Problem Set 1

Noah Snyder

Due on Sept. 15th

1. The center of a group G is denoted $Z(G)$, it is defined by:

$$Z(G) = \{ g \in G : gh = hg \text{ for any } h \in G \}.$$

Prove that $Z(G)$ is a normal subgroup of G.

2. Suppose that p is a prime number and that G is a finite group whose order is a power of p (in other words, suppose that G is a p-group), and suppose that G acts on a finite set S. Let $\Sigma \subset S$ denote the subset of points fixed by every element of G. Show that $\#\Sigma \equiv \#S \mod p$.

3. If G is a p-group show that $Z(G)$ is nontrivial. (Hint: find an action of G on itself whose fixed points are $Z(G)$.)

4. Suppose that the quotient group $G/Z(G)$ is cyclic, prove that $G/Z(G) = 1$.

5. The commutator subgroup of G is denoted $[G,G]$ and is generated by elements of the form $xyx^{-1}y^{-1}$ (that is $[G,G]$ consists of all products of elements of that form). Show that $[G,G]$ is a normal subgroup.

7. Suppose that G is a non-abelian group of order p^3 for some prime p. Find all 1-dimensional representations of G. (Hint: show that $[G,G] = Z(G)$ and that that subgroup has order p.)

8. Consider the set V of all functions from the set \mathbb{Z}/p to \mathbb{C}. Prove that this forms a vector space, and find the dimension of this vector space.

9. Let V be the vector space defined in the last problem. We define an inner product on V by

$$\langle f_1, f_2 \rangle = \frac{1}{p} \sum_{g \in \mathbb{Z}/p} f_1(g)\overline{f_2(g)}.$$

Show that with respect to this inner product the 1-dimensional representations of \mathbb{Z}/p are an orthonormal basis.