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1 Introduction

In this note, we will study the growth of gonality in Galois, unramified maps
of curves # : X — Y. For us, a curve will mean a geometrically reduced,
geometrically irreducible, smooth projective scheme of dimension 1 over a field
k unless stated otherwise. Throughout, we assume that g(Y) > 2. The two
main results are the following:

Theorem 1. Let m: X — Y be a Galois, unramified map between two l-gonal
curves over k. Suppose Y has a k-point. If Y does not have a gonal map
factoring through a genus 1 curve, then degm < [2.

Theorem 2. Let 7 : X — Y be a Galois, unramified map with y.(X) = [.
Suppose Y does not map to a genus 1 curve. Then degm < 212.

Corollary 1.1. If 7 : X = Y is a Galois, unramified map of degree n and Y
1

does not map to a genus 1 curve, then v,(X) > (%)*.

The hypothesis about elliptic curves is necessary for both results. For instance,

suppose Y had a gonal map factoring through an elliptic curve E. Given any

unramified Galois cover E' — E, we can build the following cartesian diagram:

X Sy

R

E —>F

This constructs arbitrarily large Galois, unramified covers of Y. Moreover
Lemma 2.1 implies 5 (X) > v, (Y) and hence v5(X) = 7%(Y).

Definition 1.1. Let X be a smooth projective curve over a field k. The gonality
of X (over k), denoted vi,(X), is the minimal degree of a non-constant map
X =Pl Iff: X = P s a minimal degree map, we say that f is gonal.

Definition 1.2. We say X admits an essentially unique map to C of degree m
if there is a degree m map f : X — C of degree m and if all other degree m
maps g : X — C are obtained by post-composing with an automorphism of C.



In other words, degree m maps X — C' form a torsor for Aut(C). Equivalently,
X admits an essentially unique map to C of degree m iff there is a unique, index
m subfield of k(X)) that is abstractly isomorphic to k(C).

The main idea is roughly to show that a map 7 : X — Y with v (X) =1
is a fiber product (up to normalization) of a Galois map between curves of
bounded genus with bounded ramification, using Proposition 2.1 and Proposi-
tion 3.1. This will allow us to bound the degree of 7 through Lemma 2.4. Our
methods and constructions are similar to those of A. Tamagawa in section 2 of
[4].

2 Basic Observations

The first observation about gonality is that it doesn’t decrease through a map
of curves. I learned this from a paper of B. Poonen, [3], which says that the idea
for this proof go back at least to [2]. For completeness, I reproduce the proof
here.

Lemma 2.1. Let X, Y be smooth projective curves defined over a field k. If
w: X — Y is a morphism defined over k, then the gonality of Y is no bigger
than the gonality of X.

Proof. For motivation, we first prove the Galois case: suppose 7 is a Galois cover
(not necessarily unramified) with group G and degree n. Let f be a minimal
degree map from X to P!, say of degree I. Now, f is an element of k(X ) which
satisfies the degree-n polynomial

[[¢-ap) kM

ceG

The coefficients of this polynomial have degree at most nl when considered as
elements of k(X)) by the strong triangle inequality. Thus, each coefficient has
degree at most | when considered an element of k(Y"). At least one of the coef-
ficients is non-constant because f is non-constant, so v, (Y) < [.

The general (not-necessarily Galois or even separable) case is only slightly more
complicated; let P(t) be the characteristic polynomial of f as an element of
E(X)/k(Y). We can find some field M containing k(X) such that in M the
polynomial P splits as

n
Pt)=[1¢- 1)
i=1
Let s = [M : k(X)]. Then the functions f;, considered as elements of M, have
degree sl. Thus the coefficients of the characteristic polynomial, considered
as functions in M, have degree at most sln, by the strong triangle inequality.
Hence, as elements of k(Y"), they have degree at most . O



Lemma 2.2. If 7 : X — Y is a map where v(X) = v (Y) = I, then any
minimal-degree map f : X — P! is a primitive element of the field extension
kE(X)overk(Y).

Proof.

[(X) : k(f)] =1so [k(Y)[f] : k(f)] <. Let D be the smooth projective model
of k(Y)[f]. We have a factorization: 7 : X — D — Y. Lemma 2.1 implies that
k(D) =1, hence k(Y)[f] = k(X) as desired. O

Proposition 2.1. Same situation as Lemma 2.2. If X admits an essentially
unique map to C that continues to a gonal map, then we have the following
square which is cartesian up to normalization. The bottom arrow is Galois.

X~ —>vY =X/G

o e

c—L—>c/a

Proof. Asthemap X — C'is unique, G actson C. Let n = |G|. We need to show
G acts faithfully of C, or equivalently that degp=n. Let f : X = C = P! bea
gonal map. We know that f is a primitive element for the extension k(X)/k(Y")
and hence has degree n over k(Y). Thus, the degree of f over any subfield
of k(Y), i.e. k(C)Y, is at least n. By definiton, f € k(C). The bottom map
arises from a group quotient, so it has degree at most n, with equality iff G acts
faithfully. O

Remark 2.1. G does not necessarily act faithfully on C if v (X) # v (Y)!
Lemma 2.3. Suppose we have a diagram
X——Y = X/G
W e
c—L—>c/a

which is cartesian up to normalization and with © unramified. Then all of the
ramification indices of p divide m.

Proof. We will show below that because 7 is unramified, the ramification index
e. of a point ¢ € C over s € C'/G must divide each of the ramification indices



ey over s. Thus e. divides their sum, which is m.

r——>Y
c—>s
Pick uniformizers t and u at s and c respectively. Then the order of vanishing

of t at x is v,(t) = v,(t) = e, because 7 is unramified. On the other hand,
vy (t) = ve(t)vg(w). Thus ve(t)|ey, as desired. O

Lemma 2.4. Let P be a genus 0 curve and 7 : C' — P a Galois morphism of
curves, branched over a finite set S C P, with ramification numbers e.. Denote
the genus of C by g and suppose g # 1. Then degt < |(29 — 2)|lem(e.) .

Proof. We may suppose k is algebraically closed. Note that because C is geo-
metrically irreducible, the map cannot be unramified. Let n be the degree of 7.
Let d. be such that the ramification divisor R at ¢ is e. + . — 1. Here, 6. = 0 iff
ramification is tame at c. Applying the Riemann-Hurwitz formula, we see that

29-2=-2n+» Y (ec—1+0d)

s€S ceT—1(s)

The map 7 is Galois so e. and J. are constant in fibers. Similarly, the size of
the fiber at s is thus i Expanding, we get

20-2=-2m+) (e, —1+0d) Y 1

ses ceT—1(s)
n
29— 2= (|S] - 2
g-2= (S| - 2n+ 3 (0.~ )2
seS
2 — 2 5y —1
= (5] -2)+>
- (151 )+ses .

Now, the denominator of the RHS is bounded by lem(e,.) and hence n is bounded
as desired. O

Remark 2.2. The Galois assumption is crucial! Lemma 2.4 is not true other-
wise.

3 Unique Curves

Proposition 3.1. Suppose f : X — P! is a degree | map. Then there exists a
curve C of genus g, an integer m, and an essentially unique map p: X — C of
degree m such that there is factorization of f through p:

X = C =P

such that gm < [2.



Proof. If X had a unique g}, we could set C' = P'. Otherwise, X has another
gt, say f’. Taking the product, we get a map

(f.f): X =P xP!

Call the image of this map Dy, its normalization C1, and set a; = deg(C; — P1).
Then

9(C1) = pg(D1) < pa(Dy) < (a1 —1)°

If the induced map X — C is the unique degree alT map between X and C1,
we can set C' = C; and we are done. Otherwise, there are at least 2, and we get
a map

X—->01x0C

of type (ai7 alT) Call the image curve Ds, its normalization Cs, and let ay =

deg(Cy —>1C'1). Then, the adjunction formula tells us
2g(D3) — 2 < 2pa(Ds) — 2 = (D2)? 4+ Dy K

The Hodge Index Theorem implies that (D3)? < 2a3 ([1] Exercise V.1.9). More-
over, we know that Dy. K = 2(29(Cy) — 2)ae. Putting all of this together, we
get that

g(Cy) < a2 +2a3(a; —1)% — 2ap + 1 = (az — 1) + 2as(a; — 1)?

If X — (5 is an isomorphism, then we can set C' = X. If X — (5 is the
unique, degree al% map between X and Cs, we can set C' = C5. Otherwise, we

continue the procedure until it terminates. At the end of the day, we will get a
map X — C, where

g(C) < (an — 1?4+ 2an(an_1—1)*+...+2"a, ...az(a; — 1)?

where ajas . ..ay|l and m = deg(X — C) = al..l.a, . Moreover, this will be the
unique degree m map between X and C' by construction. Now, the proposition

will follow from the following lemma. O

Lemma 3.1. If a; > 2 are integers with ay . ..a, = d, then
(a1 —1)* +2a1(az —1)* +... 42" ay...an_1(an, — 1)? < d?

Proof. Induction on n. The base case is trivial, so suppose it is true for k. Say
ai ...ar =p. We must prove that

2%ay .. ap(api — 1)? < p*(aj, — 1)
This follows from the fact that 2 < p and (ag+1 — 1)* < (af,, — 1). O

Remark 3.1. Phil Engel remarked that Lemma 3.1 can be improved to (d—1)2.



4 Proofs

Proof of Theorem 1. We have the following diagram, cartesian up to normal-
ization, where g(C) < I? by Proposition 2.1 and Proposition 3.1.

X—~——>vVv =X/G

o e

c L —>c/a

Note that because 74(X) = 1% (Y) = | and v%(C) > w(C/G), w(C) =
(C/G) = L and hence the map Y — C/G can be continued to a gonal
map.

There are three cases: g(C/G) > 2, g(C/G) = 1, or g(C/G) = 0. In the
first case, the Riemann-Hurwitz formula implies that deg(m) < 2. The second
case cannot happen by assumption.

We are left with the case that g(C/G) = 0. We assumed Y had a k-point,
so C'//G has a k-point and is hence isomorphic to P!. Then [ = m, so C = P!,
because v, (C) = v, (C/G). In this case, Lemma 2.3 and Lemma 2.4 imply
deg p < 2I. Putting all of the pieces together, we see that in all cases deg p < I2,
as desired. O

Remark 4.1. Ifl > 2, we in fact get degm < I2.

Proof of Theorem 2. We again have the following diagram:

X~ —>vY =X/G

4

c L —sc/a

where there is essentially one degree m map X — C. Here, the argument in
Proposition 2.1 fails and G need not act faithfully on C'. Let the stabilizer of G
acting on C be H 4 G. The induced map X/H — Y is Galois and unramified

with group G/H. Moreover, v(X/H) = LTI({)‘()-

As before, there are three cases: ¢(C/(G/H)) > 2, ¢(C/(G/H)) = 1, and
9(C/(G/H)) = 0. In the first case, note that |H| < m. The Riemann-Hurwitz



formula applied to the map C' — C/(G/H) gives that |G/H| < g(C). Proposi-
tion 3.1 therefore implies

deg(m) = |H||G/H| < mg(C) < I”

The second case cannot happen by assumption; we assumed that Y did not map
to an elliptic curve.

We are left with the case that C/(G/H) is a genus 0 curve. We know that
g(C)m < I2. Lemma 2.4 and Lemma 2.3 applied to the right square implies

that
m 212

7) < —
[H|"  [H|
Thus |G| < 212, as desired. O

|G/H| < (29(C) = 2)(
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