1. For every irrep of V of S_3, use Frobenius reciprocity and the character table of S_4 to decompose $\text{Ind}_{S_3}^{S_4} V$ into irreps.

2. What are all double cosets $S_{n-1}\backslash S_n/S_{n-1}$?

3. Let Q be the 8 element quaternion group, let H_i be the subgroup generated by i and H_j be the subgroup generated by j. For each irrep W of H_i, compute $\text{Res}_H^Q \text{Ind}_H^Q W$.

4. For which representations W of A_4 is $\text{Ind}_{A_4}^{S_4} W$ irreducible?

5. Let $\text{Cl}(G)$ denote the vector space of class functions on G. Let $\{H_i\}_{i \in I}$ be the set of cyclic subgroups of G. Show that the restriction map $\text{Res}: \text{Cl}(G) \to \bigoplus \text{Cl}(H_i)$ is injective.

6. With the same notation as above, show that the induction map $\text{Ind}: \bigoplus \text{Cl}(H_i) \to \text{Cl}(G)$ (which sends $(f_i)_{i \in I} \mapsto \sum_{i \in I} \text{Ind}_{H_i}^G f_i$) is surjective.

7. We call a representation of G monomial if it can be written as an induction of a 1-dimensional representation of a subgroup of H, and we call a character monomial if it is the character of a monomial representation. Prove that every character of G can be written as a \mathbb{C}-linear combination of monomial characters.

8. Show that every character can be written as a \mathbb{Q}-linear combination of monomial characters. (This is a theorem of Artin’s which is important in number theory. An even more important theorem says you can replace \mathbb{Q} with \mathbb{Z}, but this is much much harder.)