, to give an ideal fundamental polyhedron
for the manifold; the remaining face pairings give a faithful representation of its
fundamental group into PSL(2,C).

If not all of the zi lie in the upper half plane the solution may still have a
meaningful interpretation. Regard any quadruple of points in C̃ as a tetrahedron.
Call it geometric if the cross ratio lies in the upper half plane, flat if it is real and not
equal to 0 or 1, degenerate if it is 0, 1, ∞ or undefined (i.e. if two or more vertices
coincide), and negatively oriented if it is in the lower half plane. A solution without
degenerate tetrahedra certainly gives a representation of the fundamental group
of the manifold into PSL(2,C). However, the representation need not however be
faithful and may not have a discrete image.

It follows from the existence of canonical ideal cell decompositions of finite vol-
ume hyperbolic manifolds [9] that every such 3-manifold can be represented using
only geometric and flat tetrahedra: decompose each cell into tetrahedra, then match
differing face triangulations using flat tetrahedra (if necessary). It is conjectured
that in fact only geometric tetrahedra are needed in this case.

For closed hyperbolic 3-manifolds the situation is less clear. Certainly every
such manifold can be obtained topologically by Dehn filling a suitable hyperbolic
link complement. This means that any solution of the gluing equations will give
a representation of the fundamental group into PSL(2,C). Unless, however, the
solution is geometric, it cannot be guaranteed that the representation is faithful or
discrete.

What is important, for present purposes, is that the gluing conditions can also
be given as a set of polynomial equations, with rational coefficients, in the zi. The
gluing equations are obtained from the logarithmic gluing equations by exponenti-
ation. These equations state that certain products of edge parameters (of the form
zi, 1 − z−1

i , and (1 − zi)−1) equal 1. Multiplying through by suitable powers of zi
and (1− zi) we obtain polynomial equations. Note that the gluing equations only
specify that the angle sum, around each edge or filled cusp, is a multiple of 2π. In
terms of numerical computation however, it is straightforward to check if a solution
actually gives an angle sum of precisely 2π.
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Mostow-Prasad rigidity [22] implies that the solution set of the gluing equations
is 0-dimensional. It follows that the zi in any solution are algebraic numbers:
compare Macbeath’s proof of Theorem 4.1 in [16]. For example, the complement
in S3 of the figure 8 knot has an ideal triangulation by two tetrahedra with shape
parameter

z1 = z2 =
1
2

+
√

3
2
i.

This is actually the shape parameter of a regular ideal tetrahedron.
We can also assume that the entries of a set of PSL(2,C) matrices for the fun-

damental group are algebraic: position the fundamental polyhedron such that one
tetrahedron has three of its vertices at 0, 1, and ∞. The remaining vertices will
be algebraic, as will entries of the face pairing transformation matrices. The other
matrices, being products of these, will also have algebraic entries.

3. Computation with Algebraic Numbers

In order to give an exact representation of a 3-manifold we clearly need a way to
represent algebraic numbers. We give a brief discussion, referring to [6] and [34] for
more details. The most obvious way to represent an algebraic number is to give a
polynomial with rational coefficients, whose roots include the number in question,
and somehow specify which root is intended. The latter can be done by giving the
root numerically to sufficient precision. The roots can also be sorted and given by
number.

Carrying out the field operations with algebraic numbers given in this way is
slightly non-trivial: a “resultant trick” enables us, given two numbers, to compute
a polynomial whose roots include the sum of the two numbers. We must then
determine which root is the sum, perhaps by computing the latter numerically to
sufficient precision. Differences, products and quotients can be similarly computed.

In fact we do not use quite this approach. We specify one number, τ say, in the
above manner, then represent other numbers as Q-polynomials in τ . Let f be the
minimum polynomial of τ and let n be the degree of f . Then the field Q(τ) is a
degree n extension of Q, and each element of Q(τ) has a unique representation as
a Q-polynomial in τ of degree at most n− 1.

Field operations in Q(τ) are now very easy: sum and difference computations
are obvious; a product can be computed directly then reduced to a polynomial
of degree at most n − 1 by subtracting a suitable multiple of f(τ). A quotient
g1(τ)/g2(τ) is computed by using the Euclidean algorithm to find polynomials a, b
such that af + bg2 = 1, whence b(τ) = g2(τ)−1.

Pari [5] implements this kind of arithmetic: the expression mod(g, f), called in
Pari a polymod, represents g(τ) where τ is a root of f . Note that it is not necessary
to specify which root is chosen to do arithmetic with polymods, since a change of
root is a field isomorphism.

Of course if we want to add α, β belonging to different number fields we must
either fall back on the first approach, or find a new primitive element, σ such that
Q(σ) ⊇ Q(α, β), and re-express both α and β in terms of σ. For the most part,
however, our approach is to first find a number field which contains all the numbers
we are interested in and then carry out the required computations inside this field.

Our aim then, given a 3-manifold with shape parameters {z1, . . . , zn}, is to find
an irreducible polynomial f ∈ Z[x] with root τ such that z1, . . . , zn ∈ Q(τ). In
outline what we do is this:

(1) compute each zi to high precision, typically around 50 decimal places;
(2) use an algorithm, called the LLL algorithm, to guess a polynomial in Z[x]

vanishing on each zi;
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(3) check if all the zi belong to the field generated by one of them, also using
the LLL algorithm.

Step 1 is done by Newton’s method, using the solution provided by SnapPea as a
starting point. Usually the check in Step 3 is successful. When it is not we try small
rational linear combinations of the zi to find a primitive element for Q(z1, . . . , zn).
A side effect of Step 3 is that we obtain an expression for each of the zi in terms of
the primitive element.

Since the LLL algorithm is fundamental we describe a little further what it is
and how it is applied in Steps 2 and 3 above. Most of what follows is described
much more precisely in [6] and [34].

The LLL algorithm is an algorithm which finds a “good” basis for an integer
lattice with respect to a given inner product. A good basis is one which consists
of short and approximately orthogonal elements. Roughly, how it does this is to
apply Gram-Schmidt “orthogonalization” to the starting basis, but modified so that
only nearest integer multiples of basis elements are added or subtracted. Whenever
an element is obtained which is significantly shorter than the preceeding ones, it
is moved in front of them, and Gram-Schmidt is started again from there. The
resulting basis always contains elements not too far from being shortest in the
lattice. We emphasize that the result is dependent on the inner product: the lattice
in our case is always simply the integer lattice Zn; it is by varying the inner product
that we obtain useful results.

Now suppose that z approximates an algebraic number τ . To find an integer
polynomial, of degree at most m, vanishing on τ we look for one which is small
on z. In fact we use LLL to find a short vector in Zm+1 with respect to the inner
product given by the quadratic form1:

(a0, . . . , am) 7→ a2
0 + . . .+ a2

m +N |a0 + a1z + a2z
2 + . . .+ amz

m|2,

where N is a large number, around 101.5d if z is given to d decimal places. If
a0 + a1z + a2z

2 + . . .+ amz
m is not zero, to approximately the precision to which

z is known, the term N |a0 + a1z+ a2z
2 + . . .+ amz

m|2 will make (a0, . . . , an) long.
Thus if LLL finds any short vectors, it has most likely found (a0, . . . , am) such that
a0 + a1τ + a2τ

2 + . . . + amτ
m = 0. By factoring this polynomial, and identifying

which irreducible factor has τ as a root, we can determine τ ’s minimum polynomial.
Of course, if τ ’s minimum polynomial has degree greater than m, this whole process
is doomed to failure. Assuming however that we have chosen m sufficiently large,
this application of LLL completes Step 2 above.

For Step 3 we need to check if α, algebraic, approximated by w, belongs to Q(τ).
We use the LLL algorithm to find a small vector in Zn+1 with respect to the inner
product given by the quadratic form:

(a, a0, . . . , an−1) 7→ a2 + a2
0 + . . .+ a2

n−1 +N |aw + a0 + a1z + . . .+ an−1z
n−1|2,

where N is as before and n is the degree of τ ’s minimum polynomial. As before,
if LLL finds a short vector, it most likely has found (a, a0, . . . , an−1) such that
aα+ a0 + a1τ + a2τ

2 + . . .+ an−1τ
n−1 = 0. Since n is the degree of τ ’s minimum

polynomial, a should not be zero; so we obtain an expression for α in terms of
τ . On the other hand, if aw + a0 + a1z + a2z

2 + . . . + an−1z
n−1 is not zero, to

approximately the precision to which z and w are known, it is likely that α 6∈ Q(τ).
Refinements of these procedures can be found in [6] and [34].

1A slightly different quadratic form is actually used, namely the a2
0 term is omitted if z is real

and the a2
0 and a2

1 terms are omitted if z is nonreal. The reason is pragmatic: LLL initializes by
doing a true Gram-Schmidt reduction of the form, and the resulting basis-change is the same to
within machine precision for the modified form, but is given by a much simpler formula.
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We can give a rough analysis of the above use of the LLL algorithm. Denote by
b(a0, . . . , am) the above quadratic form that is reduced by the LLL algorithm to find
a good integer polynomial for z. One can easily check that this bilinear form has
determinant approximately equal to N or N2 according as z is real or non-real. (In
this discussion, “approximately equal to” will mean “equal to a bounded multiple
of.” The actual determinants are very close to N and (Im zN)2 respectively.)
In our applications z is complex, but we will analyze the algorithm without this
assumption, so let k = 1 or 2 according as z is real or non-real. Putting N = 10P ,
we can write

det(b) ∼ 10kP .
Now crude estimates suggest that a “random” quadratic form of determinant D on
Z
m+1 will have minimum on Zm+1 −{0} approximately equal to D1/(m+1). In our

case:
min{b(a0, . . . , am) : (a0, . . . , am) ∈ Zm+1 − {0}} ∼ 10kP/(m+1).

Since the coefficients ai contribute their squares to this minimal b(a0, . . . , am),
they will be bounded by approximately 10kP/(2m+2). Thus if we expect coefficients
bounded by 10c we need c less than kP/(2m+ 2) and hence

P ≈ 2(m+ 1)c/k

or larger. Conversely, once P is chosen, c is bounded by about Pk/2(m+ 1).
The minimal b(a0, . . . , am) also includes a contribution 10P l2 with

l = a0 + a1z + · · ·+ amz
m,

so we also have 10P |l|2 ∼ 10kP/(m+1) so

|l| ∼ 10P (k−m−1)/2(m+1).

This is expected even if the original τ that z approximates does not satisfy an
integer polynomial in degree m. Thus to detect that the polynomial that we find
is a good one, we should use somewhat more than P (m + 1 − k)/2(m + 1) ≈ P/2
digits of precision.

Snap adjusts P so that it uses d = 2P/3 digits of precision. Since k = 2 in Snap’s
applications, this means we can hope Snap will find polynomials with coefficients
up to about 103d/2(m+1). Snap’s default (which can be changed at any time) is to
work with degree 16 and precision d = 50, so we can hope to find polynomials with
coefficients bounded by about 104.5, and expect to find them if the coefficients are
significantly smaller than this.

We can roughly quantify the likelihood of finding “false positives” in these ap-
plications of LLL. Given n random complex numbers ζ1, . . . , ζn in the unit disk,
the number of complex numbers of the form a1ζ1 + · · ·+ anζn in the unit disk with
|ai| ≤ 10c is approximately 10(n−2)c, so the total area covered by a disk of radius
10−p around each will be approximately 10(n−2)c−2pπ if p is significantly larger than
(n − 2)c. Thus the probability of one of these linear combinations a1ζ1 + . . . anζn
being “accidentally” within 10−p of 0 is about 10(n−2)c−2p. With a machine preci-
sion of 10−d and coefficients up to 10c we should take p = d − c, so the likelihood
of a false positive becomes about 10nc−2d. With Snap’s defaults (n = 17, d = 50)
described above and c = 4.5, this is about 10−23.

As we increase both precision and degree, the running time of the algorithm
goes up. We were unable to find any estimates of the expected running time of
the LLL algorithm in the literature, but experiment suggests that typical running
times using Pari 2.03’s implementation on a Sparc 5 machine satisfy:

running time (sec) ≈ 3.7× 10−7(precision)2.6(degree)2.7,

for degrees between 10 and 20 and precisions between 80 and 180.
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Finally, note that whatever choice we make for n in Step 2, it is the degree of the
minimum polynomial found which governs n in Step 3: often this will be smaller
and the LLL computations in Step 3 will run correspondingly faster.

Snap follows the procedure outlined above to find a number field containing
all the shape parameters of a given 3-manifold, and an exact expression for each
shape in terms of a primitive element for that field. Snap’s “verify” function then
substitutes the exact shapes back into the gluing equations to check that they are
satisfied. Here is sample output for the figure 8 knot complement.

Shapes (Numeric)
shape(1) = 0.50000000000000000000000 + 0.86602540378443864676372*i
shape(2) = 0.50000000000000000000000 + 0.86602540378443864676372*i

Shape Field
min poly: x^2 - x + 1
root number: 1
numeric value of root: 0.50000000000000000000000 + 0.8660254037844
3864676372*i

Shapes (Exact)
shape(1) = x 1.33737 E-67
shape(2) = x 5.24561 E-68

Gluing Equations
Meridians:
1, 0; 0, 1; 0 -> 1 : 9.27301 E-68
Longitudes:
0, -2; 0, 4; 2 -> 1 : 0.E-57
Edges:
2, -1; -1, 2; 0 -> 1 : 1.29822 E-67
-2, 1; 1, -2; 0 -> 1 : 1.29822 E-67

The root number says which root of the minimum polynomial is used as a prim-
itive element for the field. The numbering scheme used will be described when we
discuss canonical representations of number fields in C. The small number following
each exact shape (eg. 1.33737 E-67) gives the accuracy of the originally computed
numerical shape. It is included only as a sanity check.

Finally we have the gluing equations. As we have already noted, the gluing
equations come down to the requirement that certain products of terms of the form
zi, 1 − z−1

i and (1 − zi)−1 give 1. This is equivalent to certain products of powers
of zi, 1 − zi and −1, giving 1: see for example [32]. Reading each gluing equation
horizontally we have powers of z1, . . . , zn, powers of 1−z1, . . . , 1−zn, and the power
of −1, followed by their product in exact arithmetic. This is followed after a colon
by the precision to which the logarithmic gluing equation has been verified. Since
the gluing equation is exactly correct, the logarithmic gluing equation is known to
be correct up to an integer multiple of 2πi, so it would suffice to verify it to much
lower precision than is actually done.

Since this output shows that the logarithmic gluing equations have been verified
exactly, and the shape parameters were in the upper half plane, signifying correctly
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oriented simplices, it proves2 the existence of a hyperbolic structure with an ideal
triangulation with the given simplex shapes.

The meridian and longitude referred to in the printout are curves, in a cross sec-
tion of the cusp, which give a basis for the first homology group of that cross section.
Typically SnapPea uses shortest curve and next shortest independent curve, in the
Euclidean structure on a horospherical cusp cross section, as the meridian and
longitude respectively. (For knot and link complements, SnapPea uses the conven-
tional terminology: where a meridian means a curve bounding a disk transverse to
the knot or link, while a longitude means a curve that runs parallel to the knot or
to a component of the link and is null-homologous in S3 minus the knot or link
component.) Corresponding to each meridian or longitude is a gluing equation for
the cusped hyperbolic structure. The gluing equations for a Dehn filled manifold
include one equation for each filled cusp, corresponding to the filling curves.

4. Commensurability Invariants

Two finite volume, orientable, hyperbolic 3-manifolds are said to be commensu-
rable if they have a common finite-sheeted cover. Subgroups Γ,Γ′ ⊂ PSL(2,C) are
commensurable if there exists g ∈ PSL(2,C) such that g−1Γg ∩ Γ′ is a finite index
subgroup of both g−1Γg and Γ′. Therefore, by Mostow rigidity, finite volume, ori-
entable, hyperbolic 3-manifolds are commensurable if and only if their fundamental
groups are commensurable as subgroups of PSL(2,C).

4.1. The Invariant Trace Field. Let Γ be the group of covering transformations
of such a manifold, and let Γ̃ denote the preimage of Γ in SL(2,C). The traces
of elements of Γ̃ generate a number field Q(trΓ) called the trace field of Γ. That
Q(trΓ) is a number field follows from the observation that Γ is finitely generated
and, by conjugating suitably (as described at the end of section 2) we can assume
that the generators have algebraic entries. The trace field Q(trΓ) is almost, but
not quite, a commensurability invariant of Γ: see [37].

The invariant trace field k(Γ) of Γ may be defined as the intersection of all the
fields Q(trΓ′), as Γ′ varies over all finite index subgroups of Γ. Defined in this way
it is clear that k(Γ) is a commensurability invariant of Γ. What is less clear is that
it is ever non-trivial. We have, however, the following.
Theorem 4.1 (Reid [37]). k(Γ) = Q({tr2(γ) | γ ∈ Γ}) = Q(trΓ(2)), where Γ(2) is
the finite index subgroup of Γ generated by squares {γ2 | γ ∈ Γ}.

We have seen how it is possible, given a set of generators for a field, to guess a
primitive element for that field along with its corresponding minimum polynomial.
In order to compute the trace and invariant trace fields of Γ we must find finite sets
of generators for the two fields.
Theorem 4.2. Let Γ̃ ⊂ SL(2,C) be finitely generated by {g1, . . . , gn}. The trace,
tr(gi1 . . . gik), of an element of Γ̃ can be expressed as a polynomial with rational
coefficients in the traces: tr(gi), 1 ≤ i ≤ n, tr(gigj), 1 ≤ i < j ≤ n, and (if n > 2)
the trace of one triple product of generators, e.g. tr(g1g2g3). Also, tr(gi1 . . . gik) is
an algebraic integer if tr(gi), 1 ≤ i ≤ n, and tr(gigj), 1 ≤ i < j ≤ n are algebraic
integers.

2The referee raised the concern that the numerical solutions that Snap uses in this argument
might be spurious — i.e., although the minimal polynomial evaluated at the given “numerical root”

is vanishingly small, there may nevertheless actually be no root of the minimal polynomial near
the given “numerical root”. This is not an issue. To quote from the manual for the pari libraries:

“The algorithm used is a modification of A. Schönhage’s remarkable root-finding algorithm, due
to and implemented by X. Gourdon. Barring bugs, it is guaranteed to converge and to give the
roots to the desired accuracy.” See A. Schönhage, Equation Solving in Terms of Computational
Complexity, Proc. ICM Berkeley, CA, Vol 1, (AMS, 1987), 131–153, for a discussion.
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Proof. For the trace relations used in the following, see Magnus [17]. Let K be the
field generated over Q by the traces tr(gi), 1 ≤ i ≤ n, and tr(gigj), 1 ≤ i < j ≤ n.
Let Pijk = tr(gigjgk)+tr(gigkgj) and Qijk = tr(gigjgk).tr(gigkgj). Then tr(gigjgk)
and tr(gigkgj) are the roots of z2−Pijkz+Qijk = 0. Fricke’s Lemma (in [17]) implies
that Pijk and Qijk are integer polynomials in the tr(gi) and tr(gigj), hence they
are in K. Writing ∆(gi, gj , gk) for the discriminant P 2

ijk − 4Qijk it is clear that
for any extension K1 of K, tr(gigjgk) ∈ K1, if and only if both tr(gigjgk) and
tr(gigkgj) ∈ K1, if and only if

√
∆(gi, gj , gk) ∈ K1.

By [17], Lemma 2.3, for any i, j, k and i′, j′, k′ in {1, . . . , n},√
∆(gi, gj , gk) ·

√
∆(gi′ , gj′ , gk′) ∈ K.

Therefore
√

∆(gi, gj , gk) ∈ K1 if and only if
√

∆(gi′ , gj′ , gk′) ∈ K1. If we now put
K1 = K(tr(g1g2g3)) it follows from the above observations that tr(gigjgk) ∈ K1 for
all i, j, k in 1, . . . , n.

We show next, by induction on k ≥ 3, that K1 contains the traces of all k–fold
products of the generators gi. We have just shown that this is so for k = 3. Suppose
then that k > 3 and K1 contains the traces of all (k−1)–fold products of generators.
Then for each product g′ = gi1 . . . gik−2 , K1 contains all traces, and all traces of
products of pairs, of elements in the set {g1, . . . , gn, g

′}. Moreover it contains at
least one triple product, namely tr(g1g2g3). By the above argument it follows that
K1 contains the traces of all triple products of elements of this set. In particular,
K1 contains the trace of g′gigj for each g′ as above, and i, j in {1, . . . , n}. Since
these are all the k–fold products of the gi, this proves the first statement.

Finally, if the tr(gi) and tr(gigj) are all algebraic integers, Pijk and Qijk are
also. Therefore tr(gigjgk) and tr(gigkgj), being roots of a monic polynomial with
algebraic integer coefficients, are again integral. The same induction argument
then shows that all traces of k–fold products of the gi are in the ring of integers of
K1. �

Theorem 4.2 enables us to compute the trace field of Γ =<g1, . . . , gn>. There is
no particularly obvious set of generators for Γ(2) which we can use to compute the
invariant trace field of Γ. Fortunately, Corollary 3.2 of [12] tells us that Q(trΓ(2)) =
Q(trΓSQ) where ΓSQ =<g2

1 , . . . , g
2
n>, as long as tr(gi) 6= 0, for i = 1, . . . , n.

Snap computes trace fields and invariant trace fields in much the same way
that it computes a field containing all the shape parameters. It first computes
high precision numeric expressions for a set of generators for the group of covering
transformations of a manifold. Then it uses LLL to find a primitive element in
terms of which the appropriate set of traces can be expressed.

For example: (6, 1)–Dehn filling on the figure 8 knot complement yields a closed
hyperbolic 3-manifold with volume 1.284485300468 . . .. Its group of covering trans-
formations is <g1, g2> with

g1 ≈
(
−1.135368 + 0.572291i 0.0
0.702328 + 0.354014i −0.702328− 0.354014i

)
,

g2 ≈
(
−1.226699 + 1.467712i 2.689343 + 1.705870i
−0.265154 + 0.168189i 0.0

)
.

Snap prints the invariant trace field as follows:
Invariant trace field
minumum polynomial: x^3 + 2*x - 1
root number: 2
numerical value of root: -0.2266988257582018 + 1.467711508710224*i
signature: [1, 1]
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discriminant: -59
...

It also gives exact expressions for the traces used to generate this field:

Invariant trace field generators
tr(g1^2) = mod(-x^2 - x - 1, x^3 + 2*x - 1)
tr(g2^2) = mod(x^2 - 2*x - 1, x^3 + 2*x - 1)
tr(g1^2g2^2) = mod(-x + 2, x^3 + 2*x - 1)

This is all very well but there is not much point in computing invariants, like
the invariant trace field, if we cannot compare two and decide whether they are the
same or different. Simple invariants of a number field include its degree (dimension
over Q), which is equal to the degree of the minimum polynomial of any primitive
element, and its signature (r1, r2), where r1 is the number of real roots, and r2 is
the number of conjugate pairs of non-real roots of a minimum polynomial.

We also have the discriminant. The algebraic integers of a number field Q(τ)
form a free Z–submodule of Q(τ) of rank [Q(τ) : Q]. The bilinear map (x, y) 7→
tr(xy) gives a nondegenerate inner product on Q(τ) as a Q–vector space. Given any
basis of the ring of integers we form the matrix of inner products of basis elements,
taken pairwise. The determinant of this is in Z and is independent of the choice of
basis. It is called the discriminant of the number field.

In fact we can construct a canonical minimum polynomial which is a complete
isomorphism invariant for number fields. The so-called T2 norm of a number field
is given by the the inner product

(x, y) 7→
n∑
i=1

σi(x)σi(y),

where σ1, . . . , σn are the embeddings of the number field Q(τ) into C, and the bar
denotes ordinary complex conjugation. This gives a positive definite inner product
on Q(τ), and we can enumerate integers of Q(τ) in order of their T2 norm. The set
of integers of smallest norm that generate Q(τ) is canonical. Their minimum poly-
nomials include one which is lexicographically first, and this serves as a canonical
minimum polynomial. See [6] for further discussion.

The trace fields we compute are not just abstract number fields, they are ac-
tually subfields of C. Complex conjugate subfields arise from complex conjugate
representations in PSL(2,C) of the same fundamental group, and just correspond
to reversing the orientation of a hyperbolic 3-manifold. Otherwise different sub-
fields mean essentially different values of the invariant. Since several roots of the
canonical minimum polynomial might generate the same subfield of C, we sort the
roots into some fixed order and take the first which gives the required subfield. This
gives us a canonical root number for the subfield3.

For example: in the Hodgson-Weeks census of low-volume, closed, hyperbolic
3-manifolds, the manifolds denoted m010(-1,3) and s594(-4,3) have isomorphic in-
variant trace fields, with canonical minimum polynomial x4 + x2 − x+ 1, but they
have different canonical root numbers, namely 1 and 2 respectively. Therefore their
invariant trace fields differ and they are not commensurable.

3 In fact, we make an ordered list of the real roots followed by the complex roots having positive
imaginary part; these are arranged in increasing order of real part and increasing absolute value

of imaginary part (if real parts are equal). We then try each real root in turn (if the field is real)

or each complex root followed by its complex conjugate (if the field is non-real). Finally, we assign
the root a number: if the root has non-negative real part we give its position in the list, otherwise

we give the negative of the number for its conjugate.
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4.2. The invariant quaternion algebra. Let K be a field of characteristic zero.
A quaternion algebra over K is a simple central algebra of dimension 4 over K.
These are discussed in detail in [40]. Let (a, b) be a pair of nonzero elements of K.
Up to isomorphism, there is a unique quaternion algebra A containing elements i, j
satisfying i2 = a, j2 = b, and ij = −ji, and such that {1, i, j, ij} form a basis for
A as a K–vector space. Such a pair (a, b) is called a Hilbert symbol for A. Every
quaternion algebra over K has a Hilbert symbol, but the symbol is far from being
unique.
A is a division algebra if and only if the equation aX2 + bY 2 − Z2 = 0 has no

non-trivial solutions for X,Y, Z ∈ K. If A is not a division algebra, it is isomorphic
with M(2,K), the algebra of all 2 by 2 matrices over K (and conversely, the latter
is not a division algebra for any K). Over R there are just two quaternion algebras:
the “usual” Hamiltonian quaternion algebra, which has Hilbert symbol (−1,−1)
and is a division algebra, and M(2,R). Over C there is just M(2,C).

As before, let M = H
3/Γ be a finite volume, orientable hyperbolic 3-manifold.

Let Γ̃(2) be the preimage in SL(2,C) of the group generated by squares of elements
of Γ ⊂ PSL(2,C). The invariant quaternion algebra A(Γ) of Γ, is the k–subalgebra
of M(2,C) generated by Γ̃(2), where k denotes the invariant trace field of Γ.

Theorem 4.3 (See [12]). Let g, h be non-commuting elements of Γ(2) with tr(g) 6=
±2. Then A(Γ) has Hilbert symbol

(tr(g2)− 2, tr([g, h])− 2),

where [g, h] denotes the commutator ghg−1h−1.

Snap computes a Hilbert symbol for the invariant quaternion algebra of a 3-
manifold by finding g, h ∈ Γ(2) as above, and computing exact expressions for
tr(g2)− 2 and tr([g, h])− 2. The non-uniqueness of the Hilbert symbol means that
this is not, by itself, enough to tell us whether or not two 3-manifolds have the
same quaternion algebra.

The remainder of this section describes how the classification of quaternion al-
gebras over a number field gives a complete invariant which we can compute. We
fix a number field K, and quaternion algebra A over K with Hilbert symbol (a, b).

Theorem 4.4 (See [40]). Let K and A be as above. The isomorphism class of A is
determined by the (finite) set of real and finite places of K at which A is ramified.
The total number of places, real and finite, at which A ramifies, is even.

Recall that a place of a number field K is an equivalence class of absolute values
|.| : K → R. A place is called real (resp. complex) if the completion of K with
respect to |.| is isomorphic with R (resp. C). The real (resp. complex) places of
K are in one-to-one correspondence with embeddings σ : K → R (resp. conjugate
pairs of non-real embeddings σ : K → C).

A place is called finite if it arises from a valuation v : K∗ = K − {0} → Z,
i.e. there is a real number λ ∈ (0, 1) such that |x| = λv(x) for all x ∈ K∗. These
valuations, in turn, are in one-to-one correspondence with prime ideals of ZK , the
ring of integers of K: if p is a prime ideal of ZK , then for each x ∈ K∗, let vp(x) = r
where r is the unique integer such that x ∈ pr − pr+1.

For a fixed place of K, let σ : K → K denote the embedding of K into its
completion. Then A⊗σ K is a quaternion algebra over K. A is said to be ramified
at σ if A⊗σK is a division algebra. In general, over a complete field with absolute
value (e.g. R), there exists at most one quaternion division algebra.

Computing the real ramification of A is straightforward: A ⊗σ R has Hilbert
symbol (σ(a), σ(b)). Therefore A is ramified at σ if and only if both σ(a) and σ(b)
are negative.
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For the remainder of this section we consider the problem of computing the finite
ramification of A. Slightly different notation is convenient. Let p ⊂ ZK be a prime
ideal and let Kp denote the corresponding completion of K. We regard K as a
subfield of Kp, omitting any explicit mention of an embedding. Finally, we write
Ap for A⊗Kp.
Proposition 4.5. Let K, A and (a, b) be as above. Let p 6 | 2 be a prime ideal of
ZK . Then Ap is a division algebra if and only if none of a, b and −ab are squares
in Kp. If a, b and −ab all have even p-adic valuation, at least one of them is a
square.

Proof. See Lemma II.1.10 and the table following it in [40]. (Note that Vigneras
uses the notation {a, b} for our Hilbert symbol (a, b).) �

This proposition has two useful consequences. Firstly, that the finite ramification
of A is restricted to the finite set of primes p dividing 2ab. Secondly, for primes p not
dividing 2, the question of whether A is ramified reduces to determining whether
certain c ∈ K are squares in Kp. Proposition 4.7 settles this question for us. The
proof uses Hensel’s Lemma [15, page 42], which is valid for any prime p ⊂ ZK , and
corresponding absolute value |x| = λvp(x). Here, ZK refers to the closure of ZK in
Kp.
Lemma 4.6 (Hensel). Let f(X) be a polynomial in ZK [X]. Let x0 be an element
of ZK such that |f(x0)| < |f ′(x0)2|, where f ′ denotes the formal derivative of f .
Then f has a root x in ZK such that |x− x0| < 1.
Proposition 4.7. For each c ∈ K∗ and prime p ⊂ ZK there exists w ∈ K∗ such
that cw2 ∈ ZK and vp(cw2) ∈ {0, 1}. Suppose now p 6 | 2. Then c is a square in Kp

if and only if vp(cw2) = 0 and cw2 projects to a square in the finite field ZK/p.

Proof. Let w1 ∈ ZK be the denominator of c. Then cw2
1 ∈ ZK . By the Chinese

Remainder Theorem, we can find an element u ∈ K∗ such that vp(u) = −1 while
vq(u) ≥ 0 for all prime ideals q 6= p. Then w = w1u

m, where m is the integer part
of vp(cw2

1)/2, has the required property.
Let c′ = cw2. Let f(X) = X2 − c′. If vp(c′) = 0 and c′ projects to a square

in ZK/p we can lift a square root to obtain x0 ∈ ZK such that f(x0) ∈ p while
f ′(x0) = 2x0 6∈ p. Lemma 4.6 then implies that c′ is a square in Kp.

Conversely, if c′ = x2 for some x ∈ Kp, vp(c′) = 0 and x projects to a square
root of the projection of c′ in ZK/p. �

We turn now to the case p | 2. Recall that Ap is a division algebra if and only
if the equation aX2 + bY 2 − Z2 = 0 has no non-trivial solution for X,Y, Z ∈ Kp.
Denote by e > 0 the p-adic valuation of 2, i.e. e = vp(2), or equivalently, |2| = λe.
(This e is in fact the ramification index of the field extension K/Q at p.) We omit
the easy proof of the following lemma.
Lemma 4.8. Let X,X ′ ∈ Kp and suppose |X| ≤ 1 and |X − X ′| ≤ λk for some
non-negative integer k. Then |X2 −X ′2| ≤ λmin{k+e,2k}.

Multiplying a and b by suitable squares if necessary, by the first part of Propo-
sition 4.7, we can assume a, b ∈ ZK and vp(a), vp(b) ∈ {0, 1}.
Proposition 4.9. Let a, b ∈ ZK be such that vp(a), vp(b) ∈ {0, 1}. Let R be a finite
set of representatives for the ring ZK/pe+3, where e = vp(2). The equation

(1) aX2 + bY 2 − Z2 = 0

has a solution for X,Y, Z ∈ Kp, if and only if there exist elements X ′, Y ′, Z ′ ∈ R
such that |aX ′2 + bY ′

2 − Z ′2| ≤ λ2e+3 and max{|X ′|, |Y ′|, |Z ′|} = 1.
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Proof. Let (X,Y, Z) be a solution of (1) in Kp. Multiplying through, if necessary,
by a suitable power of a uniformizing element π with vp(π) = 1, we can assume
X,Y, Z ∈ ZK and max{|X|, |Y |, |Z|} = 1. Since ZK is dense in ZK , and R is λe+3-
dense in ZK , we can choose X ′, Y ′, Z ′ ∈ R such that |X −X ′|, |Y − Y ′|, |Z −Z ′| ≤
λe+3. By Lemma 4.8, |aX ′2 + bY ′

2 − Z ′2| ≤ λ2e+3.
Conversely, let X ′, Y ′, Z ′ ∈ R be such that |aX ′2 + bY ′

2 − Z ′2| ≤ λ2e+3 and
max{|X ′|, |Y ′|, |Z ′|} = 1. If |X ′| = 1 then |2aX ′| ≥ λe+1, and therefore |aX ′2 +
bY ′

2 − Z ′2| < |2aX ′|2. Regarding aX ′2 + bY ′
2 − Z ′2 as a polynomial in X ′ alone,

by Lemma 4.6 there exists X ∈ ZK such that aX2 + bY ′
2 − Z ′2 = 0. The same

argument applies if |Y ′| = 1 or |Z ′| = 1. Since at least one of the three cases must
hold, the result follows. �

Propositions 4.5, 4.7 and 4.9 reduce the task of computing the finite ramification
of a quaternion algebra over a number field to a finite number of steps. We remark
that the details of these computations are readily handled by Pari. In particular,
Pari has functions for factoring algebraic numbers and ideals into primes, and for
computing valuations. The uniformizing element and the element u, invoked in the
proof of Proposition 4.7, are constituent parts of Pari’s way of representing a prime
ideal (and are thus readily available).
Remark 4.10. For an invariant quaternion algebra A = A(Γ), the calculation of
finite ramification can sometimes be simplified by using the following observation
from [10]. Assume that all traces of elements in Γ̃ are algebraic integers, and
let g, h be non-commuting loxodromic elements of Γ̃(2). Then any prime p which
ramifies the quaternion algebra A must divide tr([g, h]) − 2, where [g, h] denotes
the commutator ghg−1h−1.

4.3. Arithmeticity. Finally we describe the “arithmetic” construction of Kleinian
groups of finite co-volume. Let A be a quaternion algebra over a number field K.
The integers of A, i.e. elements of A which have a monic minimum polynomial with
integral coefficients over K, do not in general form a subring of A. The analogous
role in A, to that of ZK in K, is now played by an order of A. An order O of A is
a rank 4 ZK-submodule of the set of integers of A, containing 1A, and closed as a
subring of A. Orders always exist but are not generally unique. The units O1 of O
form a multiplicative subgroup. For each real or complex place σ of K, σ induces
a map of A into H, M(2,R) or M(2,C). If K has precisely one complex place, and
every real place is ramified (i.e. maps A into H), then the image of O1 in M(2,C)
is a discrete subgroup of SL(2,C) of finite co-volume. This group is said to be
derived from a quaternion algebra. A subgroup Γ of SL(2,C) is arithmetic if it is
commensurable with one derived from a quaternion algebra. The K and A of the
construction can be recovered as the invariant trace field, and invariant quaternion
algebra respectively, of Γ.
Remark 4.11. This is not really the definition of arithmeticity; there is a much
more general definition in the context of lattices in semi-simple Lie groups. It is a
result of Borel that the above construction yields all the arithmetic subgroups of
SL(2,C).

A result of Reid [36] (see also [38], [12]), shows that a discrete subgroup Γ of
SL(2,C) is arithmetic if and only if the following conditions are satisfied:

(1) The invariant trace field k = Q(trΓ(2)), has exactly one complex place.
(2) A(Γ) is ramified at every real place of k.
(3) Γ has integer traces (which is equivalent to trΓ(2) ⊆ Zk).

This enables us to determine whether or not hyperbolic 3-manifolds are arithmetic.
(See Tables 2 and 3 for some examples.)
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Arithmetic subgroups of SL(2,C) are commensurable if and only if they have
the same invariant quaternion algebra. Therefore the arithmetic manifolds grouped
together in Table 3 are commensurable. Non-arithmetic manifolds with the same
invariant trace field, quaternion algebra and integrality or otherwise of traces, may
still be incommensurable. It is work in progress to find a computable, complete
commensurability invariant for the non-arithmetic case.
Example 4.12. The paper [2] describes an interesting family of hyperbolic “twins”
— pairs of non-homeomorphic closed hyperbolic 3-manifolds with the same volume.
These examples are obtained by Dehn filling on the manifold denoted m009 in Snap-
Pea’s notation; this is the once-punctured torus bundle over S1 with monodromy

given by the matrix
[
3 2
1 1

]
. We use the geometric choice of basis for homology of

the boundary torus consisting of shortest geodesic and next shortest independent
geodesic on a horospherical torus cross section. Then the Dehn fillings m009(p, q)
and m009(−p, q) give non-homeomorphic closed manifolds of equal hyperbolic vol-
ume, for each pair of relatively prime integers (p, q), except for the 8 non-hyperbolic
Dehn fillings (±3, 1), (±2, 1), (±1, 1), (0, 1), and (1, 0).

In Problem 3.60(H) of [14], Pzrzytycki asked if these pairs are commensurable.
Using Snap, we find that these pairs of manifolds generally have the isomorphic
invariant trace fields, but have different invariant quaternion algebras so are not
commensurable. However, there is one pair, m009(5, 1) and m009(−5, 1), which
are arithmetic manifolds of volume 1.8319311883544380 . . . with the same invariant
quaternion algebra, hence are commensurable. Table 1 shows some arithmetic
data for the lowest volume twins. (The descriptions of invariant trace field and
quaternion algebras are explained in section 8 below.)

5. Chern-Simons Invariant and Eta Invariant

The eta-invariant η(M) and the Chern-Simons invariant cs(M) are geometrically
defined invariants of an hyperbolic 3-manifold M . These invariants often take
rational values, but are conjecturally “usually” transcendental (a precise conjecture
is in [29]). Snap computes these invariants to high precision. The Chern-Simons
invariant is also computed (to lower precision) by SnapPea. In the following two
subsections we say in more detail what these invariants are and how Snap computes
them.

In the versions4 we consider, the eta-invariant η(M) is a real invariant while the
Chern-Simons invariant cs(M) is defined modulo 1

2 . Moreover, the Chern-Simons
invariant is determined by the eta-invariant: cs(M) is simply 3

2η(M) (mod 1
2 ).

Why do we bother with cs(M), given that it is immediately determined by
η(M)? A first reason is that cs(M) is somewhat easier to compute. Secondly,
cs(M) also has algebraic significance; it is closely tied to the Bloch invariant, an
algebraic/number-theoretic invariant which we describe in the next section.

A less significant reason is that cs(M) multiplies by degree in coverings, so it is a
tool for commensurability questions. However, the behaviour of η(M) for coverings
is also well understood (and related to other interesting invariants, see e.g., [1, 23]).

5.1. Chern-Simons Invariant. The Chern-Simons invariant cs(M) is defined for
any compact (4k − 1)-dimensional Riemannian manifold M and is an obstruction
to conformal immersion of M in Euclidean space [4]. It is the integral of a certain

4There are two commonly used normalizations of Chern-Simons invariant in the literature
related by cs(M) = 1

2π2 CS(M). Although the invariants are usually defined for compact M we

allow cusps, see below.
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Manifold
Volume

Homology Invariant trace field Quaternion algebra Int/Ar

m009( 4, 1)
1.4140610441653916

Z/6 x3 − x2 + 1
[1, 1] (2)

(5, x− 2)
[1]

1/1

m009(-4, 1)
1.4140610441653916

Z/10 x3 − x2 + 1
[1, 1] (-2)

(19, x− 3)
[1]

1/1

m009( 5, 1)
1.8319311883544380

Z/2 + Z/4 x2 + 1
[0, 1] (1)

(2, x+ 1)(5, x+ 2)
[ ]

1/1

m009(-5, 1)
1.8319311883544380

Z/2 + Z/6 x2 + 1
[0, 1] (1)

(2, x+ 1)(5, x+ 2)
[ ]

1/1

m009(-1, 2)
1.8435859723266779

Z/6 x5 − 2x4 − 2x3 + 4x2 − x+ 1
[3, 1] (-4)

(2, x2 + x+ 1)(5, x+ 1)
[1,2]

1/0

m009( 1, 2)
1.8435859723266779

Z/2 x5 − 2x4 − 2x3 + 4x2 − x+ 1
[3, 1] (4)

[1,2] 1/0

m009(-3, 2)
1.9415030840274678

Z/10 x5 − x4 − 2x3 − x2 + 2x+ 2
[3, 1] (4)

(2, x)(19, x+ 2)
[2,3]

1/0

m009( 3, 2)
1.9415030840274678

Z/2 x5 − x4 − 2x3 − x2 + 2x+ 2
[3, 1] (-4)

(2, x)(2, x3 + x2 + 1)
[2,3]

1/0

m009( 6, 1)
2.0624516259038381

Z/10 x5 − x4 + x3 + 2x2 − 2x+ 1
[1, 2] (-2)

(2, x+ 1)(19, x+ 9)
(2, x3 + x2 + 1) [1]

1/0

m009(-6, 1)
2.0624516259038381

Z/14 x5 − x4 + x3 + 2x2 − 2x+ 1
[1, 2] (2)

(2, 1 + x)
[1]

1/0

m009(-5, 2)
2.1340163368014022

Z/14 x5 − 3x3 − 2x2 + 2x+ 1
[3, 1] (4)

(71, x− 11)
[1,3]

1/0

m009( 5, 2)
2.1340163368014022

Z/6 x5 − 3x3 − 2x2 + 2x+ 1
[3, 1] (-4)

(2)(5, x− 2)
[1,3]

1/0

Table 1. A family of pairs of closed manifolds with equal volume

(4k − 1)-form that is defined in terms of curvature. (More generally, the Chern-
Simons invariant is an invariant of a connection on a manifold and our cs(M) is
the Chern-Simons invariant for the Riemannian connection on the tangent bundle
of M).

For hyperbolic 3-manifolds Meyerhoff [18] extended the definition of cs(M) to
allow M to have cusps. The point is that if M ′ is a compact manifold obtained by
Dehn filling M then cs(M ′) is naturally the sum of a term that varies analytically
on hyperbolic Dehn filling space and a discontinuous summand (− 1

2π times the sum
of torsions of the geodesics added by Dehn filling), see [32] and [42]. So one defines
cs(M) as the value of the analytic term at the complete hyperbolic structure on M .

This leads to an invariant cs(M) of a hyperbolic 3-manifold M in R/ 1
2Z. If M is

closed the Chern-Simons invariant is well defined modulo 1, but Snap and SnapPea
still only compute modulo 1

2 . This is no real loss, since the Chern-Simons invariant
of a closed manifold M modulo 1 can also be computed from the first homology of
M together with the eta-invariant η(M), both of which Snap can also compute.

Another significance of cs(M) for a hyperbolic 3-manifold is that it has natural
analytic relation to vol(M). In fact vol(M) + 2π2i cs(M) is a natural complexi-
fication of vol(M) and the formulae one uses to compute cs(M) give vol(M) as
well.

The method of computation used by Snap and SnapPea is as follows. Recall
that these programs compute using ideal triangulations. Let M be a cusped hy-
perbolic 3-manifold with ideal triangulation and M(p, q) the result of hyperbolic
Dehn surgery on some chosen cusp of M , triangulated by deformed versions of the
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original tetrahedra. In [24] Neumann gave a formula for cs(M(p, q)) + α, where α
is a constant, in terms of the simplex parameters of these deformed ideal tetrahe-
dra. The constant α is unknown, but is independent of p and q. Thus if the exact
Chern-Simons invariant is known for just one of the manifolds M(p, q) then α can
be deduced, so cs(M(p, q)) can be computed for all the M(p, q). As one computes
cs(M) for more manifolds one has more reference points to compute new families of
values. Using this “bootstrapping” procedure Weeks and Hodgson computed cs(M)
for the data-bases of manifolds in SnapPea. The computed values are included in
SnapPea so that they are available for further Dehn surgeries.

In fact the constant α is always an integer multiple of 1/24 in the version of the
formula that Snap uses (this was conjectured in [24] but has since been proved, see
[26] or the announcement in [25]). Thus Snap can compute the high precision value
of cs(M) up to a multiple of 1/24 and this multiple can then be determined from
SnapPea’s lower precision value. An improved formula that computes cs(M) exactly
is now known (loc. cit.). This avoids the need of the bootstrapping procedure and
will eventually be implemented in Snap.

5.2. Eta-Invariant. The eta-invariant η(M) is also defined for any closed oriented
Riemannian (4k−1)-manifold. It was initially defined by Atiyah, Patodi and Singer
as a measure of the “asymmetry” of the spectrum of the Laplacian on M , but they
proved [1] that it can also be given by the following formula:

η(M) :=
∫
X

L− sign(X),

where:
• X is any Riemannian 4k-manifold with ∂X = M such that the metric on some
collar neighbourhood of ∂X is isometric to the product metric on M × [0, ε), and
• L is the Hirzebruch L-class as a 4k-form on X, defined in terms of curvature as
in, for example, the appendix to [21].

The Hirzebruch index theorem tells one that the above formula gives zero for
a closed manifold X and it is then a standard argument to see that it gives an
invariant of M that does not depend on the choice of X when X has boundary M
as above. If k > 1 then M may not be the boundary of any X, but the disjoint
union 2M of 2 copies of M is a boundary, so this formula can be used to define
η(2M), and hence define η(M) as 1

2η(2M).
The relation of η(M) to cs(M) for a compact 3-manifold M is ([1]):

3η(M) ≡ 2 cs(M) + τ (mod 2),

where τ is the number of 2-primary summands of H1(M ;Z). Thus η(M) completely
determine cs(M) if M has known homology. There is also a cusped version of this
— Meyerhoff and Ouyang [20] extended the definition of η(M) to cusped M for
which one has chosen a basis of homology at each cusp.

A formula for η(M(p, q)) in terms of ideal triangulations for manifolds M(p, q)
as described above was given in [19], where it was proved “locally” (i.e., in a neigh-
bourhood of the complete structure M in analytic Dehn filling space). It was
proved globally in [33]. The formula is a modification of Neumann’s Chern-Simons
formula by the addition of certain arithmetic terms. Again, there is an undeter-
mined constant that is independent of p and q. Thus the above bootstrapping
procedure, which will no longer be needed for computing Chern-Simons invariant,
is still needed to compute η(M) through the tables maintained by Snap and Snap-
Pea. For a manifold M which has not yet been linked by a sequence of hyperbolic
Dehn fillings and drillings (removing closed curves) to a manifold with known eta-
invariant, Snap cannot compute η(M). This still applies to most of the knot and
link complements in the standard knot and link tables, for example.
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It is conjectured that the bootstrapping procedure will always work. That is:
Conjecture 5.1. Any two hyperbolic 3-manifolds are related by a sequence of hy-
perbolic drillings and fillings.

Snap and SnapPea provide good facilities for searching for such sequences, so
there is much experimental evidence for the conjecture. The emphasis here is
hyperbolic drilling and filling: that is, each drilling or filling should move between
points in the appropriate analytic Dehn filling space. Without this restriction the
conjecture is easy, since every 3-manifold is obtainable by Dehn surgery on some
link in the 3-sphere.
Remark 5.2. The formula mentioned earlier for cs(M) actually computes the
Chern-Simons invariant for the natural flat connection on the associated principal
PSL(2,C)-bundle over M rather than the Riemannian connection. It is shown by
Dupont and Kamber in [7] that these are the same in R/Z[ 1

6 ]. In that paper they
were considering a more general situation and not aiming for best denominators,
and Dupont informs us that their proof works without introducing denominators
in the 3 dimensional case that we are interested in.

The equality of the Riemannian and flat Chern-Simons invariants also follows if
one assumes the conjecture above. Indeed, in [42] the formula we use to compute
Chern-Simons is proved in the context of the Riemannian Chern-Simons invariant
and in [26] it is proved for the flat Chern-Simons invariant. Thus we have two
formulae that differ at most by the unknown constant they contain, valid over the
analytic Dehn filling space for M . Thus the difference of Riemannian and flat
Chern-Simons is constant on any analytic Dehn filling space. It is zero for some
examples, so if the bootstrapping conjecture is true, the bootstrapping procedure
shows the difference is always zero.

6. Bloch Invariant and PSL-Fundamental Class

For details on what we discuss here see [26, 30, 31] or the expository article [25].

6.1. PSL-Fundamental Class. We first describe the “PSL-fundamental class” of
an hyperbolic 3-manifold M . This is a homology class [M ]PSL in the homology
group H3(PSL(2,C);Z), where we are taking homology of PSL(2,C) as a discrete
group. If M has cusps, [M ]PSL is only well defined up to an element of order 2 in
H3(PSL(2,C);Z). We describe how we compute this invariant numerically later.

LetM = H
3/Γ be a compact hyperbolic 3-manifold. ThenH∗(Γ;Z) = H∗(M ;Z),

since M is a K(Γ, 1)-space. Thus H3(Γ;Z) ' Z with a natural generator given
by the fundamental class of M . The inclusion Γ → PSL(2,C) induces a map
H3(Γ;Z)→ H3(PSL(2,C);Z).
Definition 6.1. The PSL-fundamental class [M ]PSL ∈ H3(PSL(2,C);Z) is the
image of the natural generator of H3(Γ;Z) under the above map.

If M is non-compact the PSL-fundamental class is harder to define, and we
postpone it. It lies in H3(PSL(2,C);Z)/C2, where C2 is a cyclic subgroup of
H3(PSL(2,C);Z) of order 2. This cyclic subgroup exists and is unique by the
next theorem. In our notation we will ignore this C2 ambiguity and speak of
[M ]PSL ∈ H3(PSL(2,C);Z).

Note that we can conjugate Γ to lie in a subgroup PSL(2,K) of PSL(2,C), where
K is a number field, and [M ]PSL is then defined in H3(PSL(2,K);Z) (this has only
been proved modulo torsion in the cusped case). Usually, the smallest K for which
one can do this will be a quadratic extension of the trace field of Γ (and there are
infinitely many such fields which work). The following theorem tells us that if we
work modulo torsion then we can actually use the invariant trace field.

This theorem summarises results of various people, see [31] for more details.
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Theorem 6.2. 1. H3(PSL(2,C);Z) is the direct sum of
– its torsion subgroup, isomorphic to Q/Z, and
– an infinite dimensional Q vector space (conjectured to be countable).

2. If k ⊂ C is a number field then H3(PSL(2, k);Z) is the direct sum of
– its torsion subgroup and
– Z

r2 , where r2 is the number of conjugate pairs of complex embeddings
of k.

Moreover, the map H3(PSL(2, k);Z)→ H3(PSL(2,C);Z) is injective mod-
ulo torsion.

3. If k is the invariant trace field of M then some positive multiple of [M ]PSL
is in the image of H3(PSL(2, k);Z)→ H3(PSL(2,C);Z).

In fact, one can show that, after possibly adding a torsion element, 2b+1[M ]PSL is
in the image of H3(PSL(2, k);Z) → H3(PSL(2,C);Z), where b = rankH1(Γ;Z/2).
Moreover the coefficient 2b+1 can be replaced by 1 if M has cusps.

6.2. Invariants of the PSL-fundamental class. There is a homomorphism

ĉ : H3(PSL(2,C);Z)→ C/2π2
Z

called the “Cheeger-Simons class” ([3]) whose real and imaginary parts give Chern-
Simons invariant and volume:

ĉ([M ]PSL) = 2π2 cs(M) + i vol(M) .

(cs(M) is here appearing as the Chern-Simons invariant of the flat connection, as
discussed in Remark 5.2). We therefore denote the homomorphisms given in the
obvious way by the real and imaginary parts of ĉ by:

cs : H3(PSL(2,C);Z)→ R/Z , vol : H3(PSL(2,C);Z)→ R .

Conjecture 6.3. The Cheeger-Simons class is injective. That is, volume and
Chern-Simons invariant determine elements of H3(PSL(2,C);Z) completely. This
is a special case of a general conjecture of Ramakrishnan in algebraic K-theory; see
[25] for a discussion.

If k is an algebraic number field and σ1, . . . , σr2 : k → C are its different complex
embeddings up to conjugation then denote by volj the composition

volj = vol ◦(σj)∗ : H3(PSL(2, k);Z)→ R.

The map
Borel := (vol1, . . . , volr2) : H3(PSL(2, k);Z)→ R

r2

is called the Borel regulator.
Theorem 6.4. The Borel regulator maps H3(PSL(2, k);Z)/Torsion injectively
onto a full sublattice of Rr2 .

It is known that cs is injective on the torsion subgroup of H3(PSL(2,C);Z).
Thus, by Theorems 6.2 and 6.4, cs(M) ∈ R/Z and Borel([M ]PSL) ∈ Rr2(k) deter-
mine the PSL-fundamental class [M ]PSL ∈ H3(PSL(2,C);Z) completely, where k
is the invariant trace field of M .

Snap computes
Borel(M) := Borel([M ]PSL).

To describe how, it helps to introduce the “Bloch Group” B(C). In the next subsec-
tion we give this group a geometric description, but in fact, by a result of Bloch and
Wigner and others, it is naturally the quotient of H3(PSL(2,C);Z) by its torsion
subgroup Q/Z.

We can now explain how a cusped 3-manifold has a PSL-fundamental class in
H3(PSL(2,C);Z) modulo an order 2 ambiguity. We shall see that it has a natural
class in the Bloch group, which can be thought of as a PSL-fundamental class
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modulo torsion, and the Meyerhoff definition of Chern-Simons invariant then pins
down the PSL-fundamental class up to the stated ambiguity. It would be nice to
find a more direct definition that gives a fundamental class in H3(PSL(2,K);Z)
(modulo a similar ambiguity to the above) when Γ ⊂ PSL(2,K), but the above
definition does not do this.

6.3. Bloch group. There are several different definitions of the Bloch group in
the literature. They differ at most by torsion and they agree with each other for
algebraically closed fields. We shall use the following.
Definition 6.5. Let k be a field. The pre-Bloch group P(k) is the quotient of the
free Z-module Z(k − {0, 1}) by all instances of the following relations:

[x]− [y] + [
y

x
]− [

1− x−1

1− y−1
] + [

1− x
1− y

] = 0,(2)

[x] = [1− 1
x

] = [
1

1− x
] = −[

1
x

] = −[
x− 1
x

] = −[1− x].(3)

The first of these relations is usually called the five term relation. The Bloch group
B(k) is the kernel of the map

P(k)→ k∗ ∧Z k∗, [z] 7→ 2(z ∧ (1− z)).
For k = C, the relations (3) express the fact that P(C) may be thought of as

being generated by isometry classes of ideal hyperbolic 3-simplices. The five term
relation (2) then expresses the fact that in this group we can replace an ideal simplex
on four ideal points by the cone of its boundary to a fifth ideal point. As is shown
an appendix to [31], the effect is that P(C) is a group generated by ideal polyhedra
with ideal triangular faces modulo the relations generated by cutting and pasting
along such faces.

6.4. The Bloch invariant. Suppose we have an ideal triangulation of an hyper-
bolic 3-manifold M using ideal hyperbolic simplices with cross ratio parameters
z1, . . . , zn. This ideal triangulation can be a genuine ideal triangulation of a cusped
3-manifold, or a deformation of such a one as used by Snap and SnapPea to study
Dehn filled manifolds, but it may be of much more general type, see [31].
Definition 6.6. The Bloch invariant β(M) is the element

∑n
1 [zj ] ∈ P(C). If the

zj ’s all belong to a subfield K ⊂ C, we may consider β(M) as an element of P(K).
It is shown in [31] that

Theorem 6.7. If β(M) can be defined as above in P(K) then it actually lies in
B(K) ⊂ P(K) and is independent of triangulation.

In these terms, the Borel regulator Borel(M) can also be thought of as an in-
variant of the Bloch invariant β(M) and can be computed as follows. The invariant
trace field k of M will always be contained in the field K generated by the simplex
parameters zi, i = 1, . . . , n. The j-th component volj([M ]PSL) of Borel(M) is

Borel(M)j =
n∑
i=1

D2(τj(zi)),

where τj : K → C is any complex embedding that extends σj : k → C. Here D2 is
the “Wigner dilogarithm function”

D2(z) = Im ln2(z) + log |z| arg(1− z), z ∈ C− {0, 1},
where ln2(z) is the classical dilogarithm function. D2(z) is also the volume of the
ideal simplex with parameter z.

As described earlier, Snap specifies the invariant trace field k as a subfield of C
by giving the minimal polynomial of a “canonical” primitive element together with
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the position of the this primitive element in a list of the roots of this polynomial.
Snap numbers the roots with non-negative imaginary part using real roots first in
order of size, say c1 < c2 < · · · < cr1 , and then non-real roots in lexicographic order
of size of real and imaginary parts, cr1+1, . . . , cr1+r2 . Finally, roots with negative
imaginary part have negative indices: c−j = cj . The “canonical element” is the
first complex root in the list cr1+1, cr1+1, cr1+2, cr1+2, . . . that generates the correct
subfield of C.

In printing Borel(M) Snap uses the complex embeddings given by the complex
roots cr1+1, cr1+2, . . . above. The effect is that, according as the canonical element
is cr1+j or c−(r1+j), the component Borel(M)j of the Borel regulator is vol(M)
or − vol(M). In the latter case — more generally, whenever k 6= k — the Borel
regulator Borel(−M) is simply −Borel(M). However, if k = k then Snap’s printout
of Borel(M) and Borel(−M) refer to the same embedding of k (both times given by
the same canonical element), so the relation is given by the action of conjugation
on B(k), which is a bit more subtle.

It can be shown that ± vol(M) is, in fact, the component with largest absolute
value in the Borel regulator (see [31]).

Some interesting examples with invariant trace field Q(x)/(x4 + x2 − x+ 1) are
discussed in [31]. We list all examples with this invariant trace field from the closed
and cusped censuses in Table 5.

To compare the Bloch invariants of manifolds with different trace fields we must
compute in the Bloch group of a common field. We close this section with interesting
examples which illustrate this.
Example 6.8. The manifold of conjecturally smallest volume is the so-called Weeks
manifold Weeks which is m003(−3, 1) in the closed census. Its invariant trace field
is:

[x3 − x2 + 1,−2],
by which we mean the subfield of C generated by the complex conjugate of the
second root of the polynomial x3−x2 + 1 (the first root is the real root). This field
has one complex embedding, so the Borel regulator has just one component, which,
by the above discussion, will be minus the volume:

Borel(Weeks) = [−0.9427073627769277209212996031]

The manifold of conjecturally third smallest volume is called m007(3, 1) in the
closed census. It is an arithmetic manifold of exactly half the volume of the figure
eight knot complement, i.e., its volume is the volume 1.0149416.. of a regular ideal
simplex. Let us call this manifold Vol3 for short. Its invariant trace field is

[x2 − x+ 1, 1]

and its Borel regulator is thus

[1.014941606409653625021202554].

However, we can ask Snap to compute the Borel regulator in the field k(Weeks) =
[x3−x2 +1,−2] of the Weeks manifold instead. Snap complains that this field does
not contain our invariant trace field, and then proceeds to compute the join of the
two fields and gives us the answer in that field:

[x6 − x5 + x4 − 2x3 + x2 + 1,−2]
[1.014941606409653625021202554,−1.014941606409653625021202554,

−1.014941606409653625021202554].

From this we see that the joined field K is degree 6, as expected, and that it has
three complex embeddings and they restrict on k(Vol3) once to the given embedding
and twice to its conjugate.
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Computing with the Weeks manifold in this same field we get a Borel regulator:

[0,−0.9427073627769277209212996031, 0.9427073627769277209212996031]

(which tells us that the first complex embedding of our degree 6 field restricts to
the real embedding of k(Weeks) and the next two complex embedding restricts to
the complex embedding of k(Weeks) and its conjugate).

It has been asked if the Bloch group can be generated by Bloch invariants of
3-manifolds (a positive answer would imply the “Rigidity Conjecture”, see e.g., [31]
and [25]). If so, one might guess that a “random” 3-manifold with invariant trace
field equal to the above degree 6 field K is likely to have Borel regulator linearly
independent of the above two Borel regulators, since the Bloch group has rank 3.
There turn out to be just two manifolds in the closed census with this invariant
trace field (as far as has been computed). They are v2274(−3, 2) and −v2274(3, 2),
and they both have the same Borel regulator, namely:

[2.029883212819307250042405108,−4.858005301150090412806303917,
0.7982388755114759127214937007].

It turns out that this is, at least numerically, equal to

3 Borel(Weeks) + 2 Borel(Vol3).

Other interesting examples are given by surgeries on the census manifold v3066,
as discussed in [31]. This manifold gives some of the most interesting examples of the
“twins” phenomenon discussed in Example 4.12. The four surgeries v3066(±p, q)
and v3066(±2q, p/2) all have the same volume for each p, q.
Example 6.9. The manifolds M1 = v3066(6, 1) and M2 = v3066(−6, 1) have
invariant trace fields

[x9 − 2x7 − 5x6 + 12x5 + 8x4 + 15x3 + 4x2 + 2x− 1,−2]

and
[x9 − 2x7 − 5x6 + 12x5 + 8x4 + 15x3 + 4x2 + 2x− 1,−5]

respectively. The join of these fields is

K18 = [x18 − 6x16 − 4x15 + 8x14 + 6x13 + 19x12 + 16x11

+ 32x10 − 84x9 − 104x8 + 52x7 + 67x6 − 8x5 + 30x4 − 28x3 + 8x2 − 2x+ 1,−1],

with 9 complex embeddings, and the Borel regulators of the above two manifolds,
computed in this join, are respectively:

β1 = [−2a1 − a2,−a1, 2a1 + a2, a1 + a2, 0,−a2, a1 + a2,−a1, a2]

β2 = [−2a1 − a2, a2, a1, a1 + a2,−a1 − a2, a1, 0,−2a1 − a2, a2],

where

a1 = 2.568970600936708884920674169, a2 = 0.6083226776636170914331534552.

The automorphism group of the field K18 is order 6. Each of β1 and β2 is fixed by
an involution in this automorphism group, since they come from degree 9 subfields.
Nevertheless, we can find three Galois conjugates of each of β1 and β2, so we might
hope to generate up to a rank 6 subgroup of B(K18). But in fact, we only generate
a rank 3 subgroup.

The Galois conjugates of β1 are β1 and

β′1 = [−a1, a2,−a2, 0,−a1 − a2, 2a1 + a2,−a1 − a2,−2a1 − a2,−a2]

β′′1 = [a2,−2a1 − a2, a1,−a1 − a2, a1 + a2, a1, 0, a2,−2a1 − a2]

and we find that
β2 =

1
3

(2β1 + 2β′1 − β′′1 ).
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Various 3-manifolds can be found in the census with invariant trace fields con-
tained in K18. So far they all have Bloch invariant in the above rank 3 subgroup
of B(K18). For example the field [x3 + 2x − 1, 2] is the fixed field of Aut(K18). It
occurs as the invariant trace field of various manifolds, for example v3066(1, 2), and
they all have Borel regulator computed in K18 proportional to Borel(v3066(1, 2) =
2
3 (β1 + β′1 + β′′1 ). The field [x3 − x2 + x+ 1, i] occurs as a subfield of K18 for each
of its three embeddings i = 1, 2,−2. The real embedding (i = 1) is in fact the
real subfield of K18. The complex embedding and its conjugate occur for many
census manifolds and leads to Borel regulators in K18 that are integer multiples of
2β1−β′1−β′′1 or its Galois conjugate 2β′′1 −β1−β′1, depending on orientation. The
third Galois conjugate 2β′1−β′′1−β1 must belong to the embedding [x3−x2+x+1, 1],
i.e., to the real subfield of K18. We will use this fact in the next section.

In addition to three embeddings of the degree 9 field already mentioned, the only
other subfields of K18 are Q(

√
−11) and two degree 6 fields (the joins of Q(

√
−11)

with the degree three subfields above; one of these degree 6 fields is Galois over Q).
None of these degree 2 and 6 fields have been found so far in the census. One must,
however, be careful about making premature guesses from these data: arithmetic
manifolds exist for any imaginary quadratic field — for Q(

√
−11) they have just

not been found in the census. The Bloch invariant for these arithmetic manifolds
will lie outside the above rank three subgroup of B(K18).

7. Scissors Congruence

The scissors congruence group P(H3) is the abelian group generated by congru-
ence classes of hyperbolic polyhedra of finite volume modulo all relations of the
form: P = P1 + · · · + Pn if the polyhedra P1, . . . , Pn can be glued along faces to
create the polyhedron P . Dupont and Sah showed that one obtains the same group
whether one allows ideal polyhedra or not ([8]; for an exposition and references for
the material of this section see [25]).

The Dehn invariant is the map

δ : P(H3)→ R⊗ R/π
defined on generators of P(H3) as follows. If P is a compact polyhedron then
δ(P ) =

∑
E l(E)⊗ θ(E) where the sum is over the edges E of P and l(E) and θ(E)

are length and dihedral angle. For an ideal polyhedron one first truncates the ideal
vertices by horocycles and then uses the same definition, summing only over edges
that do not bound one of the horocycle faces of the truncated polyhedron. The
kernel of the Dehn invariant will be denoted

D(H3) := ker(δ : P(H3)→ R⊗ R/π).

If one subdivides an hyperbolic 3-manifold M into polyhedra then the sum of
these polyhedra defines an element β0(M) in the scissors congruence group P(H3)
and it is an easy exercise to see that in fact β0(M) is in D(H3).

This group D(H3) is closely related to the Bloch group. Since B(C) is a Q-vector
space, it splits as the direct sum

B(C) = B+(C)⊕ B−(C)

of its +1 and −1 eigenspaces under the action of conjugation. Dupont and Sah [8]
showed:
Theorem 7.1. The Dehn invariant kernel D(H3) is naturally isomorphic to B−(C).
In fact the natural map of the pre-Bloch group P(C) to P(H3), defined by mapping a
class [z] to the ideal simplex with parameter z, induces a surjection B(C)→ D(H3)
with kernel B+(C). The Bloch invariant β(M) is taken to the scissors congruence
class β0(M) by this map.
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In particular, this implies that the scissors congruence class β0(M) is orientation-
insensitive. In fact, it was first pointed out by Gerling in a letter to Gauss that
any polyhedron is scissors congruent to its mirror image. The paper [25] discusses
to what extent one may think of the Bloch group as giving an orientation-sensitive
version of scissors congruence, and in [31] an explicit interpretation in terms of
scissors congruence allowing only cut-and-paste along ideal triangles is described.
However, the geometric interpretation of this for β(M) needs care — for instance the
manifold Vol3 discussed earlier appears to have no subdivision into ideal tetrahedra
at all.

Note that if two manifolds have the same scissors congruence class, say β0(M1) =
β0(M2), this means a priori only that M1 and M2 are stably scissors congruent;
that is, there is some polyhedron Q such that M1 + Q can be cut-and-pasted to
form M2 +Q. However, one can show that if M1 and M2 are either both compact
or both non-compact then adding Q is unnecessary: M1 can be cut into polyhedra
that can be reassembled to form M2.
Theorem 7.2. Suppose M1 and M2 both have invariant trace field contained in
the field K. The following are equivalent:

1. M1 and M2 are stably scissors congruent, that is β0(M1) = β0(M2).
2. Borel(M1) + Borel(−M1) = Borel(M2) + Borel(−M2) (this must be computed

over a field containing K and K).
3. Borel(M1)− Borel(M2) is proportional to some Borel(x) with x ∈ B(K ∩ R).

Proof. The equivalence of the first two conditions follows because β(−M) = −β(M)
and the map x 7→ 1

2 (x− x) defines the projection B(C)→ B−(C).
Denote B(K)Q the image of B(K) ⊗ Q in B(C) ⊗ Q = B(C) (recall B(C) is a

Q-vector space). In [30] it is shown that the B(K)Q ∩ B+(C) = B(K ∩ R)Q. This
is thus the kernel of the map B(K) → P(H3), proving equivalence of the third
condition. �

Example 7.3. Returning to the manifoldsM1 = v3066(6, 1) andM2 = v3066(−6, 1)
of Example 6.9, we find that they are scissors congruent. Indeed, Borel(M1) −
Borel(M2) = [0,−a1 − a2, a1 + a2, 0, a1 + a2,−a1 − a2, a1 + a2,−a1 − a2, 0] =
1
3 (2β′1 − β′′1 − β1), and we pointed out in Example 6.9 that this Borel regulator
comes from the real subfield of K18.

The following conjecture has been made by many people. It is, as discussed in
[25], also a consequence of Conjecture 6.3 and hence of the Ramakrishnan conjec-
ture.
Conjecture 7.4. The map vol : D(H3)→ R is injective.

Snap provides many examples like the above which give evidence for this con-
jecture.

8. Some tables

The tables in this section list some arithmetic and numerical invariants of hy-
perbolic 3-manifolds computed using Snap. Much more extensive tables of results
are available from http://www.ms.unimelb.edu.au/˜snap.

Under the heading “Invariant trace field” we list: the canonical minimal polyno-
mial p defining the field, the signature [r1, r2], and the canonical root number (as
described in footnote 3).

Under the heading “Quaternion algebra” we list the finite ramification (giving
generators for the corresponding prime ideals), then real ramification of the in-
variant quaternion algebra (giving the root number for the corresponding real field
embeddings). The last column Int/Ar indicates whether all traces are integral and
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whether manifold is arithmetic (1 = yes, 0 = no). Manifolds are named using the
notation of SnapPea; ∗ is used to denote the mirror image of a manifold.

Table 2 lists invariants for the first 12 closed hyperbolic 3-manifolds in the
Hodgson-Weeks census [13]. These are conjectured to be the 12 hyperbolic 3-
manifolds of smallest volume.

Table 3 includes examples of closed manifolds chosen to illustrate various phe-
nomena including
• manifolds with the same invariant trace field but different invariant quaterion
algebras,
• closed manifolds with the full matrix algebra as invariant quaternion algebra (i.e.
no ramification),
• arithmetic and non-arithmetic manifolds with the same invariant quaterion alge-
bra,
• manifolds with the same abstract invariant trace field, but different complex
embeddings,
• manifolds with the same invariant quaternion algebra, but not commensurable
(distingushed by integrality of traces).

For cusped manifolds, the invariant quaternion algebra is always the full matrix
algebra over the invariant trace field. For non-arithmetic cusped manifolds with one
cusp, we list another useful commensurability invariant: the density of a maximal
embedded horoball cusp (see [28]). A similar invariant can be defined for mul-
ticusped cusped non-arithmetic manifolds, provided that there is a finite sheeted
covering where all cusps are equivalent under the symmetry group. In this case, we
compute the cusp density by taking equal volume horoballs at all the cusps.

Table 4 includes examples of cusped manifolds chosen to ilustrate various phe-
nomena including:
• arithmetic and non-arithmetic manifolds with the same invariant quaterion alge-
bra,
• non-arithmetic manifolds with the same invariant quaternion algebra but different
cusp densities,
• manifolds with the same abstract invariant trace field, but different complex
embeddings.

This table includes some familiar knots complements: m004,m015,m016,m032
are the complements of knots 41, 52, the −2, 3, 7-pretzel, and knot 61 respectively.
A table of arithmetic invariants computed using Snap for the complements of knots
with up to 8 crossings is given in [35].

Table 5 lists Borel regulators and arithmetic invariants for all the closed and
cusped census manifolds for which the invariant trace field has been computed to
be x4 + x2 − x + 1. Some of these examples are discussed in [31]. Note that the
first two Borel regulators are proportional for the field with root 2, while all three
Borel regulators are proportional for the field with root 1. The table also includes
examples of the following phenomena:
• manifolds with same Borel regulator but different invariant quaternion algebras,
• closed and cusped manifolds with the same Borel regulator,
• manifolds v2050(4, 1) and v3404(1, 3) with the same arithmetic invariants (invari-
ant trace field, invariant quaternion algebra, non-integral traces) but not commen-
surable as their Borel regulators are not proportional.
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Invariant trace field Quaternion algebra Int/Ar Manifolds
x2 + 1
[0, 1] (1)

(2, x+ 1)(3)
[ ]

1/1 m304(5,1) m336(-1,3) s942(-2,1)
s960(-1,2)

(2, x+ 1)(5, x− 2)
[ ]

1/1 m293(4,1) s297(-1,3) s572(1,2)
s645(-1,2) s682(-3,1) s775(-1,2)
s778(-3,1) v3213(-1,3)
v3216(4,1)

(2, x+ 1)(5, x+ 2)
[ ]

1/1 m006(1,3) m009(-5,1) m009(5,1)
m010(-2,3) m294(4,1)
m312(-1,3) s296(5,1) s350(-4,1)
s495(1,2) s595(3,1) s775(-3,1)
s779(2,1) v3217(-1,3) v3412(5,1)

[ ] 0/0 m239(-2,3) s254(-3,2)
x2 − x+ 2
[0, 1] (1)

(2, x)(7, x+ 3)
[ ]

1/1 m140(-4,1) v3110(3,1)
v3147(-3,1)

0/0 v3377(-3,1) v3378(-3,1)
v3390(3,1)

x3 + 2x− 1
[1, 1] (2)

(2, x2 + x+ 1)
[1]

1/1 m004(6,1) m160(1,2) m306(-5,1)
m307(-1,3) s554(3,1) s594(-3,2)*
v2642(5,1) v2643(-2,3)

(2, x+ 3)(2, x2 + x+ 1)
[ ]

1/0 m136(1,2) v2920(-1,2)*
v3066(1,2) v3528(3,1)

x3 + x− 1
[1, 1] (2)

[ ] 1/0 s772(-5,2) s772(3,2)* s775(-5,2)
s775(3,2)* s778(-5,2) s778(3,2)*
s779(-5,2) s779(3,2)* s787(-5,2)
s787(3,2)*

x3 − x− 2
[1, 1] (2)

(2, x+ 1)
[1]

0/0 m293(-2,3)* m390(3,1)*

1/1 m307(-5,1)* m369(-1,3)
m371(1,3)* s298(5,1) s594(1,2)*
s594(2,1)

(2, x+ 1)(2, x)
[ ]

1/0 s235(-4,3) s595(1,2)

x4 − 2x3 − x2 + 2x+ 2
[0, 2] (2)

(13, x+ 2)(13, x− 3)
[ ]

0/0 v3207(5,1) v3209(4,3)
v3210(5,1) v3208(4,3)

x4 + x2 − x+ 1
[0, 2] (2)

[ ] 1/0 s594(-3,4)* s594(-4,3)

0/0 v2050(4,1)* v3404(1,3)
x4 + x2 − x+ 1
[0, 2] (1)

[ ] 1/0 m010(-1,3) m368(4,1)
m369(3,1)* m370(-4,1)*
s313(-2,3)* s554(1,3)

x5 − x− 1
[1, 2] (2)

(2, x3 + x2 + 1)
[1]

1/0 v3221(1,2) v3228(-1,2)*

x5 − x− 1
[1, 2] (3)

(2, x3 + x2 + 1)
[1]

1/0 v3100(1,3)

Table 3. Arithmetic invariants of some selected manifolds from
the Hodgson-Weeks closed census.
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Invariant trace field Int/Ar Cusp Density Manifolds
x2 + 1
[0, 1] (1)

1/1 m001 m124 m125 m126 m127
m128 m129 m130 m131 m132
m133 m134 m135 m136 m139
m140 s859 v1858 v1859

0/0 0.614106035 m137 m138
x2 − x+ 1
[0, 1] (1)

1/1 m000 m002 m003 m004 m025
m202 m203 m204 m205 m206
m207 m208 m405 m406 m407
m408 m409 m410 m411 m412
m413 m414 s118 s119 s594 s595
s596 s955 s956 s957 s958 s959
s960 v2873 v2874 v3551

0/0 0.568850725 v2875
x2 − x+ 2
[0, 1] (1)

1/1 m009 m010 s772 s773 s774 s775
s776 s777 s778 s779 s780 s781
s782 s784 s786 s787

0/0 N/A (inequivalent cusps) s785
0/0 0.558071819 s783
0/0 0.620079799 s788 s789 v1539 v1540

x3 − x2 + 1
[1, 1] (2)

1/0 0.511270966 s898 v2202* v2203

1/0 0.524808681 v3428*
1/0 0.539001522 v3429*
1/0 0.545958189 v0769
1/0 0.575271908 s420*
1/0 0.604035858 v3426 v3427
1/0 0.612276793 v2204* v2205*
1/0 0.697799972 m015* m017* s899 s900
1/0 0.711685428 m016* s897

x3 − x2 + x+ 1
[1, 1] (2)

1/0 N/A (inequivalent cusps) v3220 v3223*

0/0 N/A (inequivalent cusps) v3224*
1/0 0.616691512 m035 m037 m039* m040* v3218

v3222* v3225* v3227*
1/0 0.623017665 m376*
1/0 0.645539037 m036* m038 v3214 v3215*

v3216 v3217*
0/0 0.646337229 v3226
0/0 0.652161114 s448
1/0 0.675735988 v3207 v3208 v3209 v3210
1/0 0.717278605 v3219 v3221 v3228*
1/0 0.726163222 v3211 v3212 v3213*

x4 + x2 − x+ 1
[0, 2] (1)

1/0 0.614493011 m161*

1/0 0.631076941 s919*
1/0 0.662737952 m159* m160

x4 + x2 − x+ 1
[0, 2] (2)

1/0 0.595110801 s235

1/0 0.630681177 m032* m033*
1/0 0.686680170 s435* s436*

Table 4. Arithmetic invariants of some selected manifolds from
the Hildebrand-Weeks cusped census.
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