Problem Set 2

Noah Snyder

Due on Sept. 22nd

1. Suppose that $\pi \in \text{End}(V)$ satisfies $\pi^2 = \pi$. Prove that $V \cong \text{im}\pi \oplus \ker\pi$.

2. Suppose that V is an n-dimensional vector space over the field \mathbb{Z}/p. Find the number of k-dimensional subspaces of V.

3. Suppose that G is a finite group, that $g \in Z(G)$, and that V is an irreducible representation over \mathbb{C}. Prove that g acts on V by multiplying by a scalar. Let $\chi_V(g)$ denote the scalar by which $g \in Z(G)$ acts on V, show that this “central character” gives a group homomorphism $Z(G) \to \mathbb{C}^\times$.

4. Let Q be the 8-element quaternion group (it’s elements are ± 1, $\pm i$, $\pm j$, and $\pm k$ with the usual quaternion rules for multiplication). Find an irreducible 2-dimensional representation of Q and prove that it is irreducible. Find its central character.

5. Consider the 2-dimensional representation of $\mathbb{Z}/3$ over \mathbb{R} given by

$$\rho(g^k) = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}^k.$$

Show that it is irreducible. Find a non-scalar 2-by-2 matrix which commutes with the action of every element of $\mathbb{Z}/3$.

6. Let V be the 2-dimensional representation of $\mathbb{Z}/3$ over \mathbb{R} defined in the last problem. Find an isomorphism between $\text{End}_G(V)$ and one of \mathbb{R}, \mathbb{C}, or \mathbb{H}.

7. Consider the 6 dimensional regular representation of the symmetric group S_3. Find all its irreducible subrepresentations.