1. Which of the following are true and which are false (2 pts. each):

(a) If G is any group (finite or infinite) and V is an irreducible representation, then V is indecomposable.

Answer: True, if V has no nontrivial proper subrepresentations then it certainly can’t be the direct sum of two nontrivial proper subreps.

(b) If G is any group (finite or infinite) and V is an indecomposable representation, then V is irreducible.

Answer: False, if G is the integers, and V is the 2 dimensional representation where the generator of \mathbb{Z} acts by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ then V is indecomposable (because it only has one nontrivial proper subrep and so can’t be the direct sum of nontrivial proper subreps) but V is not irreducible (because it has a nontrivial proper subrep, namely the 1-dimensional subspace of eigenvectors).

(c) If G is a finite group and V is an irreducible representation, then V is indecomposable.

Answer: True, by part (a).

(d) If G is a finite group and V is an indecomposable representation, then V is irreducible.

Answer: True, this is a big theorem that we proved twice.
2. Consider the group $G = \mathbb{Z}/4 \times \mathbb{Z}/4$. Let’s write this group multiplicatively, so a typical element is $g^x h^y$ where $x \in \mathbb{Z}/4$ and $y \in \mathbb{Z}/4$ and multiplication is $(g^x h^y)(g^{x'} h^{y'}) = g^{x+x'} h^{y+y'}$. A representation of G is determined by the actions of g and h, but not every way of assigning maps to g and h individually extends to a valid representation of G. Which of the following define valid representations of G? (2 pts. each):

Answer: In order to check whether such an assignment gives a representation we need to check that this really gives an action of the group, that is we need to make sure that all the relations in G hold for the corresponding linear maps. In this case we need to check that g^4 acts by 1, that h^4 acts by 1, and that the actions of g and h commute.

(a) The vector space is \mathbb{C}, and g acts by (1) while h acts by (i).

Answer: Yes. Check that $1^4 = 1$, that $i^4 = 1$, and that the two matrices commute.

(b) The vector space is \mathbb{C}^2, and g acts by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ while h acts by $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Answer: No, these two matrices do not commute.

(c) The vector space is \mathbb{C}^2, and g acts by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ while h acts by $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Answer: Yes. Both matrices square to the identity, so their fourth powers are also the identity, furthermore any matrix commutes with itself.

(d) The vector space is \mathbb{C}^2, and g acts by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ while h acts by $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

Answer: No. The first matrix raised to the fourth is $\begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$, not the identity.

3. Suppose that G is a group and that V and W are representations of G, what does it mean to say that a linear map $f : V \to W$ is a map of representations? (3 pts.)

Answer: That f commutes with the action of g, namely $gf(v) = f(gv)$.

4. If V is a vector space what’s the definition of the dual space V^*? (3 pts.)

Answer: V^* is the space of all linear maps from V to \mathbb{C}.

5. If V and W are vector spaces and A is a linear map $V \to W$, what’s the definition of $A^* : W^* \to V^*$? (3 pts.)

Answer: If $f \in W^*$ then A^* is given by $(A^* f)(v) = f(Av)$.

6. If V is a representation of G what is the definition of the dual representation V^{**}? (3 pts.)

Answer: g acts on V^* by $(g^*)^{-1}$. That is $(gf)(v) = f(g^{-1}v)$.

7. Let P_7 be the 7-dimensional permutation representation of the group S_7. Compute the value of the character $\chi_{P_7}((123)(456))$. (3 pts.)

Answer: $\chi_{P_7}((123)(456)) = 1$. Compute the trace in the obvious basis. Since $\sigma e_i = e_{\sigma i}$ the only elements on the diagonal of the matrix correspond to points fixed under the action of σ. Hence the trace of the action of σ is just the number of fixed points of σ. In this particular case there's one fixed point, namely 7.

8. Let A_4 be the alternating group on 4 letters. I’ve written in part of its character table, complete the rest and give a short explanation of your reasoning. (9 pts.)

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>3</th>
<th>4</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_4</td>
<td>[e]</td>
<td>[(12)(34)]</td>
<td>[(123)]</td>
<td>[(132)]</td>
</tr>
<tr>
<td>χ_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>χ_2</td>
<td>1</td>
<td>1</td>
<td>$-1 + \sqrt{3}$</td>
<td>$-1 - \sqrt{3}$</td>
</tr>
<tr>
<td>χ_3</td>
<td>1</td>
<td>1</td>
<td>$-1 - \sqrt{3}$</td>
<td>$-1 + \sqrt{3}$</td>
</tr>
<tr>
<td>χ_4</td>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Answer: To find χ_3 either take the tensor square of χ_2 or take the dual of χ_2. Then you can compute χ_4 using character orthogonality.

Another valid technique is to find χ_4 by starting with the permutation representation and subtracting off a copy of the trivial, then you can find χ_3 either as above or by character orthogonality.

9. Let V be a representation of G and let $\mathbf{1}$ be the trivial representation of G, prove that $\mathbf{1} \otimes V \cong V$ as representations of G. (Hint: first show that there’s a unique map of vector spaces $\mathbb{C} \otimes V \rightarrow V$ sending $1 \otimes v \rightarrow v$, and then check that this is a map of representations.)

Answer: Consider the map $\mathbb{C} \times V \rightarrow V$ given by $(c, v) \mapsto cv$. This map is bilinear because V is a vector space. Thus, by the universal property of tensor product, there exists a unique map $\mathbb{C} \otimes V \rightarrow V$ sending $c \otimes v \mapsto cv$. Now we need to check that this gives a map of representations. Well, on the left hand side g sends $\sum c_i \otimes v_i$ to $\sum gc_i \otimes gv_i = \sum c_i \otimes gv_i$ (since we’re looking at the trivial representation). On the right hand side g sends $\sum c_i v_i$ to $\sum g(c_i v_i) = \sum c_i g(v_i)$ by linearity of the action.

10. If G is a finite group and V is a representation of G, prove that $\pi : \frac{1}{|G|} \sum_{g \in G} g : V \rightarrow V$ is projection onto the G-invariant subspace V^G.

Answer: First we claim that the image of π is contained in V^G and that π restricted to V^G is the identity.

Answer: First we claim that the image of π is contained in V^G. To see this note that $\sigma \frac{1}{|G|} \sum_{g \in G} gv = \frac{1}{|G|} \sum_{g \in G} \sigma gv = \frac{1}{|G|} \sum_{g \in G} gv$ (since as g runs over all of g so does σg since multiplication by σ is invertible).
Second we claim that π restricted to V^G is the identity. To see this just note that $\frac{1}{\# G} \sum_{g \in G} gv = \frac{1}{\# G} \sum_{g \in G} v = v$ for $v \in V^G$.

Third we claim that the image of π is exactly V^G, to see this note that the image certainly contains V^G since it’s the identity on V^G.

Finally, we note that π is a projection since $\pi^2 v = \pi(\pi v) = \pi v$ where the second equality holds because $\pi v \in V^G$ and π acts by the identity on V^G.

11. If V is an irreducible representation of G and $f : V \to V$ is a map of representations, show that there exists some scalar λ such that $f(v) = \lambda v$ for all $v \in V$.

Answer: Consider the action of f on V, since we’re over \mathbb{C} there’s an eigenvector for f, and hence there’s a nontrivial eigenspace V_λ for the action of f. We claim that this eigenspace is all of V, by irreducibility it suffices to show that it is a subrepresentation. So we compute: $f(gv) = gf(v) = g\lambda v = \lambda gv$, hence if $v \in V_\lambda$ so is gv. Thus $V_\lambda = V$ and f acts on V by the scalar λ.