AN EXAMPLE OF UNRAMIFIED LIFTINGS OF REPRESENTATIONS

SHOGOUKI

June 9, 2019

1. Goal

In this note, let us describe a pair of representations ρ_i over \mathbb{Z}_p of a finite group G such that:

- their reductions modulo p as \mathbb{F}_p -representations of G are the same: $\rho_1/p \cong$
- after base changing to \mathbb{C}_p , they are different representations of G.

Remark 1.1. (1) Had we allowed ramified base ring (instead of \mathbb{Z}_p), it would be easy to find such an example.

- (2) When p=2, the two characters of $G=\mathbb{Z}/2$ is such an example. But we regard it as "too special" because of the next remark.
- (3) If we set $G = \mathbb{Z}/p$ and $p \geq 3$, then there is no such an example. Consequently, if $p \geq 3$ and exactly divides the order of G, then there is no such an example.

2. Relevant rings

In the following, we set $G = \mathbb{Z}/p^2$. Let us introduce some rings and their properties for later reference. First let us consider the group ring $\mathbb{Z}_p[G] = \mathbb{Z}_p[T]/(T^{p^2} - 1)$.

Lemma 2.1.

(1) The generic fibre of the group ring is

$$\mathbb{Z}_p[G] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p = \mathbb{Q}_p \times \mathbb{Q}_p(\zeta_p) \times \mathbb{Q}_p(\zeta_{p^2});$$

(2) the special fibre of the group ring is

$$\mathbb{Z}_p[G] \otimes_{\mathbb{Z}_p} \mathbb{F}_p = \mathbb{F}_p[T]/((T-1)^{p^2}).$$

Our example is inspired by [Kan98, Definition 1.4-1.5]. Following the notation in loc. cit., let us denote:

- (1) $A_1 = \mathbb{Z}_p[T]/(\Phi_{p^2}(T)) = \mathbb{Z}_p[\zeta_{p^2}]$, where $\Phi_{p^2}(T) = \sum_{i=0}^{p-1} T^{ip}$; (2) $A_2 = \mathbb{Z}_p[T]/(T^p 1) = \mathbb{Z}_p[\mathbb{Z}/p]$; and
- (3) $A_3 = \mathbb{Z}_p[T]/(\Phi_p(T)) = \mathbb{Z}_p[\zeta_p]$, where $\Phi_p(T) = \sum_{i=0}^{p-1} T^i$.

The following lemma can be easily verified.

Lemma 2.2.

- (1) All of A_i 's are p-torsion free $\mathbb{Z}_p[G]$ -algebras;
- (2) $A_1[1/p] = \mathbb{Q}_p(\zeta_{p^2})$ and $A_1/p = \mathbb{F}_p[T]/((T-1)^{p^2-p});$ (3) $A_2[1/p] = \mathbb{Q}_p \times \mathbb{Q}_p(\zeta_p)$ and $A_2/p = \mathbb{F}_p[T]/((T-1)^p);$ and (4) $A_3[1/p] = \mathbb{Q}_p(\zeta_p)$ and $A_3/p = \mathbb{F}_p[T]/((T-1)^{p-1}).$

SHOGOUKI

2

3. Construction

Now we are ready to give the following:

Construction 3.1. For all $0 \le j \le p$, let Λ_j be the following fibre product of $\mathbb{Z}_p[G]$ -algebras:

$$\Lambda_j \longrightarrow A_1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$A_2 \longrightarrow \mathbb{F}_p[T]/((T-1)^j)$$

To our interest is the $\mathbb{Z}_p[G]$ -algebra structure of Λ_j after inverting p and the reduction modulo p. Inverting p kills $\mathbb{F}_p[T]/((T-1)^j)$, hence we know that $\Lambda_j[1/p] = \mathbb{Q}_p[G]$. So these Λ_j 's are just different integral lattices inside the group ring. As for the special fiber, let us look at the two extreme cases. When j=0, we have $\Lambda_0=A_1\times A_2$, and so $\Lambda_0/p=\mathbb{F}_p[T]/((T-1)^{p^2-p})\times \mathbb{F}_p[T]/((T-1)^p)$. On the other hand, when j=p, we have $\Lambda_p=\mathbb{Z}_p[G]$. Therefore, by Lemma 2.1(2), we get $\Lambda_p/p=\mathbb{F}_p[T]/((T-1)^{p^2})$.

After observing these huge amount of data¹, we may confidently guess the following:

Lemma 3.2. For all $0 \le j \le p$, we have

$$\Lambda_j/p = \mathbb{F}_p[T]/((T-1)^{p^2-p+j}) \times \mathbb{F}_p[T]/((T-1)^{p-j}).$$

Now let us make another construction:

Construction 3.3. For all $0 \le j \le p-1$, let Λ_j be the following fibre product of $\mathbb{Z}_p[G]$ -algebras:

$$\begin{array}{cccc} \Lambda_j' & \longrightarrow & A_1 \\ \downarrow & & \downarrow \\ A_3 & \longrightarrow & \mathbb{F}_p[T]/((T-1)^j) \end{array}$$

Similar to the case of Lemma 3.2, we guess the following:

Lemma 3.4. For all $0 \le j \le p-1$, we have

$$\Lambda_j'/p = \mathbb{F}_p[T]/((T-1)^{p^2-p+j}) \times \mathbb{F}_p[T]/((T-1)^{p-1-j}).$$

With everything stated, we can now state the example meeting our goal:

Example 3.5. Let
$$\rho_1 = \bigoplus_{i=1}^{p-1} \Lambda_i$$
 and $\rho_2 = A_3 \oplus \bigoplus_{i=1}^{p-1} \Lambda'_i$.

References

[Kan98] Ming-chang Kang. Integral representations of cyclic groups of order p^2 . J. Algebra, 207(1):82-126, 1998.

¹As two examples are really quite a lot, right?