1. Compute the following trigonometric integrals:

 (i) \(\int \sin(\theta)^2 \cos(\theta)^3 \, d\theta \),

 (ii) \(\int \sin(\sqrt{x}) \, dx \),

 (iii) \(\int_{\pi/2}^{0} \sin(t)^2 \cos(t)^2 \, dt \),

 (iv) \(\int \tan(y)^2 \, dy \),

 (v) \(\int \tan(z)^3 \sec(z) \, dz \),

 (vi) \(\int \sin(8u) \cos(5u) \, du \).

2. In this Problem, we are going to compute the following relations: for positive integers \(n \) and \(m \),

 \[
 \int_{-\pi}^{\pi} \sin(mx) \sin(nx) \, dx = \begin{cases}
 0 & \text{if } m \neq n, \\
 \pi & \text{if } m = n,
 \end{cases}
 \]

 \[
 \int_{-\pi}^{\pi} \cos(mx) \cos(nx) \, dx = \begin{cases}
 0 & \text{if } m \neq n, \\
 \pi & \text{if } m = n,
 \end{cases}
 \]

 \[
 \int_{-\pi}^{\pi} \sin(mx) \cos(nx) \, dx = 0.
 \]

 To do this, use the prosthaphaeresis formulae,

 \[
 \sin(A) \sin(B) = \frac{1}{2} \left(\cos(A - B) - \cos(A + B) \right),
 \]

 \[
 \cos(A) \cos(B) = \frac{1}{2} \left(\cos(A - B) + \cos(A + B) \right),
 \]

 \[
 \sin(A) \cos(B) = \frac{1}{2} \left(\sin(A - B) + \sin(A + B) \right),
 \]

to express the integrands as sums of individual trigonometric functions. Then show that the integrands you get end up being even or odd functions, depending on whether you have \(n \neq m \) or \(n = m \). If it is helpful to you, feel free to choose specific positive integers \(n \) and \(m \) representing the cases above in doing this computation.

 These relationships are effectively the starting point to Fourier analysis; these give you ways to tease out waves of a particular frequency in some given periodic signal!

3. Use the trigonometric substitution \(x = 3 \sin(\theta) \) to evaluate

 \[
 \int_{0}^{1} x^2 \sqrt{9 - x^2} \, dx.
 \]

 Be careful about the bounds of integration once you do your substitution: what must \(\theta \) be when \(x = 0 \) or \(x = 1 \)?

4. Sometimes you are going to have to do some manipulations before being able to perform a trigonometric substitution. Here is an example:

 (i) Write the polynomial \(3 - 2x - x^2 \) in the form \(a - (x + b)^2 \), for some numbers \(a \) and \(b \), by completing the square.
(ii) Do the substitution $u = x + b$ followed by a trigonometric substitution to evaluate the integral

$$\int \sqrt{3 - 2x - x^2} \, dx.$$

5. Given a circle of radius a, its circumference is $2\pi a$ and its area is πa^2.

(i) Compute the integral $\int_0^a 2\pi r \, dr$.

(ii) Thinking about polar coordinates, try to explain how the computation in (i) is a way of computing the area of a circle of radius r.

As an analogy, it might be helpful to think about how the integral

$$\int_0^1 x \, dx$$

computes the area of the right triangle

where the vertices are at $(0,0)$, $(0,1)$, and $(1,1)$.