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Abstract. This note was produced as part of the Stacks Project workshop

in August 2017, under the guidance of Brian Conrad. Briefly, the process
of Weil restriction is the algebro-geometric analogue of viewing a complex-

analytic manifold as a real-analytic manifold of twice the dimension. The

aim of this note is to discuss the Weil restriction of schemes and algebraic
spaces, highlighting pathological phenoma that appear in the theory and are

not widely-known.

1. Weil Restriction of Schemes

Definition 1.1. Let S′ → S be a morphism of schemes. Given an S′-scheme X ′,
consider the contravariant functor RS′/S(X ′) : (Sch/S)opp → (Sets) given by

T 7→ X ′(T ×S S′).

If the functor RS′/S(X ′) is representable by an S-scheme X, then we say that X is
the Weil restriction of X ′ along S′ → S, and we denote it by RS′/S(X ′).

Remark 1.2. Given any morphism of schemes f : S′ → S and any contravari-
ant functor F : (Sch/S′)opp → (Sets), one can define the pushforward functor
f∗F : (Sch/S)opp → (Sets) given on objects by T 7→ F (T ×S S′). If F is repre-
sentable by an S′-scheme X ′, then f∗F = RS′/S(X ′). This approach is later used
to define the Weil restriction of algebraic spaces.

Theorem 1.3. Let S′ → S be a finite and locally free morphism. Let X ′ be an S′-
scheme such that for any s ∈ S and any finite set P ⊆ X ′×SSpec(κ(s)), there exists
an affine open subscheme U ′ ⊆ X ′ containing P . Then, the functor RS′/S(X ′) is
representable by an S-scheme. In particular, if X ′ is a quasi-projective S′-scheme,
then the Weil restriction of X ′ exists.

Proof. Omitted. See [BLR90, Theorem 7.6/4]. �

In Proposition 2.10, we will show that RS′/S(X ′) is quasi-projective over S when
X ′ is quasi-projective over S′, where “quasi-projective” is defined as in [EGA, II,
Définition 5.3.1]. In [Wei82, §1.3], Weil introduced his version of the Weil restriction
of a quasi-projective scheme over a field. His construction is presented below and
it is shown to coincide with the modern definition in the case of quasi-projective
schemes over a field.
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Theorem 1.4. Let k′/k be a finite separable extension, let X ′ be a quasi-projective
k′-scheme, and let F/k be a finite Galois extension that splits k′/k. Let

X :=
∏

j : k′↪→F

X ′ ×k′,j F,

where the product runs over all embeddings k′ ↪→ F over k. Then, for σ ∈ Gal(F/k),
there exists an isomorphism ϕσ : X ' X over Spec(σ), such that

(
X, {ϕσ}σ∈Gal(F/k)

)
is an effective descent data, giving the k-scheme Rk′/k(X ′).

Proof. Let J denote the set of embeddings j : k′ ↪→ F over k and let G = Gal(F/k).
If j ∈ J , let Fj denote the field F viewed as a k′-algebra via the embedding j, and
let X ′j = X ′ ×k′ Fj . If j ∈ J and σ ∈ G, then σ ◦ j ∈ J , and this induces an
isomorphism X ′σ◦j ' X ′j over Spec(σ). Taking the product over all j ∈ J yields

an isomorphism ϕσ : X ' X over Spec(σ). For any σ, τ ∈ G, it is clear that
ϕσ ◦ ϕτ = ϕσ◦τ , so

(
X, {ϕσ}σ∈G

)
is a descent datum.

If X := Rk′/k(X ′), the F -scheme X ×k F has the canonical descent datum
{φσ}σ∈G, where φσ is the automorphism of X ×k F over Spec(σ) given by 1 ×
Spec(σ). It suffices to construct an F -isomorphism ψ : X ×k F ' X such that, for
any σ ∈ G, ψ ◦φσ ◦ψ−1 = ϕσ (i.e. under the isomorphism ψ, the descent data {φσ}
is sent to {ϕσ}).

To construct the isomorphism ψ, consider

X ×k F ' R(k′⊗kF )/F (X ′ ×k′ (k′ ⊗k F ))

' R(
⊔

j∈J Fj)/F

⊔
j∈J

X ′ ×k′ Fj


'
∏
j∈J

X ′ ×k′ Fj

= X,

where the first isomorphism follows from Proposition 2.2(2) below, and the third
isomorphism follows from Lemma 2.3. One can verify that the canonical descent
datum {φσ}σ∈G is carried to the descent datum {ϕσ}σ∈G under this isomorphism.

�

2. Basic Properties of Weil Restriction

Proposition 2.1. Let S′ → S be a morphism of schemes, let X be an S-scheme
and X ′ = X ×S S′. Then we have

RS′/S(X ′) = HomS(S′, X).

Proof. This is immediate from the universal property. �

Proposition 2.2. Let S′ → S be a finite, locally free morphism of schemes and let
X ′ be an S′-scheme such that the Weil restriction RS′/S(X ′) exists as an S-scheme.

(1) If X ′, S′, and S are affine with X ′ of finite type over S′, then RS′/S(X ′)
is affine of finite type over S.

(2) If T is an S-scheme and T ′ = T ×S S′, then there is an isomorphism

RT ′/T (X ′ ×S′ T ′) ' RS′/S(X ′)×S T.
of functors on (Sch/T ).
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(3) If X ′ → Z ′ and Y ′ → Z ′ are morphisms of S′-schemes, then there is an
isomorphism

RS′/S(X ′ ×Z′ Y ′) ' RS′/S(X ′)×RS′/S(Z′) RS′/S(Y ′)

of functors on (Sch/S).

Proof. Omitted. See the proof of [CGP15, Proposition A.5.2]. �

Lemma 2.3. Let S be a scheme. Given a finite collection {Si}i∈I of S-schemes,
consider the S-scheme S′ =

⊔
i∈I Si → S. Given a collection, for each i ∈ I, of

Si-schemes Xi, consider the S′-scheme

X ′ =
⊔
i∈I

Xi.

Then, there is an isomorphism

RS′/S(X ′) '
∏
i∈I

RSi/S(Xi)

of functors on (Sch/S).

Proof. For any S-scheme Y , observe that

HomS(Y,RS′/S(X ′)) ' HomS′(Y ×S S′, X ′)

'
∏
i∈I

HomSi(Y ×S Si, Xi)

'
∏
i∈I

HomS(Y,RSi/S(Xi))

' HomS

(
Y,
∏
i∈I

RSi/S(Xi)

)
.

�

Proposition 2.4. Let k be a field and let k′ be a nonzero, finite, reduced k-algebra.
If G′ is a k′-group scheme of finite type, then Rk′/k(G′) exists as a k-scheme and
it is a k-group scheme of finite type.

Proof. Omitted. See [CGP15, Proposition A.5.1]. �

Proposition 2.5. Let S′ → S be a finite, locally free morphism of schemes. As-
sume that either S is locally Noetherian or S′ → S is étale. Let X ′ be an S′-scheme
such that the Weil restriction RS′/S(X ′) exists as an S-scheme. If X ′ → S′ is
quasi-compact, then so is RS′/S(X ′)→ S.

Proof. Omitted. See [BLR90, Proposition 7.6/5(a)]. �

Proposition 2.6. Let S′ → S be a finite, locally free morphism of schemes. Let P
be one of the following properties of morphisms:

(1) monomorphism;
(2) open immersion;
(3) closed immersion;
(4) separated.
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If f ′ : X ′ → Y ′ is a morphism of S′-schemes with the property P, then the morphism
RS′/S(f ′) : RS′/S(X ′)→ RS′/S(Y ′) also has the property P.

Moreover, if the Weil restrictions RS′/S(X ′) and RS′/S(Y ′) exist as S-schemes,
then P may be one of the following properties of morphisms:

(5) smooth;
(6) étale;
(7) locally of finite type;
(8) locally of finite presentation;
(9) finite presentation.

Proof. The condition (1) follows immediately from the definition of the Weil restric-
tion, and (4) follows immediately from (3). For (2) and (3), see [BLR90, Proposition
7.6/2]. For conditions (5-9), we may assume that S and S′ are affine, by working
Zariski-locally on S. For (5-6), see the proof of [CGP15, Proposition A.5.2(4)]. For
(7-9), see [BLR90, Proposition 7.6/5]. �

Proposition 2.7. Let S′ → S be a finite, locally free morphism of schemes. Let
f ′ : X ′ → Y ′ be a smooth, surjective S′-morphism between schemes locally of finite
type over S′, and assume that the Weil restrictions of X ′ and Y ′ exist as S-schemes.
Then, RS′/S(f ′) : RS′/S(X ′)→ RS′/S(Y ′) is smooth and surjective.

Proof. Omitted. See the proof of [CGP15, Corollary A.5.4(1)]. �

Proposition 2.8. Let S′ → S be a finite, flat morphism of Noetherian schemes
that is surjective and radicial.

(1) If X ′1, . . . , X
′
n are quasi-projective S′-schemes, then

RS′/S

(
n⊔
i=1

X ′i

)
=

n⊔
i=1

RS′/S(X ′i).

(2) If {U ′i} is an open (resp. étale) cover of a quasi-projective S′-scheme X ′

then {RS′/S(U ′i)} is an open (resp. étale) cover of RS′/S(X ′).

Proof. For (1), denote X ′ =
⊔n
i=1X

′
i, X = RS′/S(X ′), and Xi = RS′/S(X ′i) for

each i. To show that the Xi are disjoint and cover X it suffices to check on each
fibre of X → S, so by base changing to an algebraic closure of κ(s) for each s ∈ S, we
may assume that S = Spec k for an algebraically closed field k. Then S′ = SpecB′

where B′ is a finite flat k-algebra, and B′ is local, by the radicial hypothesis. Each
intersection is

Xi ∩Xj = Xi ×X X ∼= RS′/S(X ′i ×X′ X ′j) = RS′/S(∅),
which is empty because Homk(Y,RS′/S(∅)) = HomB′(YB′ , ∅) for any k-scheme Y
(and since B′ 6= 0 then YB′ is nonempty unless Y is the empty scheme). To show
that the Xi cover X it suffices to show that the Xi(k)’s cover X(k). As B′ is local,
any morphism Spec(B′)→ X ′ =

⊔
X ′i factors through some X ′i, so X(k) = X ′(B′)

is covered by the sets Xi(k) = X ′i(B
′).

For (2), let {U ′i}ni=1 be a finite subcover and let U ′ :=
⊔n
i=1 U

′
i . Then, U ′ is quasi-

projective over S′ and it admits an étale surjection to X ′, and hence Proposition 2.7
implies, via (1), that RS′/S(U ′) =

⊔
RS′/S(U ′i)→ RS′/S(X ′) is a smooth surjection.

Moreover, by Proposition 2.6, RS′/S(U ′i) ↪→ RS′/S(X ′) is an open immersion. Thus,
{RS′/S(U ′i)} is an open cover of RS′/S(X ′).

�
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Proposition 2.9. Let S′ → S be a finite, étale morphism of schemes. If f ′ : X ′ →
Y ′ is flat (resp. proper) and the Weil restrictions of X ′ and Y ′ exist as S-schemes,
then RS′/S(f ′) : RS′/S(X ′)→ RS′/S(Y ′) is flat (resp. proper).

Proof. Omitted. See [BLR90, Proposition 7.6/5(f,g)]. �

Proposition 2.10. Let S′ → S be a finite flat morphism of Noetherian schemes.
If X ′ is a quasi-projective S′-scheme, then RS′/S(X ′) is quasi-projective S-scheme.

Proof. Let X = RS′/S(X ′). Let g′ : X ′ → S′ and f : X → S denote the structure
morphisms of X ′ and X, respectively. By [Sta17, Tag 01VW], it suffices to con-
struct an f -relatively ample invertible OX -module. Let N ′ be a g′-relatively ample
invertible OX′ -module, and consider the adjunction morphism q : X ×S S′ → X ′

and the projection morphism π : X ×S S′ → X. Note that π is finite and flat,
and L′ := q∗(N ′) is an invertible sheaf on X ×S S′. We claim that its norm
L = Normπ(L′), as defined in [EGA, II, §6.5], is f -relatively ample on X.

Relative ampleness is local on the base, so in order to verify that L is f -relatively
ample, we may assume that S is affine and N ′ is ample on X ′. By [Sta17, Tag
01PS], it suffices to show that for every x ∈ X, there exists n ≥ 1 and s ∈ Γ(X,L⊗n)
such that

Xs :=
{
z ∈ X : s(z) 6∈ mz(L⊗n)z

}
is an affine neighborhood of x.

Note that if {U ′i} is an open cover of X ′ such that every finite subset of X ′ of
bounded size is contained in some U ′i , then the open sets Ui := X \π(q−1(X ′ \U ′i))
form an open cover of X. Here, a subset of X ′ has bounded size if its image in
S′ lies in fibres of S′ → S with maximal fibre degree. Indeed, for any x ∈ X,
E := π−1(x) is such a finite subset of X ×S S′, so q(E) ⊆ U ′i for some index i. It
follows that E ∩ q−1(X ′ \ U ′i) = ∅, and hence x ∈ Ui.

For any n ≥ 1, we have L⊗n = Normπ(L′⊗n). For any s′ ∈ Γ(X ′,N ′⊗n), define
N(s′) ∈ Γ(X,L⊗n) to be the norm of the section q∗(s′) ∈ Γ(XS′ ,L′⊗n). Since N ′ is
ample, [Sta17, Tag 09NV] asserts that there is a collection {s′j} of global sections

of various powers N ′⊗nj of N ′, with nj ≥ 1, such that all loci X ′s′j
are affine, they

cover X ′, and every finite subset of X ′ of bounded size is contained in some X ′s′j
.

We claim that the subsets {XN(s′j)} form an open affine cover of X. By the above

observation and Proposition 2.2, it suffices to show that

XN(s′) = X \ π(q−1(X ′ \X ′s′)) = RS′/S(X ′s′).

The first equality is an application of [EGA, II, Corollaire 6.5.7]. The second
equality holds by functorial considerations. �

3. Geometric Connectedness

Proposition 3.1. Let k be a field, k′ a finite, Artinian, local k-algebra with max-
imal ideal m and residue field k. Let A be a smooth k-algebra of pure dimension
n. Assume that Ω1

A/k is globally generated by the differentials of the functions

f1, . . . , fn ∈ A. Then, there is a non-canonical isomorphism

Rk′/k(Spec(A⊗k k′)) ' Spec(A)× Adk
over Spec(A), where d = (dimk(k′)− 1) · n.
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Remark 3.2. Let k, k′ be as in Proposition 3.1, let X ′ be a scheme over k′, and
denote the special fibre by X ′0 := X ′ ×Spec(k′) Spec(k). There is a natural mor-
phism qX′ : Rk′/k(X ′) → X ′0 defined as follows: to a k-scheme T and a T -point
t ∈ Rk′/k(X ′)(T ) = X ′(T ×k k′), we associate the reduction modulo m, i.e. the
morphism

T = (T ×k k′)×k′ (k′/m)→ X ′0.

Thus, qX′ is surjecive when X ′ is k′-smooth, and, in the setting of Proposition 3.1,
Rk′/k(Spec(A⊗k k′)) is naturally a Spec(A)-scheme.

Proof. By Proposition 2.1, it suffices to show that

HomSpec(k)(Spec(k′),Spec(A)) = Spec(A[x1, . . . , xd]).

Consider the surjective multiplication map A⊗k A � A and denote the kernel by
I. By our assumption, we have a non-canonical isomorphism

(A⊗k A)/Im ' A[x1, . . . , xn]/(xi)
m

as A-algebras, for any m ≥ 1. Let M denote the nilpotence order of the maximal
ideal m ⊂ k′.

For every k-algebra B, an element

φ ∈ HomSpec(k)(Spec(k′),Spec(A))(B)

corresponds to a k-algebra homomorphism Φ: A→ k′ ⊗k B.
Given Φ as above, we get an A-algebra structure on B via the composition

p∗1 : A
Φ−→ k′ ⊗k B � B,

where the morphism k′⊗kB � B is induced from the surjection k′ � k. Similarly,
denote by p′∗1 the composition

p′∗1 : A
p∗1→ B → k′ ⊗k B,

where the second morphism is induced by the inclusion from k ↪→ k′. Observe that
p′∗1 and Φ give rise to a k-algebra homomorphism

Ψ := (p′∗1 ⊗ Φ): A⊗k A→ k′ ⊗k B.

This morphism has the property that the “first projection” (i.e. precomposition of

Ψ with the inclusion A
id⊗1−→ A ⊗k A into the first factor) agrees with p′∗1 , and the

ideal I ⊆ A⊗k A is mapped to m⊗B under Ψ. Given a pair (p′∗1 ,Ψ) as above, we
can consider the “second projection”, i.e. the composition

Φ: A
1⊗id−→ A⊗k A

Ψ−→ k′ ⊗k B.

It is easy to check that these procedures invert one another, and they are functorial
in B.

The discussion above shows that the datum of Φ is equivalent to the following
data:

(1) a k-algebra homomorphism p∗1 : A→ B;
(2) a k-algebra homomorphism Ψ: A⊗k A→ k′ ⊗k B

satisfying the following two conditions:

(i) the “first projection” A
id⊗1−→ A⊗k A

Ψ−→ k′ ⊗k B agrees with p′∗1 ;
(ii) the ideal I ⊆ A⊗k A is mapped to m⊗B under Ψ.
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As m has nilpotence order M , it follows that to give a k-algebra homomorphism
Ψ is equivalent to giving a k-algebra homomorphism

Ψ′ : (A⊗k A)/IM ' A[x1, . . . , xn]/(xi)
M → k′ ⊗k B

with the properties that

(1) the induced morphism A→ A[x1, . . . , xn]→ k′ ⊗k B agrees with p′∗1 ;
(2) the image of the xi’s lands in m⊗B.

Hence, the datum of Φ is functorially equivalent to a k-algebra homomorphism
A→ B along with n elements of m⊗kB. Therefore, by examining the coefficients of
the n elements with respect to some chosen k-basis of m, we obtain an isomorphism

HomSpec(k)(Spec(k′),Spec(A))→ Spec(A[x1, . . . , xd]).

�

Lemma 3.3. Let k be a field, let k′ be a finite, local k-algebra with maximal ideal
m and residue field k, and let X ′ be a smooth k′-scheme. Consider the surjective
morphism qX′ : Rk′/k(X ′)→ X ′0 as defined in Remark 3.2. The geometric fibres of
qX′ are affine spaces; in particular, the geometric fibres of qX′ are connected.

Proof. The problem is local on the base, so we may assume that X ′ is affine
and that Ω1

X′/k′ is free (the latter is equivalent to saying that Ω1
X′0/k

is free,

by Nakayama’s Lemma). By [SGAI, Exposé III, Corollaire 6.8], there is a non-
canonical k′-isomorphism X ′ ' X ′0 ×k k′. The conclusion follows from Proposi-
tion 3.1. �

Lemma 3.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
of finite type over S. Suppose that:

(1) the geometric fibres of f are non-empty and connected;
(2) étale-locally on Y , f admits a section;
(3) Y is geometrically connected over S.

Then, X is geometrically connected over S.

Remark 3.5. Below, we recall certain definitions on the (geometric) connectedness
of algebraic spaces.

(1) Let X be an algebraic space locally of finite type over an algebraically
closed field k, and denote by |X| the topological space associated to X (as
in [Sta17, Tag 03BY]). We say X is connected if the associated topolog-
ical space |X| is connected. Note that, with our assumptions on X, the
topological space |X| is automatically locally connected.

(2) A morphism of algebraic spaces is geometrically connected if all geometric
fibres are non-empty and connected.

Lemma 3.6. If X be a non-empty algebraic space locally of finite type over an
algebraically closed field k, then X is connected if and only if for any two points
x, x′ ∈ |X|, there is a finite chain x1, . . . , xn ∈ |X| of points and connected étale
scheme neighborhoods Uxi of xi with x1 = x and xn = x′ and such that Uxi ×X
Uxi+1

6= ∅ for all i = 1, . . . , n− 1.

Proof. It is clear that the existence of such finite chains of points and neighborhoods
as in the statement implies that |X| is connected. Conversely, we can define an
equivalence relation on |X|, where two points x, x′ ∈ |X| are equivalent if there is a
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finite chain of points and neighborhoods as in the statement. To each equivalence
class x̃, consider Wx̃ =

⋃
x∈x̃Wx, where Wx denotes the image of Ux in X. As

subsets of |X|, the Wx̃’s are easily seen to be open and disjoint, hence closed. The
connectedness of |X| implies any two points are equivalent, which completes the
proof. �

Proof of Lemma 3.4. We may assume that S is the spectrum of an algebraically
closed field, due to the definition of geometric connectedness as in Remark 3.5(2).
Given a point x ∈ |X|, there is a connected scheme Vf(x) étale over Y whose image
contains f(x) and such that the pullback morphism Ux := X ×Y Vf(x) → Vf(x)

admits a section (this guaranteed by condition (2)). Now, condition (1) along
with existence of section and connectedness of Vf(x) implies that Ux is connected
by Lemma 3.6.

Furthermore, for any two points x, x′ ∈ |X|, there is a finite collection

{x1, . . . , xn} ⊆ |X|

of points with x1 = x, xn = x′, and such that Vf(xi) ∩ Vf(xi+1) 6= ∅ for all i =
1, . . . , n − 1. By condition (1), we must have that Uxi ∩ Uxi+1 6=∅. Therefore, X is
connected. �

Proposition 3.7. Let k be a field, k′ a nonzero finite k-algebra, and X ′ → Spec k′

a smooth, surjective, quasi-projective morphism of schemes with geometrically con-
nected fibres. Then, the smooth k-scheme X = Rk′/k(X ′) is non-empty and geo-
metrically connected.

An alternate proof is given in [CGP15, Proposition A.5.9]. If X ′ is not smooth,
then the result fails: in Example 4.6, we describe an example due to Gabber of
a quasi-projective scheme X ′ over a field k′ that is geometrically connected and
smooth away from one point, and whose Weil restriction Rk′/k(X ′) is not geomet-
rically connected (in fact, it has a nowhere reduced connected component!).

Proof. By Proposition 2.2(2), we may assume that k is algebraically closed. In
particular, k′ is a finite algebra over an algebraically closed field, and thus it is a
semi-local ring over k. Applying Lemma 2.3, we can assume that k′ is a local ring
over k with nilpotent maximal ideal m. Furthermore, since k is algebraically closed,
the map k → k′/m′ is an isomorphism. In the sequel, we identify k with the residue
field k′/m′ via this isomorphism.

Let X ′0 be the fibre of X ′ over Spec k = Spec(k′/m′)→ Spec k′. As in Lemma 3.3,
there is a natural morphism qX′ : Rk′/k(X ′)→ X ′0 of k-schemes. Let V ′ be a non-
empty, open affine subset of X ′, and V ′0 the special fibre over Spec k. Since V ′ is k′-
smooth and affine, it is necessarily a trivial deformation of V ′0 , i.e. V ∼= V ′0×k k′. In
particular, the adjunction map V ′0 → Rk′/k(V ′) gives a section of Rk′/k(X ′)→ X ′0
over V ′0 . Thus, Rk′/k(V ′) is nonempty.

The geometric fibres of Rk′/k(X ′)→ X ′0 are connected by Lemma 3.3. The pre-
ceding discussion shows that, Zariski-locally onX ′0, the morphism qX′ : Rk′/k(X ′)→
X ′0 admits a section. By assumption, X ′0 is connected, and hence Rk′/k(X ′) is ge-
ometrically connected by Lemma 3.4. �

The methods of this section can also be applied to show the following result on
the dimension of the Weil restriction.
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Corollary 3.8. Let k′/k be a finite field extension of degree d and let X ′ be a
smooth, quasi-projective k′-scheme of pure dimension d′. Then, the smooth k-
scheme X = Rk′/k(X ′) is of pure dimension d · d′.

Proof. By Proposition 2.2(2) and Lemma 2.3, we may assume that k is algebraically
closed and k′ is a finite local k-algebra. In particular, if the original field extension
k′/k is finite separable, then we’re done. As dimension is an (étale) local property,
we may assume by Proposition 2.8(2) that X ′ is as in Proposition 3.1, in which
case the result immediately follows from Proposition 3.1. �

If k′/k is a finite separable extension, then we may drop the smoothness assump-
tion on X ′ appearing in Corollary 3.8. On the other hand, if k′/k is non-separable,
then the smoothness hypothesis in Corollary 3.8 is necessary: see Example 4.7.

4. Examples

Example 4.1. In general, it is not true that Weil restriction preserves Zariski-
open covers. Let k′/k be a finite separable extension of degree d > 1 and let
X ′ = A1

k′ . Consider the open cover {U ′0, U ′1} of X ′, where U ′i = {t 6= i}. Then
X = Rk′/k(A1

k′) contains the Weil restrictions Ui = Rk′/k(U ′i) as open subschemes
by Proposition 2.6(2). We claim that {U0, U1} does not cover X. Indeed, if ks
denotes a separable closure of k, there is a canonical ks-algebra isomorphism ks⊗k
k′ ' kds and an identification

Xks ' Adks .
If (t1, . . . , td) are the coordinates on Adks induced by the isomorphism ks⊗k k′ ' kds ,
then

(Uj)ks = {(t1, . . . , td) ∈ Adks : ti 6= j for i = 1, . . . , d}
for j = 0, 1. Hence, (U0)ks ∪ (U1)ks does not contain points such as (1, 0, ..., 0). In
particular, {U0, U1} is does not cover X.

In fact, it is possible that the Weil restriction of all members of a Zariski-open
cover is the empty set! Let k be a field and let k′ = kd, with d > 1. For

any quasi-projective k′-scheme X ′ with fibres Xi, we have Rk′/k(X ′) =
∏d
i=1Xi

by Lemma 2.3. Thus, Rk′/k(X ′) is non-empty if and only if all of the Xi’s are
non-empty. In particular, if X ′i is the open subset of X ′ with fibre Xi over the i-th
point of Spec k′ and empty fibre over the other points, then clearly {X ′i} is an open
cover of X ′, but Rk′/k(X ′i) = ∅ for all i!

Note that this phenomenon of failure to carry Zariski-open covers to Zariski-open
covers cannot occur when k′/k is purely inseparable by Proposition 2.8(2).

Example 4.2. Let k be a field and let k[ε] := k[x]/(x2). If X is a smooth quasi-
projective k-scheme, then the functor of points of Rk[ε]/k(Xk[ε]) is given by

U 7→ Homk[ε]

(
U ×k k[ε], Xk[ε]

)
= Homk (U ×k k[ε], X) .

In particular, Rk[ε]/k(Xk[ε]) is isomorphic to the tangent bundle TX of X as k-
schemes. Moreover, the structure maps Rk[ε]/k(Xk[ε]) → X and TX → X are
the adjunction morphisms obtained from the respective universal properties, so
Rk[ε]/k(Xk[ε]) and TX are in fact isomorphic as X-schemes.

Example 4.3. Let k be a field and k[ε] := k[x]/(x2) be the ring of dual numbers.
We consider the Weil restriction of a smooth scheme X ′ over k[ε] along the structure
morphism Spec(k[ε])→ Spec(k). If X0 := X ′ ×k[ε] k is the special fibre of X ′, then
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we claim that Rk[ε]/k(X ′) is a principal homogeneous space over the tangent bundle
of X0.

Let X := X0 ×k k[ε] be the trivial deformation of X0 over k[ε]. We claim that
there is a canonical action

Rk[ε]/k(X ′) ×
X0

Rk[ε]/k(X) //

��

Rk[ε]/k(X ′)

uu
X0

where Rk[ε]/k(X) = TX0 via Example 4.2 (anX0-group), and the morphism Rk[ε]/k(X ′)→
X0 is as in Remark 3.2. To see this, it suffices to construct the canonical action
for affine schemes X ′ by Proposition 2.8(2), so we may assume X ′ = Spec(B) for
some smooth k[ε]-algebra B. Then, we have X0 = Spec(B0) and X = Spec(B0[ε]),
where B0 = B/(ε). For any k-algebra A, we seek an action

Homk[ε](B,A[ε]) ×
Homk(B0,A)

Homk[ε](B0[ε], A[ε]) //

��

Homk[ε](B,A[ε])

ss
Homk(B0, A)

that is functorial in A and B.
Let φ′ ∈ Homk[ε](B,A[ε]) and φ̃ ∈ Homk[ε](B0[ε], A[ε]) be such that both have

the same image φ ∈ Homk(B0, A). Given the data above, we must produce a
ψ ∈ Homk[ε](B,A[ε]) whose reduction is φ again. We have

φ̃(b0) = φ(b0) + ε ·D(b0), ∀b0 ∈ B0

where D : B0 → A is k-linear and satisfies the condition

D(b0 · b′0) = φ(b0) ·D(b′0) + φ(b′0) ·D(b0). (4.1)

Define

ψ(b) := φ′(b) + ε ·D(b), ∀b ∈ B

where b ∈ B0 is the image of b under canonical reduction B � B0. This map ψ is a
k[ε]-algebra homomorphism precisely because of (4.1) and the fact that ε2 = 0. The

set of ψ’s is clearly in bijection with the set of φ̃’s, and (φ′, φ̃) 7→ ψ is easily seen to
be an action with respect to addition in D’s, and it has the desired functoriality in
A and B. Thus, Rk[ε]/k(X ′) is a principal homogeneous space of TX0 , the tangent
bundle of X0.

Example 4.4. This is a continuation of the discussion of Example 4.3. Let k′ be
a local finite k-algebra with nonzero maximal ideal m′, where k is an algebraically
closed field, and let X ′ be a smooth, proper k′-scheme of positive dimension. We
claim the Weil restriction Rk′/k(X ′) is never proper over k.

Indeed, let X0 := X ′ ×k′ k′/m′ be the special fibre of X ′, which is proper by
assumption. Consider the morphism Rk′/k(X ′)→ X0 as in Remark 3.2. Note that
the k-smooth Rk′/k(X ′) has pure dimension dimk(k′) · dim(X ′0) by Corollary 3.8.
The geometric fibre at any x0 ∈ X0(k) is a principal homogeneous space for the
nonzero vector space Tx0

(X0) by Example 4.3. Thus, it cannot be proper.
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Example 4.5. If k is an imperfect field, k′/k is a nontrivial finite inseparable
extension, and A′ is a nonzero abelian variety over k′, then we claim Rk′/k(A′)
violates the conclusion of Chevalley’s structure theorem over perfect fields. Recall
that Chevalley’s structure theorem asserts that for a smooth connected group G
over a perfect field k, there is a unique short exact sequence of smooth connected
k-groups

1→ H → G→ A→ 1,

where H is affine and A is an abelian variety. See [CGP15, Theorem A.3.7] for a
reference for its proof.

Note that Rk′/k(A′) exists as a k-group scheme by Proposition 2.4, and it is
smooth and connected by Proposition 2.6(5). Suppose there exists a smooth, con-
nected, affine k-group H, an abelian variety A over k, and an exact sequence of
k-group homomorphisms

1→ H → Rk′/k(A′)→ A→ 1.

By the universal property of the Weil restriction, the k-group homomorphism H →
Rk′/k(A′) corresponds to a k′-group homomorphism Hk′ → A′. If K ⊆ Hk′ is
the kernel of Hk′ → A′, then Hk′/K exists as an affine k′-group scheme of finite
type, and the induced k′-group homomorphism Hk′/K → A′ is a closed immersion,
by [CGP15, Proposition A.2.1]. Thus, the image of Hk′/K → A′ is an affine
abelian subvariety of A′, i.e. it is the inclusion of 0. Thus, H → Rk′/k(A′) must
be the constant map given by 0. It follows that Rk′/k(A′) ' A; however, Rk′/k(A′)

cannot be proper due to Example 4.4 (applied over k) and Lemma 2.3 (applied to
S′ = Spec(k′ ⊗k k)), a contradiction.

Example 4.6. [Gabber] If k is a field, k′ is a non-zero finite k-algebra, and X ′ is a
quasi-projective k′-scheme with geometrically connected fibres, then it is not nec-
essarily the case that Rk′/k(X ′) is geometrically connected (unless we also assume
that X ′ is k′-smooth and the structure morphism X ′ → Spec(k′) is surjective).

Let k be an imperfect field of characteristic p > 0, and let k′ be a nontrivial
purely inseparable finite extension of k of degree d > 1. Pick a′ ∈ k′ \k, q = pe ∈ N
such that (k′)q ⊆ k, and m ∈ N>2q such that m is not divisible by p. Let X ′ be the
geometrically integral curve over k′ given by yqp = a′xq+xm. The open subscheme
U ′ = X ′\{(0, 0)} = X ′∩{x 6= 0} is k′-smooth. Therefore, U := Rk′/k(U ′) is smooth
and geometrically connected due to Proposition 3.7, and it is an open subscheme
of X := Rk′/k(X ′) due to Proposition 2.6(2). We claim that X is the disjoint union
of U and a non-empty open subscheme V which is nowhere reduced.

Choose a k-basis {a′i}
d−1
i=0 of k′ with a′0 = 1 and a′1 = a′, and substitute

∑d−1
i=0 a

′
ixi

for x and
∑d−1
i=0 a

′
iyi for y in the equation defining X ′. If ci := a′qi ∈ k×, we have

that X is cut out, as a closed subscheme of Rk′/k(A2
k′) ' A2d

k , by the equation(
d−1∑
i=0

ciy
q
i

)p
= a′1

(
d−1∑
i=0

cix
q
i

)
+

(
d−1∑
i=0

a′ixi

)m−2q (d−1∑
i=0

cix
q
i

)2

.

Expanding the (m− 2q)-th power, we may write(
d−1∑
i=0

a′ixi

)m−2q

=
∑
j≥0

a′jfj(x)
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for some fj(x) ∈ k[x0, x1, . . . , xd−1]. Comparing the coefficients of the a′i’s, we
observe that X is defined by the following system of equations on A2d

k :

(∑d−1
i=0 ciy

q
i

)p
= f0(x)

(∑d−1
i=0 cix

q
i

)2

,∑d−1
i=0 cix

q
i + f1(x)

(∑d−1
i=0 cix

q
i

)2

= 0,

fj(x)
(∑d−1

i=0 cix
q
i

)2

= 0 (j ≥ 2).

(4.2)

If h :=
∑d−1
i=0 cix

q
i , then the relation h(1+f1h) = 0 guarantees that the loci {h = 0}

and {h is a unit} define a separation of X. For P ∈ X(k), the associated point
P ′ ∈ X(k′ ⊗ k), given by

Spec(k′ ⊗ k)→ Spec(k)
P→ X ′,

corresponds to a pair (x, y) ∈ (k′ ⊗ k)2 satisfying the equation yqp = a′xq + xm,

with x =
∑d−1
i=0 a

′
i ⊗ xi and y =

∑d−1
i=0 a

′
i ⊗ yi. Since h = xq in the residue field of

the Artinian local ring k′⊗ k, we see that the locus {h is a unit} coincides with U ,
as defined above.

Moreover, if V := X\U denotes the open subscheme of X defined by h = 0, then

setting h = 0 in the equations (4.2) shows that V is cut out by h and
(∑d−1

i=0 ciy
q
i

)p
;

in particular, V is nowhere reduced.

Example 4.7. This is a continuation of the discussion of Example 4.6. In the
absence of a smoothness hypothesis, Corollary 3.8 fails: the dimension of the non-
smooth plane curve X ′ is 1 and the degree of the extension k′/k is d > 1, but the
dimension of the component V of X is 2d− 1. As d > 1, the dimension of X ′ times
the degree of k′/k cannot be the dimension of X on V .

Example 4.8. The Weil restriction of a smooth, affine group scheme with positive-
dimensional fibres along a non-étale, finite, flat morphism of Noetherian rings is
never reductive. More precisely, by considering the geometric fibres at the non-
étale points of the base, one shows the following: if k is an algebraically closed
field, k′ is a non-reduced, local, finite k-algebra, and G is a nontrivial, connected,
smooth, affine k′-group scheme, then the smooth, connected, affine k-group scheme
Rk′/k(G) is not reductive.

In the special case when G = GLn,k[ε], Rk[ε]/k(G) = GLn n gln where the semi-
direct product is taken using the adjoint action of GLn on gln. More generally,,
if G is a smooth, affine k-group scheme with Lie algebra g, then one sees that
Rk[ε]/k(Gk[ε]) = G n g, and G n g is clearly not reductive. For the general case,
see [Oes84, Proposition A.3.5].

Example 4.9. Proposition 2.7 (and Proposition 5.6) assert that the Weil restriction
of a smooth and surjective morphism between schemes (or algebraic spaces) is
again smooth and surjective; however, it is not true that the Weil restriction of a
surjective morphism between quasi-compact, smooth schemes (or algebraic spaces)
is necessarily surjective. More precisely, if k ⊆ k′ is a finite field extension and
X ′ → Y ′ is a surjective morphism of smooth, quasi-projective k′-schemes, then it
is not necessarily true that the induced map Rk′/k(X ′) → Rk′/k(Y ′) is surjective.
Let k be an imperfect field of characteristic p > 0. Pick a ∈ k \ kp and consider the
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finite degree-p extension k′ = k(a1/p) of k. Consider the exact sequence

1→ µp → SLp → PGLp → 1

of k′-group homomorphisms. As Weil restriction is left exact on the category of
k′-groups, there is an exact sequence

1→ Rk′/k(µp)→ Rk′/k(SLp)→ Rk′/k(PGLp)

of k-groups. However, Rk′/k(SLp) and Rk′/k(GLp) are smooth with the same dimen-

sion [k′ : k] · (p2 − 1), and Rk′/k(µp) is positive-dimensional (see [CGP15, Example
1.3.2]), hence, Rk′/k(SLp)→ Rk′/k(PGLp) cannot be surjective.

Example 4.10. Let S′ → S be a finite étale morphism between connected schemes,
and let π (resp. π′) denote the étale fundamental group of S (resp. S′). Let X ′

be a finite étale cover of S′, corresponding to the finite, discrete π′-set A′. Then,
RS′/S(X ′) → S is a finite étale cover, by Proposition 2.6(6) and Proposition 2.9;
it corresponds to a finite, discrete π-set A. We claim that there is a canonical
identification

A = Indππ′(A
′),

where Indππ′(A
′) denotes the induced representation. The above assertion can be

verified by combining the universal properties of the induced representation and of
the Weil restriction: if B is a finite, discrete π-set, corresponding to the finite étale
map Y → S, then

Homπ(B, Indππ′(A)) = Homπ(B,A′)

= HomS′(Y ×S S′, X ′)
= HomS(Y,RS′/S(X ′))

= Homπ(B,A).

Example 4.11. Let k′/k be a finite separable extension of fields. Let A′ be an
abelian variety over k′. Then, A := Rk′/k(A′) is an abelian variety over k by Propo-
sition 2.9, Proposition 2.6(5), and Proposition 2.2(3). If ` is a prime different than
the characteristic of k, then there is a canonical isomorphism

T`(A) = IndGalk
Galk′

(T`(A
′))

of Galois representations of Galk. Here, Galk and Galk′ denote the absolute Galois
groups of k and k′, respectively. This follows from the corresponding statements
on `-power torsion points, which are a consequence of Example 4.10.

5. Weil Restriction of Algebraic Spaces

Definition 5.1. Let S′ → S be a morphism of schemes and let X ′ be an algebraic
space over S′. Consider the contravariant functor RS′/S(X ′) : (Sch/S)opp → (Sets)
given by

T 7→ X ′(T ×S S′).
If the functor RS′/S(X ′) is an algebraic space X over S, then we say that X is the
Weil restriction of X ′ along S′ → S, and we denote it by RS′/S(X ′).

Thinking of the algebraic space X ′ as a sheaf on the big étale site of (Sch/S′),
the Weil restriction RS′/S(X ′) is the pushforward sheaf along S′ → S.
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Theorem 5.2. Let S′ → S be a finite, locally free morphism of schemes and let X ′

algebraic space of finite presentation over S′. Then, the Weil restriction RS′/S(X ′)
exists as an algebraic space over S.

Proof. Step 1 (Construction of a candidate). In order to verify that RS′/S(X ′) is
an algebraic space over S, we may assume that S is affine, by [Sta17, Tag 04SK];
say, S = Spec(B). It follows that S′ is affine as well, say S′ = Spec(B′), because
S′ → S is finite (in particular, affine).

As X ′ → S′ is quasi-compact, there exists an affine étale chart U ′ → X ′ (for
example, the disjoint union of a finite open affine cover of some étale chart of X ′). If
R′ = U ′×X′U ′, then R′ ⇒ U ′ is an étale equivalence relation such that X ′ = U ′/R′.
There is a Cartesian square

R′
δ //

��

U ′ ×S′ U ′

��
X ′

∆X′ // X ′ ×S′ X ′

.

of algebraic spaces over S′. As X ′ → S′ is finitely-presented, the diagonal ∆X′ is
quasi-compact and hence the base change δ is quasi-compact and locally of finite
type. As both R′ and U ′×S′ U ′ are S′-schemes, that δ is quasi-finite follows from it
being a monomorphism (indeed, since it is quasi-compact, it suffices to check that
the fibres are finite; as it is a monomorphism, each geometric fibre is either empty or
a single point). Moreover, as δ is a monomorphism, it is separated. By [EGA, IV4,
18.12.12], this implies that R′ is quasi-affine; in particular, R′ is quasi-projective,
and so one may consider its Weil restriction RS′/S(R′).

By Proposition 2.6(1) and (6), the induced map

RS′/S(R′)→ RS′/S(U ′ ×S′ U ′) ' RS′/S(U ′)×S RS′/S(U ′)

is a monomorphism such that postcomposing with either projection gives an étale
S-morphism RS′/S(R′)→ RS′/S(U ′). Implicitly, we have used that RS′/S(S′) = S.
Thus, RS′/S(R′) ⇒ RS′/S(U ′) is an étale equivalence relation and we can form
the algebraic space X := RS′/S(U ′)/RS′/S(R′) over S. By construction, there is a
coequalizer diagram

RS′/S(R′) ⇒ RS′/S(U ′)→ X,

so the universal property of the coequalizer gives a morphism X → RS′/S(X ′) of
étale sheaves on (Sch/S).

To see that X → RS′/S(X ′) is monic, it suffices to consider the T -valued points
of X that lift to RS′/S(U ′), by working étale-locally on T . It then suffices to show
that the commutative diagram

RS′/S(R′) //

��

RS′/S(U ′)

��
RS′/S(U ′) // RS′/S(X ′)

is Cartesian. This holds since

RS′/S(U ′)×RS′/S(X′) RS′/S(U ′) = RS′/S(U ′ ×X′ U ′) = RS′/S(R′).
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Step 2 (Reduction to strictly henselian points). It remains to show that the map
X ↪→ RS′/S(X ′) is a surjective morphism of étale sheaves. We claim that it suffices
to show that, for any strictly henselian local B-algebra A, the induced map

U ′(A⊗B B′) −→ X ′(A⊗B B′) (∗)

is surjective. Take an S-scheme T and ξ ∈ RS′/S(X ′)(T ) = X ′(T ×SpecB SpecB′).
We want to lift ξ to U ′, étale-locally on T . We may assume T is affine, and then
that T is of finite type over S because X ′ is assumed to be of finite presentation
over B′ by [Sta17, Tag 04AK].

For every t ∈ T , fix a separable closure k(t)sep of the residue field k(t) of t. If
A = Osh

T,t is the strict henselization of OT,t, then the surjectivity of (∗) implies that

we can find a lift ξt ∈ U ′(A⊗B B′) of ξ|SpecA ∈ X ′(A⊗B B′). By a standard direct
limit argument, we can find an étale neighborhood Vt of t ∈ T and a “spreading-

out” ξ̃t ∈ U ′(Vt ×Spec(B) Spec(B′)) of ξt. As T is quasi-compact, the disjoint union
of finitely-many of the Vt’s give an étale cover V of T and a lift

ξ̃ ∈ U ′(V ′ ×Spec(B) Spec(B′))

of ξ. Thus, the morphism X → RS′/S(X ′) is surjective as étale sheaves, granting
the claim.

Step 3 (Surjectivity for strictly henselian points). It remains to show that if A is
a strictly henselian B-algebra, then

U ′(A⊗B B′)→ X ′(A⊗B B′)

is surjective. As B → B′ is (module) finite, the base change A⊗B B′ is a (module)
finite A-algebra. By [EGA, IV4, Prop 18.8.10], there are finitely-many strictly
henselian local rings C1, . . . , Cn such that

A⊗B B′ = C1 × . . .× Cn.

The map U ′(A ⊗B B′) → X ′(A ⊗B B′) decomposes as the product of the maps
U ′(Ci) → X ′(Ci), hence it suffices to show that, for a strictly henselian local ring
C, the map U ′(C) → X ′(C) is surjective. Given a point γ ∈ X ′(C), consider the
Cartesian square

Z //

��

U ′

��
Spec(C)

γ // X ′

where Z is a scheme and Z → Spec(C) is étale and surjective since U ′ → X ′ is
étale and surjective. By [EGA, IV4, Théorème 18.5.11(b)], the étale cover Z →
Spec(C) has a section σ : Spec(C) → Z, and hence Spec(C)

σ→ Z → U ′ lifts γ, as
required. �

Remark 5.3. If S′ → S is a finite, locally free morphism of schemes and X ′ is a
finitely presented algebraic space over S′, then RS′/S(X ′) is finitely presented over
S by construction (in particular, it is quasi-compact over S).

Proposition 5.4. Let S′ → S be a morphism of Noetherian schemes, and let X ′

be an algebraic space over S′.
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(1) If T is an S-scheme and T ′ = T ×S S′, then there is an isomorphism

RT ′/T (X ′ ×S′ T ′) ' RS′/S(X ′)×S T
of functors on (Sch/T ).

(2) If X ′ → Z ′ and Y ′ → Z ′ are morphisms of algebraic spaces over S′, then
there is an isomorphism

RS′/S(X ′ ×Z′ Y ′) ' RS′/S(X ′)×RS′/S(Z′) RS′/S(Y ′)

of functors on (Sch/S).

Proof. The proof is identical to Proposition 2.2(2,3). �

Proposition 5.5. Let S′ → S be a finite, flat morphism of Noetherian schemes. If
f ′ : X ′ → Y ′ is a smooth (resp. étale) morphism between finitely presented algebraic
spaces over S′, then RS′/S(f ′) : RS′/S(X ′)→ RS′/S(Y ′) is smooth (resp. étale).

Proof. The proof is identical to the case of schemes in Proposition 2.6(5,6), since
smoothness of algebraic spaces can be checked using the infinitesimal lifting crite-
rion, by [Sta17, Tag 04AM]. �

Proposition 5.6. Let S′ → S be a finite, flat morphism of Noetherian schemes. If
f ′ : X ′ → Y ′ is a smooth, surjective morphism between finitely presented algebraic
spaces over S′, then RS′/S(f ′) : RS′/S(X ′)→ RS′/S(Y ′) is smooth and surjective.

Proof. Write X = RS′/S(X ′), Y = RS′/S(Y ′), and f = RS′/S(f ′). By Proposi-
tion 5.5, f is smooth. It suffices to show that for any geometric point s : Spec(k)→
S, the k-morphism fs : Xs → Ys is surjective. Thus, we may assume that S =
Spec(k) for an algebraically closed field k. As S′ → S is finite, it follows that S′

is affine, say S′ = Spec(k′); k′ is a finite k-algebra, hence it decomposes as a finite
product of finite local k-algebras k′ =

∏m
i=1A

′
i.

The morphism X(k)→ Y (k) is, by the universal property of the Weil restriction,
exactly the map X ′(k′)→ Y ′(k′). Given a point y′ ∈ Y ′(k′), it suffices to construct
a point x′ ∈ X ′(k′) such that the following diagram commutes:

Spec(k′)
x′ //

=

%%

X ′y′

��

// X ′

f ′

��
Spec(k′)

y′ // Y ′

Since X ′(k′) =
∏
iX
′(A′i) and Y ′(k′) =

∏
i Y
′(A′i), then y′ corresponds to an

m-tuple of points y′i ∈ Y ′(A′i) and it suffices to show that each y′i lifts to X ′(A′i).
So we may assume k′ is a finite local k-algebra (with residue field k).

As k is algebraically closed, there is a point z′ ∈ X ′y′(k). The morphism X ′y′ →
Spec(k′) is smooth, because it is the base change of f ′, and so the infinitesimal
lifting criterion gives a lift x′ ∈ X ′y′(k′) of z′, as required. �

Proposition 5.7. Let S′ → S be a finite, flat morphism of Noetherian schemes.
Let P be one of the following properties of morphisms:

(1) monomorphism;
(2) open immersion;
(3) closed immersion;
(4) separated.
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If f ′ : X ′ → Y ′ is a morphism of finitely presented algebraic spaces over S′ with
the property P, then the morphism RS′/S(f ′) : RS′/S(X ′)→ RS′/S(Y ′) also has the
property P.

Proof. As in the proof of Proposition 2.6, the real content is in (2) and (3), so we
focus on those assertions. Without loss of generality, we may assume that S and
S′ are affine. If V ′ → Y ′ is an étale cover of Y ′ by an affine scheme (in particular,
V ′ is quasi-projective over S′), form the fibre product

U ′
f //

g

��

V ′

h
��

X
f ′ // Y ′

as algebraic spaces over S′. Then, U ′ is an S′-scheme and g is étale and surjective.
The property P is stable under base change, so f has P. By Proposition 5.4(2),
there is a Cartesian diagram

RS′/S(U ′)
RS′/S(f)

//

RS′/S(g)

��

RS′/S(V ′)

RS′/S(h)

��
RS′/S(X)

RS′/S(f ′)
// RS′/S(Y ′)

The morphism RS′/S(f) has property P by Proposition 2.6, and the morphisms
RS′/S(g) and RS′/S(h) are étale and surjective, by Proposition 5.6. It follows that
RS′/S(f ′) has property P by étale descent. �

Proposition 5.8. Let S′ → S be a finite, flat morphism of Noetherian schemes
that is surjective and radicial.

(1) If X ′1, . . . , X
′
n are finitely-presented algebraic spaces over S′, then

RS′/S

(
n⊔
i=1

X ′i

)
=

n⊔
i=1

RS′/S(X ′i).

(2) If {U ′i}i∈I is an open (resp. étale) cover of a smooth, finitely-presented
algebraic space X ′ over S′, then {RS′/S(U ′i)}i∈I is an open (resp. étale)
cover of RS′/S(X ′).

Proof. The proof is identical to the case of schemes, as in Proposition 2.8. Note
that, since the RS′/S(X ′i)’s and RS′/S(U ′i)’s are algebraic spaces, the need for the
quasi-projectivity hypotheses (that appear in Proposition 2.8) disappear. �

Proposition 5.9. Let k be a field and let k′ a nonzero finite k-algebra. Let X ′ be a
smooth, finitely-presented algebraic space over Spec(k′) such that X ′ → Spec(k′) is
surjective with geometrically connected fibres. Then, X = RS′/S(X) is non-empty
and geometrically connected.

Proof. The proof is identical to that of Proposition 3.7. Note that a crucial ingre-
dient, Lemma 3.4, is stated for algebraic spaces. �
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6. Olsson’s Theorem

The aim of this section is to discuss Olsson’s result [Ols06, Theorem 1.5] on the
Weil restriction of certain Artin stacks along a proper flat morphism of schemes.
The notation for this section is fixed below.

Setup 6.1. Let S be a Noetherian affine scheme, let S′ be a proper flat algebraic
S-space, and let X ′ → S′ be one of the following:

(1) a separated Artin stack of finite type over S′, with finite diagonal;
(2) a Deligne-Mumford stack of finite type over S′, with finite diagonal;
(3) an algebraic space, separated of finite type over S′.

Definition 6.2. The Weil restriction RS′/S(X ′) of X ′ along S′ → S is the fibered
category over S which, to any S-scheme T , associates the groupoid X ′(T ×S S′).

As in the case of schemes (c.f. Proposition 2.1), if the stack/space X ′ arises via
base change from a stack/space over S, then the Weil restriction recaptures the
Hom-stack/space of X ′:
Proposition 6.3. If X is as in Setup 6.1, S′ → S is a morphism of schemes, and
X ′ = X ×S S′, then there is an isomorphism

RS′/S(X ′) = HomS(S′,X )

of functors on (Sch/S).

If S is a scheme and Y, Z are Artin stacks over S, recall that the Hom-stack
HomS(Y,Z) is the fibered category over (Sch/S) that, to an S-scheme T , assigns
the groupoid of T -morphisms Y ×S T → Z ×S T .

Proof. This is immediate from the universal property of Weil restriction. �

The following theorem is due to Olsson; see [Ols06, Theorem 1.5].

Theorem 6.4. With notation as in Setup 6.1, the Weil restriction RS′/S(X ′) is
respectively the following:

(1) an Artin stack, locally of finite type over S, with quasi-compact and sepa-
rated diagonal;

(2) a Deligne–Mumford stack, locally of finite type over S, with quasi-compact
and separated diagonal;

(3) an algebraic space, locally of finite type over S, with quasi-compact diagonal.

Olsson applied Theorem 6.4 to show [Ols06, Theorem 1.1], which states that if
S is a Noetherian scheme, X → S is a proper, flat, algebraic space of finite type,
and Y → S is as in Setup 6.1(1), then the associated Hom-stack HomS(X ,Y) is
an Artin stack, locally of finite type over S, with quasi-compact and separated
diagonal (and moreover, if Y is a Deligne-Mumford stack or an algebraic space,
then so too is HomS(X ,Y)).

Example 6.5. Although the Weil restriction of X ′ → S′ through a proper, flat
morphism S′ → S preserves the property of being locally of finite presentation over
the base, it may break quasi-compactness. In fact, it is possible that there are
connected components of RS′/S(X ′) that are not quasi-compact!

To explain this, let X → S be as in Setup 6.1, and let X ′ = X ×S S′. Then, we
have

RS′/S(X ′) = Sect(X ′/S′) = HomS(S′,X ).
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When X is a proper algebraic space over S, the Weil restriction RS′/S(X ′) (as a
Hom-space) will be an algebraic space locally of finite type. We will show that
quasi-compactness fails very badly, in the sense that most connected components
are not quasi-compact.

Let k be an algebraically-closed field, let S = Spec k, and let T = P1
k. Consider

a line L and a conic C in P3 that do not intersect one another. Define the scheme
X by gluing two copies of P3, identifying L with C; X is a scheme by [Sch05,
Corollary 3.7]. We claim that all components of RT/S(XT ) = Homk(P1, X) are not
quasi-compact, except for the components corresponding to constant maps.

Take a k-point of RT/S(XT ) belonging to a connected component consisting

of non-constant maps; it corresponds to a non-constant map ϕ : P1 → X. First,
degenerate ϕ into a degree-n covering of a line. Then, we can move the image to
the image of L, which is the same as the image of C. Finally, we may move it
outside of C and degenerate again into a double line, hence we eventually double
the mapping degree. Therefore, we can see that there are infinitely-many connected
components of HomS(P1,P3\(L ∪ C)), which sits (as an open subscheme) in the
connected component U of Homk(P1, X) containing ϕ. In particular, U is not
quasi-compact.
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