COHOMOLOGY OF B_{α_p} AND APPROXIMATION BY VARIETY (DRAFT UNFINISHED)

QIXIAO MA

ABSTRACT. We calculate the crystalline, de Rham and Hodge cohomology of B_{α_p} by hypercovering spectral sequence. We show the Hodge to de Rham spectral sequence fail to degenerate for B_{α_p} on E_1 page. We push such example to varieties and construct a smooth projective threefold with $h^{2,0}_{Hdg} = 1, h^{1,1}_{Hdg} = 8, h^{0,2}_{dR} = 3, h^2_{dR} = 5$. This example can be used to pin down the structure of the Hodge ring of characteristic p varieties, where it is asked to find a threefold with $h^{2}_{Hdg} - h^2_{dR}$ being an odd number, see [vDdB18].

CONTENTS

1. Introduction 1
2. General calculation on B_{α_p} 1
3. An Example 1
3.1. Crystalline cohomology 2
3.2. De Rham cohomology 4
3.3. Hodge Cohomology 4
3.4. Calculation with hypercovering 6
3.5. Conclusion 7
References 7

1. INTRODUCTION

Let k be a perfect field of characteristic p. Note that B_{α_p} can be identified with the quotient stack $[E^{(p)}/E]$ by the relative Frobenius. We use a proper smooth hypercovering to calculate the crystalline, de Rham and Hodge cohomology of B_{α_p}.

2. GENERAL CALCULATION ON B_{α_p}

[Under construction, some linear algebra calculation is missing.]

3. AN EXAMPLE

We work over k, an algebraically closed field of characteristic p. Let E be a supersingular elliptic curve and $F': E \to E^{(p)}$ the relative Frobenius. Take the representation of α_p in GL_5 with only one fixed line [vDdB18, 1.2.7]. Consider the morphism $\mathbb{P}^4 \times E \to X_E = \mathbb{P}^4 \times_{\alpha_p} E$. Consider the elliptic fibration to $X = \mathbb{P}^4/\alpha_p$ and the projective bundle onto $E^{(p)}$. Let Y be an ample divisor in the fixed point free locus of X. Our goal is to calculate the Hodge and de Rham cohomology of the threefold Y. Let $Y_E = Y \times_X X_E$ be the E fibration over Y.

\[
\begin{array}{ccc}
Y_E & \longrightarrow & X_E = \mathbb{P}^4 \times_{\alpha_p} E \\
\downarrow & & \downarrow \\
Y & \longrightarrow & X = \mathbb{P}^4/\alpha_p \\
\downarrow & & \downarrow \\
E & \longrightarrow & E^{(p)}
\end{array}
\]

Date: November 24, 2018.
We can calculate the cohomology of Y by hypercovering spectral sequence induced by $Y_E \to Y$. Let's identify the Cech nerves of the covering. In order to avoid confusion with fiber product, we denote the quotient of $E \times \mathbb{P}^4$ by diagonal α_p action by $\frac{E \times X_{\mathbb{P}^4}}{\alpha_p}$). Note that

$$Y_E \times_Y Y_E = \left(E \times \mathbb{P}^4 \right) \times_{\mathbb{P}^4/\alpha_p} \left(\mathbb{P}^4 \times E \right) \times_Y \left(Y \times \mathbb{P}^4/\alpha_p \right) \times_{\mathbb{P}^4/\alpha_p} \left(\mathbb{P}^4 \times \mathbb{P}^4 \right) \times_{\mathbb{P}^4/\alpha_p} \left(\mathbb{P}^4 \times E \right) \times_Y \left(E \times \mathbb{P}^4 \right) \times_{\mathbb{P}^4/\alpha_p} \left(E \times \mathbb{P}^4 \right) \times_{\mathbb{P}^4/\alpha_p} \mathbb{P}^4 \times \mathbb{P}^4$$

The second to last step equality follows because $\frac{E \times X_{\mathbb{P}^4}}{\alpha_p}$ is an E-torsor over \mathbb{P}^4/α_p, after base change by itself, the diagonal provides a section, so it is a trivial E-torsor. Similarly, one can show the degree n part of the coskeleton to $Y_E \to Y$ can be expressed as $U_n = E^{n-1} \times Y_E$.

In the following sections, we first calculate the crystalline cohomology of Y using the hypercovering, then get the de Rham cohomology by derived tensor. After that we use the hypercovering to calculate the Hodge numbers of Y.

3.1. Crystalline cohomology.

3.1.1. Preparation.

3.1.2. $H^i_{\text{crys}}(X_E)$. The crystalline cohomology of a projective bundle is the same as that of a product [reference], we have

$$H^0_{\text{crys}}(X_E) = H^0_{\text{crys}}(X) = W$$

and for $1 \leq i \leq 9$, we have

$$H^i_{\text{crys}}(X_E) = W \oplus W.$$

3.1.3. $H^i_{\text{crys}}(Y_E)$. We adopt the following Lefschetz theorem in [BMS16, 2.12]

Theorem 3.1.1. Let k be a perfect field of characteristic p, and X be a smooth projective variety of dimension d over k, with a line bundle \mathcal{L}. Let $i_L \geq 0$ be an integer such that for any coherent sheaf \mathcal{F} on X, the cohomology group $H^i(X, \mathcal{F} \otimes \mathcal{L}^n)$ vanishes if n is sufficiently large and $i > i_L$. Then there exists some integer n_0 such that for $n \geq n_0$, and any smooth hypersurface (not necessarily ample) $H \subset X$ with divisor \mathcal{L}^n, the map

$$H^j_{\text{crys}}(X/W) \to H^j_{\text{crys}}(H/W)$$

is an isomorphism for $j < d - i_L - 1$ and injective with torsion-free cokernel for $j = d - i_L - 1$.

Note that Y_E is a relative hypersurface for $X_E \to E^{(p)}$. Take $i_L = 1$, we know

$$H^0(Y_E) = W, H^1(Y_E) = W \oplus W, H^2(Y_E) = W \oplus W$$

and

$$0 \to H^3(Y_E) \to H^3(X_E) = W^\oplus 2 \to W^\oplus r \to 0$$

Note that $H^2(Y_E) \cong H^2(E^{(p)}) \oplus H^0(E^{(p)})$, but perhaps non-canonically, anyway the splitting can be obtained by taking a section of the projective bundle.
3.1.4. The hypercovering spectral sequence. The E_1 page of hypercohomology spectral sequence for crystalline cohomology has the following form:

$$
\begin{array}{cccc}
H^0(U_4) & H^1(U_3) & H^2(U_2) & H^3(U_1) \\
d_1^{3,0} & d_1^{2,0} & d_1^{1,0} & d_1^{0,0} \\
H^0(U_3) & H^1(U_2) & H^2(U_1) & H^3(U_0) \\
\end{array}
$$

3.1.5. The maps. Let’s pin down the maps corresponding to $H^i(E \times E_Y/W) \rightarrow H^i(E_Y/W)$ induced by projection and action, we claim this is the same as induced from the fiber product diagram:

$$
\begin{array}{ccc}
E \times Y_E & \rightarrow & Y_E \\
\downarrow & & \downarrow \\
E \times E^{(p)} & \rightarrow & E^{(p)} \\
\end{array}
$$

Note that we have sections, $E \times 0$ and $0 \times E^{(p)}$. By Kunneth formula, $H^i(E \times E^{(p)}) = \wedge^i(H^1(E, \mathcal{O}) \oplus H^1(E^{(p)}, \mathcal{O}))$. For the action map, the induced map on frobenius is $\phi = 0$: $H^1(E^{(p)}/W) \rightarrow H^1(E/W)$ is given by the matrix (where $v_p(\pi) = 1$)

$$
\begin{bmatrix}
0 & \pi \\
1 & 0
\end{bmatrix}
$$

3.1.6. The first column. This column has terms

$$
H^0(Y_E) \rightarrow H^0(E \times Y_E) \rightarrow H^0(E \times E \times Y_E) \rightarrow \cdots ,
$$

where the differential is given by alternating sum of face maps. Since Y_E is smooth connected, we know this column is

$$
W \xrightarrow{0} W \xrightarrow{1} W \xrightarrow{0} W \xrightarrow{1} W \xrightarrow{0} \cdots
$$

In degrees 0, 1, this can be identified with $H^i(E^{(p)})$ via pullback.

3.1.7. The second column. This column has terms

$$
H^1(Y_E) \rightarrow H^1(E \times Y_E) \rightarrow H^1(E \times E \times Y_E) \rightarrow \cdots .
$$

This can be identified via Kunneth formula with

$$
H^1(E^{(p)}) \rightarrow H^1(E) \oplus H^1(E^{(p)}) \rightarrow H^1(E)^{\oplus 2} \oplus H^1(E^{(p)}) \rightarrow H^1(E)^{\oplus 3} \oplus H^1(E^{(p)})
$$

The homology of this complex is

$$
0 \ W/p \ 0 \ 0 \ \cdots
$$
3.1.8. The third column. The column has terms
\[H^2(Y_E) \rightarrow H^2(E \times Y_E) \rightarrow H^2(E \times E \times Y_E) \rightarrow \cdots. \]
This can be identified via Kunneth formula with
\[H^2(Y_E) \cong H^2(E) \oplus H^1(E) \otimes H^1(Y_E) \oplus H^2(Y_E)[1]. \]
\[H^2(E) \oplus H^2(E) \oplus H^2(Y_E) \oplus (H^1(E) \otimes H^1(E)) \oplus (H^1(E) \otimes H^1(Y_E)) \oplus (H^1(E) \otimes H^1(E^p)) \oplus (H^1(Y_E) \otimes H^1(E^p)) \oplus (H^1(Y_E) \otimes H^1(Y_E)) \oplus \cdots \]
This is a bit complicated to express the maps, but we guess this may be isomorphic to the first column direct sum with the third column, which is
\[W \oplus W/p \Rightarrow. \]

3.2. De Rham cohomology. Hence the crystalline cohomology is
\[H^0_{cryst}(Y) = W, H^1_{cryst}(Y) = 0, \]
\[0 \rightarrow W/p \rightarrow H^2_{cryst}(Y) \rightarrow W \rightarrow 0. \]

Hence
\[H^2_{cryst}(Y) = W \oplus W/p. \]
The de Rham cohomology is
\[H^0_{dR}(Y) = W/p \]
\[H^1_{dR}(Y) = W/p \]
\[H^2_{dR}(Y) = W/p \oplus W/p \]

3.3. Hodge Cohomology.

3.3.1. Preparation.

3.3.2. \(H^i(Y_E, \mathcal{O}_{Y_E}) \). Consider the Leray spectral sequence associated to the projective bundle \(f: X_E \rightarrow E^p \), by cohomology and base change, we know the \(E_2 \) page only has entry \(H^0(E^p, f_* \mathcal{O}_{X_E}) \) and \(H^1(E^p, f_* \mathcal{O}_{X_E}) \). As \(f \) is geometrically reduced and geometrically connected, we know \(H^0(X_E, \mathcal{O}_{X_E}) = H^1(X_E, \mathcal{O}_{X_E}) = k \), all other cohomologies vanish. Let \(T \) be the ideal sheaf of \(Y_E \) in \(X_E \), we have
\[0 = H^0(X_E, T) \rightarrow H^0(X_E, \mathcal{O}_{X_E}) \rightarrow H^0(Y_E, \mathcal{O}_{Y_E}) \rightarrow \]
\[0 = H^1(X_E, T) \rightarrow H^1(X_E, \mathcal{O}_{X_E}) \rightarrow H^1(Y_E, \mathcal{O}_{Y_E}) \rightarrow \]
\[0 = H^2(X_E, T) \rightarrow H^2(X_E, \mathcal{O}_{X_E}) \rightarrow H^2(Y_E, \mathcal{O}_{Y_E}) \rightarrow \]
\[0 = H^3(X_E, T) \rightarrow H^3(X_E, \mathcal{O}_{X_E}) \rightarrow H^3(Y_E, \mathcal{O}_{Y_E}) \rightarrow \]
Hence we know
\[H^0(Y_E, \mathcal{O}_{Y_E}) = H^1(Y_E, \mathcal{O}_{Y_E}) = k, H^2(Y_E, \mathcal{O}_{Y_E}) = 0. \]

3.3.3. \(H^i(Y_E, \Omega^1_{Y_E}) \). We know the Hodge numbers of \(X_E \) are
\[H^0(X_E, \Omega^1_{X_E}) = k, H^1(X_E, \Omega^1_{X_E}) = k + k \]
and
\[H^2(X_E, \Omega^1_{X_E}) = k. \]
We have the short exact sequence
\[0 \rightarrow (\mathcal{I}/\mathcal{I}^2)|_{Y_E} \rightarrow \Omega^1_{X_E}|_{Y_E} \rightarrow \Omega^1_{Y_E} \rightarrow 0. \]
Thus the associated long exact sequence
\[0 \rightarrow H^0(Y_E, (\mathcal{I}/\mathcal{I}^2)|_{Y_E}) \rightarrow H^0(Y_E, \Omega^1_{X_E}|_{Y_E}) \rightarrow H^0(Y_E, \Omega^1_{Y_E}) \rightarrow \]
\[H^1(Y_E, (\mathcal{I}/\mathcal{I}^2)|_{Y_E}) \rightarrow H^1(Y_E, \Omega^1_{X_E}|_{Y_E}) \rightarrow H^1(Y_E, \Omega^1_{Y_E}) \rightarrow \]
\[H^2(Y_E, (\mathcal{I}/\mathcal{I}^2)|_{Y_E}) \rightarrow H^2(Y_E, \Omega^1_{X_E}|_{Y_E}) \rightarrow H^2(Y_E, \Omega^1_{Y_E}) \rightarrow \]
We apply cohomology and base change to calculate the fibers of \(\mathcal{I}/\mathcal{I}^2 \). Suppose the relative degree of \(Y_E \) is \(d \), take
\[0 \rightarrow \mathcal{O}_{\mathbb{P}^n}(-2d) \rightarrow \mathcal{O}_{\mathbb{P}^n}(-d) \rightarrow \mathcal{O}_H(-d) \rightarrow 0 \]
This gives the long exact sequence

$$0 \to H^0(O_H(-d)) \to H^1(O_{p^*}(-2d)) \to H^1(O_{p^*}(-d)) \to H^1(O_H(-d)) \to$$

$$\to H^2(O_{p^*}(-2d)) \to H^2(O_{p^*}(-d)) \to H^2(O_H(-d)) \to$$

$$\to H^3(O_{p^*}(-2d)) \to H^3(O_{p^*}(-d)) \to H^3(O_H(-d)) \to$$

$$\to H^4(O_{p^*}(-2d)) \to H^4(O_{p^*}(-d)) \to H^4(O_H(-d)) \to$$

We see $H^i(O_H(-d)) = 0$ for $i = 0, 1, 2$, and could be large for $d = 3$. Hence

$$H^0(Y_E, \Omega^1_{X_E}|Y_E) = H^0(Y_E, \Omega^1_{X_E}|Y_E)$$

and

$$H^1(Y_E, \Omega^1_{X_E}) = H^1(Y_E, \Omega^1_{X_E}|Y_E).$$

Note that we have

$$0 \to \Omega^1_{X_E} \otimes \mathcal{I} \to \Omega^1_{X_E} \to \Omega^1_{X_E}|Y_E \to 0$$

The long exact sequence tells us

$$0 \to H^0(X_E, \Omega^1_{X_E} \otimes \mathcal{I}) \to H^0(X_E, \Omega^1_{X_E}) \to H^0(Y_E, \Omega^1_{X_E}|Y_E) \to$$

$$\to H^1(X_E, \Omega^1_{X_E} \otimes \mathcal{I}) \to H^1(X_E, \Omega^1_{X_E}) \to H^1(Y_E, \Omega^1_{X_E}|Y_E) \to$$

$$\to H^2(X_E, \Omega^1_{X_E} \otimes \mathcal{I}) \to H^2(X_E, \Omega^1_{X_E}) \to H^2(Y_E, \Omega^1_{X_E}|Y_E) \to$$

$$\to H^3(X_E, \Omega^1_{X_E} \otimes \mathcal{I}) \to H^3(X_E, \Omega^1_{X_E}) \to H^3(Y_E, \Omega^1_{X_E}|Y_E) \to$$

We calculate $H^i(X_E, \Omega^1_{X_E} \otimes \mathcal{I})$. Let F be a fiber, we have

$$0 \to \mathcal{O}_F(-d) \to \Omega^1_{X_E}(-d)|_F \to \Omega^1_{X_E}(-d) \to 0,$$

hence long exact sequence

$$\cdots \to H^i(F, \mathcal{O}_F(-d)) \to H^i(F, \Omega^1_{X_E}(-d)|_F) \to H^i(F, \Omega^1_{F}(-d)) \to \cdots$$

Note Bott’s calculation that $H^q(\mathbb{P}^n, \mathcal{O}^p_{\mathbb{P}^n}(r)) = 0$ unless

$$(1)p = q, r = 0, \quad (2)q = 0, r > p, \quad (3)q = n, r < p - n.$$

We have $H^i(F, \Omega^1_{X_E}(-d)|_F) = 0$ for $i = 0, 1, 2, 3$, by cohomology and base change, we know $H^i(X_E, \Omega^1_{X_E} \otimes \mathcal{I}) = 0$ for $i = 0, 1, 2, 3$. Hence $H^i(X_E, \Omega^1_{X_E}) = H^i(Y_E, \Omega^1_{X_E}|Y_E)$ for $i = 0, 1, 2$, hence

$$H^0(Y_E, \Omega^1_{Y_E}) = k,$$

$$H^1(Y_E, \Omega^1_{Y_E}) = k^{\otimes 2},$$

and

$$h^2(Y_E, \Omega^1_{Y_E}) \geq h^2(Y_E, \Omega^1_{X_E}|Y_E) = h^2(X_E, \Omega^1_{X_E}) = 1.$$

3.3.4. $H^i(Y_E, \Omega^2_{Y_E}).$ The short exact sequence

$$0 \to \mathcal{I}/\mathcal{I}^2 \big|_{Y_E} \to \Omega^1_{X_E}|Y_E \to \Omega^1_{Y_E} \to 0$$

implies the short exact sequence

$$0 \to \Omega^1_{Y_E} \otimes (\mathcal{I}/\mathcal{I}^2) \big|_{Y_E} \to \Omega^2_{X_E}|Y_E \to \Omega^2_{Y_E} \to 0$$

We only care about $H^0(Y_E, \Omega^2_{Y_E})$, so look at $H^i(\Omega^1_{Y_E} \otimes (\mathcal{I}/\mathcal{I}^2))$ for $i = 0, 1$ and then $H^0(Y_E, \Omega^2_{X_E}|Y_E)$.

The first step:

For a fiber G of $Y_E \to E^{(p)}$, we analyse $\Omega^1_{Y_E} \otimes (\mathcal{I}/\mathcal{I}^2)|_G$. Note that we have $0 \to \mathcal{O}_G \to \Omega^1_{Y_E}|_G \to \Omega^2_{G} \to 0$.

Hence

$$0 \to \mathcal{O}_G(-d) \to \Omega^1_{Y_E}|_G(-d) \to \Omega^2_{G}(-d) \to 0.$$
0 → \mathcal{O}_F → \Omega^1_{X_E}|_F → \Omega^1_F → 0, hence 0 → \Omega^1_F → \Omega^2_{X_E}|_F → \Omega^2_F → 0, hence 0 → \Omega^1_F(-d) → \Omega^2_{X_E}|_F(-d) → \Omega^2_F(-d) → 0. But by Bott’s calculation \(H^0(F, \Omega^1_F(-d)) = H^0(F, \Omega^2_F(-d)) = 0 \), hence \(H^1(F, \Omega^2_{X_E}|_F(-d)) = 0 \). So \(H^0(Y_E, \Omega^2_{X_E}|_F) = H^0(Y_E, \Omega^2_{X_E}|_F) = 0 \).

3.4. Calculation with hypercovering.

3.4.1. The maps. Let’s pin down the maps corresponding to \(H^i(E \times E, \mathcal{O}) → H^i(E_E, \mathcal{O}) \) induced by projection and action, we claim this is the same as induced from the fiber product diagram

\[
\begin{array}{c}
E \times Y_E \longrightarrow Y_E \\
\downarrow \downarrow \\
E \times E^{(p)} \longrightarrow E^{(p)}
\end{array}
\]

Note that we have sections, \(E \times 0 \) and \(0 \times E \). By Kunneth formula,

\[
H^i(E \times E^{(p)}) = \bigwedge^i (H^1(E, \mathcal{O}) \oplus H^1(E^{(p)}, \mathcal{O})).
\]

For the action map, the induced map on frobenius is \(\phi = 0 : H^1(E^{(p)}, \mathcal{O}) → H^1(E, \mathcal{O}) \).

3.4.2. \(H^2(Y, \mathcal{O}) \). Consider the hypercovering spectral sequence whose \(E_1 \) page is

\[
\begin{array}{ccc}
H^0(E^3 \times Y_E, \mathcal{O}) & H^1(E^2 \times Y_E, \mathcal{O}) & H^2(E \times Y_E, \mathcal{O}) \\
d_2^0 & d_2^1 & d_2^2 \\
H^0(E^2 \times Y_E, \mathcal{O}) & H^1(E \times Y_E, \mathcal{O}) & \\
d_2^0 & \\
H^0(Y_E, \mathcal{O}) & H^1(Y_E, \mathcal{O}) & \\
& \\
& \\
\end{array}
\]

The map \(U_1 → U_0 \) is given by

\[
d_0^1 : (a, x) → x, \quad d_0^2 : (a, x) → \phi a + x = x,
\]

the map is the same as previously calculated, we have the corresponding matrix, where \(\phi = 0 \)

\[
\begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & -\phi
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
0 & \phi \\
0 & 1
\end{bmatrix}.
\]

Thus the \(E_2 \) page is

\[
\begin{array}{cccc}
& & & \\
& 0 & 0 & \? \\
& & & \\
& 0 & k & \? \\
& & & \\
k & k & 0 \\
& & & \\
\end{array}
\]

Hence

\[
H^1(Y, \mathcal{O}) = k, H^2(Y, \mathcal{O}) = k.
\]
3.4.3. $H^1(Y, \Omega^1_Y)$. Note that the hypercovering spectral sequence for $H^1(Y, \Omega^1_Y)$ is

\[
\begin{array}{c}
\begin{array}{c}
H^0(E^2 \times Y_E, \Omega^1) \\
d_{1,0}^1 \\
H^0(E \times Y_E, \Omega^1) \\
d_{2,0}^2 \\
H^0(Y_E, \Omega^1)
\end{array}
\end{array}
\begin{array}{c}
H^1(E \times Y_E, \Omega^1) \\
d_{2,1}^1 \\
H^1(Y_E, \Omega^1)
\end{array}
\begin{array}{c}
k^\oplus 3 \\
k^\oplus 2 \\
k^\oplus 4 \oplus k \\
k \\
k \oplus k
\end{array}
\]

The E_2 page is

\[
\begin{array}{c}
0 \\
k \\
? \\
k \\
k \oplus k
\end{array}
\]

The $d_{2,1}^1$ map is given by $[0,1,0,1]^T$. Hence

$H^1(Y, \Omega^1_Y) = 3$

3.4.4. $H^0(Y, \Omega^2_Y)$. By the lemma in previous section, $H^0(Y_E, \Omega^2_{Y_E}) = 0$, hence

$H^0(Y, \Omega^2_Y) = 0$.

3.5. **Conclusion.** In the example, we obtain a threefold X with

$h^{1,0} = h^{0,1} = 1, h^{1,1}_{dR} = 1$,

and

$h^{2,0} = 0, h^{1,1} = 3, h^{0,2} = 1, h^{2}_{dR} = 2$.

If we take the sixfold $X \times X$, by Kunneth formula, we have $h^{2,0} + h^{1,1} + h^{0,2} = 1 + 8 + 3 = 12$, while $h^{2}_{dR} = 5$. Slicing with hypersurfaces of sufficiently high degree, we arrive at a threefold with $h^{2}_{Hdg} - h^{2}_{dR} = 5$, this example could be used to pin down the structure of Hodge ring of varieties, see [vDdB18].

References
