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1 Introduction

In this note, we will study the growth of gonality in Galois, unramified maps
of curves π : X → Y . For us, a curve will mean a geometrically reduced,
geometrically irreducible, smooth projective scheme of dimension 1 over a field
k unless stated otherwise. Throughout, we assume that g(Y ) ≥ 2. The two
main results are the following:

Theorem 1. Let π : X → Y be a Galois, unramified map between two l-gonal
curves over k. Suppose Y has a k-point. If Y does not have a gonal map
factoring through a genus 1 curve, then deg π ≤ l2.

Theorem 2. Let π : X → Y be a Galois, unramified map with γk(X) = l.
Suppose Y does not map to a genus 1 curve. Then deg π < 2l2.

Corollary 1.1. If π : X → Y is a Galois, unramified map of degree n and Y

does not map to a genus 1 curve, then γk(X) ≥
(
n
2

) 1
2 .

The hypothesis about elliptic curves is necessary for both results. For instance,
suppose Y had a gonal map factoring through an elliptic curve E. Given any
unramified Galois cover E′ → E, we can build the following cartesian diagram:

X
π

> Y

E′
∨

> E
∨

This constructs arbitrarily large Galois, unramified covers of Y . Moreover
Lemma 2.1 implies γk(X) ≥ γk(Y ) and hence γk(X) = γk(Y ).

Definition 1.1. Let X be a smooth projective curve over a field k. The gonality
of X (over k), denoted γk(X), is the minimal degree of a non-constant map
X → P1. If f : X → P1 is a minimal degree map, we say that f is gonal.

Definition 1.2. We say X admits an essentially unique map to C of degree m
if there is a degree m map f : X → C of degree m and if all other degree m
maps g : X → C are obtained by post-composing with an automorphism of C.
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In other words, degree m maps X → C form a torsor for Aut(C). Equivalently,
X admits an essentially unique map to C of degree m iff there is a unique, index
m subfield of k(X) that is abstractly isomorphic to k(C).

The main idea is roughly to show that a map π : X → Y with γk(X) = l
is a fiber product (up to normalization) of a Galois map between curves of
bounded genus with bounded ramification, using Proposition 2.1 and Proposi-
tion 3.1. This will allow us to bound the degree of π through Lemma 2.4. Our
methods and constructions are similar to those of A. Tamagawa in section 2 of
[4].

2 Basic Observations

The first observation about gonality is that it doesn’t decrease through a map
of curves. I learned this from a paper of B. Poonen, [3], which says that the idea
for this proof go back at least to [2]. For completeness, I reproduce the proof
here.

Lemma 2.1. Let X, Y be smooth projective curves defined over a field k. If
π : X → Y is a morphism defined over k, then the gonality of Y is no bigger
than the gonality of X.

Proof. For motivation, we first prove the Galois case: suppose π is a Galois cover
(not necessarily unramified) with group G and degree n. Let f be a minimal
degree map from X to P1, say of degree l. Now, f is an element of k(X) which
satisfies the degree-n polynomial∏

σ∈G
(t− σf) ∈ k(Y )[t]

The coefficients of this polynomial have degree at most nl when considered as
elements of k(X) by the strong triangle inequality. Thus, each coefficient has
degree at most l when considered an element of k(Y ). At least one of the coef-
ficients is non-constant because f is non-constant, so γk(Y ) ≤ l.

The general (not-necessarily Galois or even separable) case is only slightly more
complicated; let P (t) be the characteristic polynomial of f as an element of
k(X)/k(Y ). We can find some field M containing k(X) such that in M the
polynomial P splits as

P (t) =

n∏
i=1

(t− fi)

Let s = [M : k(X)]. Then the functions fi, considered as elements of M , have
degree sl. Thus the coefficients of the characteristic polynomial, considered
as functions in M , have degree at most sln, by the strong triangle inequality.
Hence, as elements of k(Y ), they have degree at most l.
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Lemma 2.2. If π : X → Y is a map where γk(X) = γk(Y ) = l, then any
minimal-degree map f : X → P1 is a primitive element of the field extension
k(X)overk(Y ).

Proof.

k(X) ⊇k(Y )[f ]⊃ k(Y )

∪

k(f)

[k(X) : k(f)] = l so [k(Y )[f ] : k(f)] ≤ l. Let D be the smooth projective model
of k(Y )[f ]. We have a factorization: π : X → D → Y . Lemma 2.1 implies that
γk(D) = l, hence k(Y )[f ] = k(X) as desired.

Proposition 2.1. Same situation as Lemma 2.2. If X admits an essentially
unique map to C that continues to a gonal map, then we have the following
square which is cartesian up to normalization. The bottom arrow is Galois.

X
π

> Y = X/G

C

m:1

∨
ρ

> C/G

m:1
∨

Proof. As the mapX → C is unique, G acts on C. Let n = |G|. We need to show
G acts faithfully of C, or equivalently that deg ρ = n. Let f : X → C → P1 be a
gonal map. We know that f is a primitive element for the extension k(X)/k(Y )
and hence has degree n over k(Y ). Thus, the degree of f over any subfield
of k(Y ), i.e. k(C)G, is at least n. By definiton, f ∈ k(C). The bottom map
arises from a group quotient, so it has degree at most n, with equality iff G acts
faithfully.

Remark 2.1. G does not necessarily act faithfully on C if γk(X) 6= γk(Y )!

Lemma 2.3. Suppose we have a diagram

X
π

> Y = X/G

C

m:1

∨
ρ

> C/G

m:1
∨

which is cartesian up to normalization and with π unramified. Then all of the
ramification indices of ρ divide m.

Proof. We will show below that because π is unramified, the ramification index
ec of a point c ∈ C over s ∈ C/G must divide each of the ramification indices
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ey over s. Thus ec divides their sum, which is m.

x > y

c
∨

> s
∨

Pick uniformizers t and u at s and c respectively. Then the order of vanishing
of t at x is vx(t) = vy(t) = ey because π is unramified. On the other hand,
vx(t) = vc(t)vx(u). Thus vc(t)|ey, as desired.

Lemma 2.4. Let P be a genus 0 curve and τ : C → P a Galois morphism of
curves, branched over a finite set S ⊂ P , with ramification numbers ec. Denote
the genus of C by g and suppose g 6= 1. Then deg τ ≤ |(2g − 2)|lcm(ec) .

Proof. We may suppose k is algebraically closed. Note that because C is geo-
metrically irreducible, the map cannot be unramified. Let n be the degree of τ .
Let δc be such that the ramification divisor R at c is ec+ δc−1. Here, δc = 0 iff
ramification is tame at c. Applying the Riemann-Hurwitz formula, we see that

2g − 2 = −2n+
∑
s∈S

∑
c∈τ−1(s)

(ec − 1 + δc)

The map τ is Galois so ec and δc are constant in fibers. Similarly, the size of
the fiber at s is thus n

es
. Expanding, we get

2g − 2 = −2n+
∑
s∈S

(es − 1 + δs)
∑

c∈τ−1(s)

1

2g − 2 = (|S| − 2)n+
∑
s∈S

(δs − 1)
n

es

2g − 2

n
= (|S| − 2) +

∑
s∈S

δs − 1

es

Now, the denominator of the RHS is bounded by lcm(ec) and hence n is bounded
as desired.

Remark 2.2. The Galois assumption is crucial! Lemma 2.4 is not true other-
wise.

3 Unique Curves

Proposition 3.1. Suppose f : X → P1 is a degree l map. Then there exists a
curve C of genus g, an integer m, and an essentially unique map ρ : X → C of
degree m such that there is factorization of f through ρ:

X → C → P1

such that gm < l2.
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Proof. If X had a unique g1l , we could set C = P1. Otherwise, X has another
g1l , say f ′. Taking the product, we get a map

(f.f ′) : X → P1 × P1

Call the image of this map D1, its normalization C1, and set a1 = deg(C1 → P1).
Then

g(C1) = pg(D1) ≤ pa(D1) ≤ (a1 − 1)2

If the induced map X → C1 is the unique degree l
a1

map between X and C1,
we can set C = C1 and we are done. Otherwise, there are at least 2, and we get
a map

X → C1 × C1

of type ( l
a1
, l
a1

). Call the image curve D2, its normalization C2, and let a2 =
deg(C2 → C1). Then, the adjunction formula tells us

2g(D2)− 2 ≤ 2pa(D2)− 2 = (D2)2 +D2.K

The Hodge Index Theorem implies that (D2)2 ≤ 2a22 ([1] Exercise V.1.9). More-
over, we know that D2.K = 2(2g(C1) − 2)a2. Putting all of this together, we
get that

g(C2) ≤ a22 + 2a2(a1 − 1)2 − 2a2 + 1 = (a2 − 1)2 + 2a2(a1 − 1)2

If X → C2 is an isomorphism, then we can set C = X. If X → C2 is the
unique, degree l

a1a2
map between X and C2, we can set C = C2. Otherwise, we

continue the procedure until it terminates. At the end of the day, we will get a
map X → C, where

g(C) ≤ (an − 1)2 + 2an(an−1 − 1)2 + . . .+ 2n−1an . . . a2(a1 − 1)2

where a1a2 . . . an|l and m = deg(X → C) = l
a1...an

. Moreover, this will be the
unique degree m map between X and C by construction. Now, the proposition
will follow from the following lemma.

Lemma 3.1. If ai ≥ 2 are integers with a1 . . . an = d, then

(a1 − 1)2 + 2a1(a2 − 1)2 + . . .+ 2n−1a1 . . . an−1(an − 1)2 < d2

Proof. Induction on n. The base case is trivial, so suppose it is true for k. Say
a1 . . . ak = p. We must prove that

2ka1 . . . ak(ak+1 − 1)2 < p2(a2k+1 − 1)

This follows from the fact that 2k ≤ p and (ak+1 − 1)2 < (a2k+1 − 1).

Remark 3.1. Phil Engel remarked that Lemma 3.1 can be improved to (d−1)2.
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4 Proofs

Proof of Theorem 1. We have the following diagram, cartesian up to normal-
ization, where g(C) < l2 by Proposition 2.1 and Proposition 3.1.

X
π

> Y = X/G

C

m:1

∨
ρ

> C/G

m:1
∨

Note that because γk(X) = γk(Y ) = l and γk(C) ≥ γk(C/G), γk(C) =
γk(C/G) = l

m and hence the map Y → C/G can be continued to a gonal
map.

There are three cases: g(C/G) ≥ 2, g(C/G) = 1, or g(C/G) = 0. In the
first case, the Riemann-Hurwitz formula implies that deg(π) < l2. The second
case cannot happen by assumption.

We are left with the case that g(C/G) = 0. We assumed Y had a k-point,
so C/G has a k-point and is hence isomorphic to P1. Then l = m, so C ∼= P1,
because γk(C) = γk(C/G). In this case, Lemma 2.3 and Lemma 2.4 imply
deg ρ ≤ 2l. Putting all of the pieces together, we see that in all cases deg ρ ≤ l2,
as desired.

Remark 4.1. If l > 2, we in fact get deg π < l2.

Proof of Theorem 2. We again have the following diagram:

X
π

> Y = X/G

C

m:1

∨
ρ

> C/G
∨

where there is essentially one degree m map X → C. Here, the argument in
Proposition 2.1 fails and G need not act faithfully on C. Let the stabilizer of G
acting on C be H E G. The induced map X/H → Y is Galois and unramified

with group G/H. Moreover, γk(X/H) = γk(X)
|H| .

X > X/H > Y

C

m:1

∨
id
> C

m
|H| :1∨

> C/(G/H)

m
|H| :1∨

As before, there are three cases: g(C/(G/H)) ≥ 2, g(C/(G/H)) = 1, and
g(C/(G/H)) = 0. In the first case, note that |H| ≤ m. The Riemann-Hurwitz
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formula applied to the map C → C/(G/H) gives that |G/H| ≤ g(C). Proposi-
tion 3.1 therefore implies

deg(π) = |H||G/H| ≤ mg(C) < l2

The second case cannot happen by assumption; we assumed that Y did not map
to an elliptic curve.

We are left with the case that C/(G/H) is a genus 0 curve. We know that
g(C)m < l2. Lemma 2.4 and Lemma 2.3 applied to the right square implies
that

|G/H| ≤ (2g(C)− 2)(
m

|H|
) <

2l2

|H|

Thus |G| < 2l2, as desired.
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