Abstract. p-adic Hodge theory, broadly speaking, is the study of representations of the absolute Galois group of \mathbb{Q}_p acting on \mathbb{Q}_p-vector spaces. Classical Hodge theory concerns the relationship between the singular and de Rham cohomologies of a compact Kähler manifold. p-adic Hodge theory began as the search for a similar theory relating the étale and de Rham cohomologies of varieties over p-adic fields. Over time, however, it’s grown more broadly into a subject with its own rich inner life and with many applications in number theory.

During these two talks, I hope to explain some of the motivation and philosophy of p-adic Hodge theory, as well as some of its successes. Some applications which I hope to touch on include: properties of Galois representations associated with modular forms, good reduction of abelian varieties, modularity of elliptic curves, the Fontaine–Mazur conjecture, special values of L-functions, and some results on Hodge numbers of varieties over number fields.

Let us start with some notations which will be in effect the whole time. Let p be a prime, and let K be a finite extension of \mathbb{Q}_p. Let \mathcal{O}_K be the integral closure of \mathbb{Z}_p in K, with maximal ideal $\mathfrak{m}_K = (\varpi_K)$ and residue field $k = \mathcal{O}_K/\mathfrak{m}_K$. Let \overline{K} be an algebraic closure of K. Our main object of study is $G_K = \text{Gal}(\overline{K}/K)$.

Definition 1. A p-adic representation of G_K is a \mathbb{Q}_p-vector space V equipped with a (continuous) action of G_K.

There are cases where V is not finite-dimensional, and continuity requires a bit more care.

Let us recall the structure of G_K. There is an exact sequence

$$1 \rightarrow I_K \rightarrow G_K \rightarrow G_k \cong \hat{\mathbb{Z}} \rightarrow 1$$

where I_K is the inertia subgroup. It sits in another exact sequence

$$1 \rightarrow P_K \rightarrow I_K \xrightarrow{\iota_p} \prod_{\ell \neq p} \mathbb{Z}_\ell \rightarrow 1$$

where P_K is the “wild” inertia subgroup. The main thing for now is that P_K is a pro-p group. We can think of G_K as having a filtration with three pieces: $\hat{\mathbb{Z}}$, almost $\hat{\mathbb{Z}}$ with p-part stripped away, and P_K. P_K is what makes the representations of G_K subtle in p-adic situations.

As a consequence, any continuous $\rho : G_K \rightarrow \text{GL}_n(\mathbb{Q}_\ell)$ with $\ell \neq p$ satisfies that $\rho(P_K)$ is finite. p-adic representations are much wilder than ℓ-adic representations.

Let me give some examples.

Last updated: November 11, 2014. Please send corrections and comments to phlee@math.columbia.edu.
Example 2. Let $\chi : G_K \to L^\times$ be any continuous character, where L/\Q_p is a finite extension. Take $V = L$ with action given by $g \cdot v = \chi(g)v$. We denote this as “$L(\chi)$”.

Example 3. $\Z_p(1) := \{(1 = x_0, x_1, x_2, \ldots) \in K, x_{i+1}^p = x_i \text{ for all } i \geq 0\}$. This is non-canonically isomorphic to \Z_p, and has an action by G_K. There exists a unique $\chi_{\text{cyc}} : G_K \to \Z^\times_p$ such that $g \cdot x = (x_0^{\chi_{\text{cyc}}(g)}, x_1^{\chi_{\text{cyc}}(g)}, \ldots)$. In other words, $g(\zeta) = \zeta^{\chi_{\text{cyc}}(g)}$ for any p^∞-th root of unity $\zeta \in \overline{K}$.

Define $\Q_p(1) = \Z_p(1) \otimes_{\Z_p} \Q_p$, and $M(n) := M \otimes_{\Q_p} \Q_p(1)^{\otimes n}$ where M is any $\Q_p[G_K]$-module. Note $\Q_p(1) \simeq \Q_p(\chi_{\text{cyc}})$, but non-canonically so.

Example 4. Let A be an abelian variety over K. The ℓ-adic Tate module is $T_\ell A := \lim_{\leftarrow n} A(K)[\ell^n]$ which is a finite free \Z_ℓ-module of rank $2 \dim A$. The rational Tate module is $V_\ell A := T_\ell A \otimes_{\Z_\ell} \Q_\ell$.

We will start posing some questions which we will eventually answer using p-adic Hodge theory. First we have a theorem of Serre and Tate, sometimes called the Néron–Ogg–Shafarevich criterion.

Theorem 5 (Serre–Tate). A has good reduction if and only if I_K acts trivially on $V_\ell A$ for some (any) $\ell \neq p$.

A natural question is:

Question 1. Is there a similar good reduction criterion involving $V_p A$?

Example 6. Let $\Delta = q \prod_{n=1}^\infty (1 - q^n)^{24} = \sum_{n=1}^\infty \tau(n)q^n$.

Theorem 7 (Deligne). There exists a unique representation $\rho_{\Delta,p} : G_{\Q} \to \GL_2(\Q_p)$ such that $\text{tr } \rho_{\Delta,p}(\text{Frob}_\ell) = \tau(\ell)$ for any prime $\ell \neq p$.

Note $\text{Frob}_\ell \in G_{\Q} \hookrightarrow G_{\Q}$.

Question 2. Can we recover $\tau(p)$ from $\rho_{\Delta,p}|_{G_{\Q_p}}$ somehow?

Let me give one more example which leads to more general things.

Example 8. Let X be any smooth proper variety over K. Then $H^n_{\text{et}}(X_{\overline{K}}, \Q_p) := \left(\lim_{\leftarrow j} H^1_{\text{et}}(X_{\overline{K}}, \Z/p^j\Z) \right) \otimes_{\Z_p} \Q_p$ is a p-adic representation.

If $X = A$ and $n = 1$, then $H^1_{\text{et}}(A, \Q_p) \cong \text{Hom}_{\Q_p}(V_p A, \Q_p)$.

What sort of structure might we expect from such an object? Let us recall the complex analogue. Let X be a compact Riemannian manifold. Then the singular cohomology is related to differential objects via the de Rham isomorphism $H^n(X, \Z) \otimes \C \cong H^n_{\text{dR}}(X, \C)$.
If X has more structure, say X is Kähler, then

$$H^n_{dR}(X, \mathbb{C}) = \bigoplus_{i} H^{n-i}(X, \Omega^i_X)$$

where Ω^i_X is the sheaf of holomorphic j-forms.

Question 3. Is there some relationship between the étale cohomology groups $H^*_\text{ét}(X_{\overline{K}}, \mathbb{Q}_p)$ and $H^*_\text{dR}(X)$ or $H^*(X, \Omega^i_X)$?

The latter groups are very coherent and should really be thought of as the analogous objects of holomorphically defined cohomology.

Conjecture 9 (Tate (1967), proved by Faltings (1989)). For any X as above, there is a canonical isomorphism

$$H^n_{\text{ét}}(X_{\overline{K}}, \mathbb{Q}_p) \otimes \mathbb{Q}_p \cong \bigoplus_{i=0}^n H^{n-i}(X, \Omega^i_X) \otimes_K \mathbb{C}_p(-i)$$

where \mathbb{C}_p is the p-adic completion of \overline{K}.

Tate proved this when $X = A$ is an abelian variety and $n = 1$.

There is a natural action of G_K on both sides: on the left it acts diagonally, and on the right it is trivial on the Hodge cohomology groups. We may ask if this isomorphism is G_K-equivariant. There is a remarkable corollary. Before stating it we need another theorem.

Theorem 10 (Tate (1967)).

$$H^0(G_K, \mathbb{C}_p(j)) = \begin{cases} K & \text{if } j = 0, \\ 0 & \text{if } j \neq 0. \end{cases}$$

Then the conjecture implies that

Corollary 11.

$$\left(H^n_{\text{ét}}(X_{\overline{K}}, \mathbb{Q}_p) \otimes \mathbb{Q}_p \mathbb{C}_p(j) \right)^{G_K} \cong \left(\bigoplus_{i=0}^n H^{n-i}(X, \Omega^i_X) \otimes_K \mathbb{C}_p(-i+j) \right)^{G_K} = H^{n-j}(X, \Omega^i_X).$$

Thus we have recovered the Hodge cohomology groups in some Galois-theoretic way.

The general philosophy and goals of p-adic Hodge theory are:

- Define and study interesting subcategories of the category of all p-adic representations of G_K.
- Relate them to representations occurring “in nature”.
- Use these ideas to solve actual problems.

One overarching philosophy of how to do these is due to Fontaine: define “interesting” period rings B, which are topological \mathbb{Q}_p-algebras with a G_K-action and some extra structures. For any p-adic representation V, one can form

$$\mathbb{D}_B(V) = (V \otimes \mathbb{Q}_p B)^{G_K}.$$

This is a module over B^{G_K}, which tends to be a field. This module inherits whatever extra structure B has.

Let me try to recast the Hodge–Tate conjecture.
Example 12.

\[B_{HT} := \bigoplus_{i \in \mathbb{Z}} \mathbb{C}_p(i). \]

By the theorem of Tate and the relation \(\mathbb{C}_p(i) \otimes_{\mathbb{C}_p} \mathbb{C}_p(j) = \mathbb{C}_p(i + j) \),

\[B_{HT}^{G_K} = \bigoplus_{i} \mathbb{C}_p(i)^{G_K} = K. \]

We can restate the conjecture as follows. If \(V = H^n_{\text{ét}}(X_{\overline{K}}, \mathbb{Q}_p) \), then

\[\mathcal{D}_{B_{HT}}(V) \cong \bigoplus_{j} H^{n-j}(X, \Omega^j_X). \]

The interesting period rings are \(B_\bullet \), where \(\bullet \in \{ \text{HT, dR, st, crys} \} \). These stand for “Hodge–Tate, de Rham, semistable and crystalline” respectively. For each of these adjectives, one defines

\[\mathcal{D}_\bullet(V) := \mathcal{D}_{B_\bullet}(V). \]

\(\mathcal{D} \) is for Dieudonné.

For any one of these, one has a natural map

\[\alpha_\bullet : \mathcal{D}_\bullet(V) \otimes_{B_\bullet^{G_K}} B_\bullet \rightarrow V \otimes_{\mathbb{Q}_p} B_\bullet \]

which is always injective. The proof is this is not trivial and requires a careful analysis of each of these rings.

Definition 13. \(V \) is “blah” if \(\alpha_{\text{blah}} \) is an isomorphism.

Let me spell out what it means to be a Hodge–Tate representation, which is the simplest category of all.

Example 14. \(V \) is Hodge–Tate if and only if

\[V \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong \bigoplus_{i} \mathbb{C}_p(i)^{\oplus n_i} \]

with \(\sum_i n_i = \dim_{\mathbb{Q}_p} V \).

For any variety \(X \), \(H^n(X_{\overline{K}}, \mathbb{Q}_p) \) is Hodge–Tate. Indeed we have a more precise decomposition in terms of Hodge cohomology.

An answer to Question \(\square \) is given by the

Theorem 15 (Coleman–Iovita). \(A \) has good reduction if and only if \(V_p A \) is crystalline.