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Abstract

This document encompasses a report corresponding to a presentation given in
ETHZ in the spring semester of 2014 as part of a proseminar on topological
objects in physics), directed by Dr. Philippe de Forcrand. Its purpose is to make
precise that which was shown in the presentation.

After reviewing some “toy” models in quantum mechanics which allow us
to exhibit the important concepts of instantons in a familiar environment—
essentially a tunneling description between distinct vacua—a discussion of in-
stantons in non-Abelian gauge field theory follows. Finally a brief chapter on
the consequences of instantons in QCD concludes the report.

Note that this document exists in two versions: an unabridged version which
contains all proofs with full detail and is not meant to be printed, and an
abridged version which contains no proofs. You are now reading the unabridged
version.


http://www.itp.phys.ethz.ch/education/fs14/PdF_proseminar
http://www.itp.phys.ethz.ch/education/fs14/PdF_proseminar
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Part 1

Instantons in Quantum
Mechanics



Chapter 1

The Cumbersome Harmonic
Oscillator

In this chapter we shall derive the ground state energy eigenvalue for the har-
monic oscillator in a cumbersome way, following very closely the presentation
of [I2]. This way shall prove very useful for quantum field theory.

1.1 Path-Integral Formulation of Quantum Me-
chanics

A point particle of mass m = 1 (in properly chosen units) moves in two spacetime
dimensions. Its position, varying with time, is described by a function = € RF,
and we further assume that the particle is under the influence of some potential
V [2] (t). The Lagrangian for this system is given by L [z](t) = i (& ) —
V[z] (t). Let {z;, x¢, t;, ty} CR.

1.1.0.1 Fact

According to Feynman’s path-integral formulation of quantum mechanics [§], if
the particle was initially at x; at time ¢;, the transition amplitude of the particle
to be found finally at z; at time ¢ ;—conventionally denoted by (x, ts|x;, t;)—is
given by:

Ji) dtL [x] (t)} L)

(g, ty|x, ti) =N Dx exp {z =
{z€RR: x(ty)=x s Ax(t;)=x;}

1.1.0.2 Remarks

1. N is a normalization factor which will be determined later.

2. This formulation gives a natural scale for the action, h. Now we can answer
what is a “large” action, whereas in classical mechanics that notion had
no meaning. From here on we shall choose our units such that A = 1, in
order to simplify the formulas.



3. Usually in quantum mechanics the transition amplitude (zy, tf|z;, t;)
is in fact denoted by <xf ‘exp {zf[ (ty — ti)} ‘xl> where H is the time-
evolution operator on the Hilbert space of states of the particle (and the
various |z)’s are vectors in this space). However, the path-integral for-
mulation was conceived exactly in order to blur the distinction between
space and time (which is impossible in the Hamiltonian formulation of
mechanics and only possible in the Lagrangian formulation of mechanics)
and so we may operate agnostically to the existence of H and proceed
dealing only with the functional L, which is now the fundamental object
of the theory.

1.2 Imaginary Time

An invaluable tool in path integral computations is the Euclidean path integral,
which is a formal analytic continuation of the path integral to complex-valued
time (xyp, —its | x;, —it;).

1.2.1 Ground State and Energy for Large Times

1.2.1.1 Claim

lim7_s o <xf, —i% ’ zi, z%> = limyp_y00 e T4y (24) Y (z;) where 9 (z) is the
wave function corresponding to the lowest lying energy eigenstate.

Proof

e In the usual quantum mechanical notation, <xf, —i% ’:I:i, z%> = <xf ‘ e~ TH ‘ZE2>

o Let {|n)},cny be a complete orthonormal set of eigenstates of H with
eigenvalues {E, }, .. Assume that 3E, = min ({E; : j € N}).
e Then
<33f ‘e‘Tﬁ ‘xz> = <33f e~ TH <Z |n) (n) xl>
neN
= D> e Priagn) (n]w)
neN
=% lim e T (24]0) (0] a)
T—o0
|

This is half of why it is useful to work in imaginary time.

1.2.2 Euclidean Time Path Integral
1.2.2.1 Claim

(wr, =15 20 15) = N [(acna(2)mayna(- )=y Drexp {= [ dt [§ (@ (0 +V 2] (1]}
for any 7' € R.



Proof

e We start with the technical definition of the symbolic expression (x, t¢ | z;, t;) =

J dtLl)(t) }

N‘/‘{xERR:x(tf)zxf/\x(ti)=m} D exp {Z R

— We know that

€ €
(o3| =3)

(s [ ]2i)
yES p{ [g‘t (f) V()

In the derivation of this formula (expanding the exponent, inserting

J dpIp) (p| and solving [ %e_iﬁf = \/52=), € is used as a param-

eter whose character (real or imaginary) is not important. Thus this
formula is valid (up to O (£2)) for € € C as well.

%

The general limit formula for the transition amplitude, which is,
<:Ef ‘ e~ T ‘ xi> = lim, 00 (;::Z‘T)j [dzy ... [dz,_qexp {iZ?_1 %
where z, = xy and x¢ = x;, is derived from the formula for infinites-

imal times, and should thus stay valid also for imaginary values of
T.

2
We identify lim,, o0 > iy £ [ZL (21;77{;1) -V (mj)] as being equal

j=1"n
T
to [, dt {%x )=V (x (t))}, where z () is some integrable func-
2
tion in R¥ which interpolates between the fixed points {z;}"_,, that
j=
!
is, 2 (=L +jL) =g forall j€{0, ..., n}
The n integrals over x; are interpreted as spanning the space of
all paths z (t) which have their end points fixed at z; and z; and
mn

this is written symbolically as lim,,_ oo (m)% Jdxy ... [de,_1 =
Nf{wERR: z(L)=zsAz(—L)=x:} Dz.

e When going to Euclidean spacetime, we plug into the path integral formula
—1T instead of T" and obtain:

<

xf, —1—=

T

T ~
z;, z> <xf ’ e HT ‘ xl>
2
n n T |m
N R Py e L
n—oo \ 27T

L mnyd [~z 2%
= nlgrgo (%—T) /dml.../d;vn,le

2

e The identification for the expression in the exponent is still valid, in fact,
the only thing that is different about it is the sign of the potential. z (t)
is still an integrable function in R® defined in the very same way. So we
have:

<

l'f, —715

T

miviT> = N// Dxexp{—/2
2 {weR®: 2(5)=;na(~ F) =} _z

x

}+O(52)

) v |

G

dt [%x O +V (2 (t))}}



e In conclusion when going to Euclidean spacetime, we have three differ-
ences:

1. The ¢ in the exponent becomes —1.

2. There is an extra —1 multiplying the potential in the action integral.

3. The normalization constant is different: lim, o0 (522)* > limy o0 (225%) % .

1.2.2.2 Remarks

The effect of Euclidean time on the path integral is two fold:

1. The exponent in the path integral is now real. If we assume that min ({V [z] |z}) =
0 (and we may do that without loss of generality by choosing the energy
scale appropriately) , then the exponent is always negative, which means
we may be more optimistic about the convergence of the path integral.

2. It turns out that to calculate path-integrals it is worthwhile to investigate
the classical paths of the action first (as we shall see soon). In classical
mechanics, what we have achieved by the complex-valued time is equiv-
alently an inverted potential: V [z] — —V [z]. This identification will
help us “read off” classical paths using preexisting intutition in classical
mechanics (although now we shall employ it on inverted potentials).

1.3 Approximating the Path Integral

In a crude way, assume that for our problem at hand f,%z dt {% (& (£))° + V [1] (t)]} >
2

1 V paths to be integrated on. This corresponds to the semiclassical approx-
imation where we assume % is very small compared to the action. Then it is
clear that most of the contribution to the path integral will come from those
paths which minimize the Euclidean action. This is exactly the definition of
the classical paths with potential (—V [z]). If there is only one such extremum
path for the action, which we denote by z; (t) (that is, we assume that & (t) =
V' x]), then we can estimate Nf{a:ERIR:w(%):a:f/\a:(fg —2i) Dxexp{—S[z]} ~
exp {—S [zq]} (by using the symbol S we really mean Sgp—this will be true till
the end of this text).

If 3 more than one such extremal path, then we would make a reasonable
approximation by summing over the contribution from each path, assuming
these extremum points are well separated in function space.

An analogy can be made to integrating over two Gaussians which are well
separated (see Figure .

For our V' [z], the inverted harmonic oscillator, we know that there exists only
one solution to the equation of motion which has finite action (infinite action
doesn’t interest us because its contribution would be zero anyway): z. (t) = 0,
with boundary conditions (:I:%) =0.



exp(—S[x(t)])

x(t)

Figure 1.1: The volume under the curve can be approximated as the sum of two
separate Gaussian integrals.

1.3.1 Taylor Expanding the Action
Pick some e € (0, 1). Define (t) := L [z (t) — zo (¢)], where z (t) € {z € R : 2 () =ay A2 (-T) = 25}

e
is the set of paths we would be integrating over. Because z; (t) is a solution
to the classical equation of motion with the same boundary conditions, we have

that n (:I:%) =0.

1.3.1.1 Claim
The action can be approximated as S [z + en) & S [2a]+5 X, en €2 ((ﬂ)z + M) +

T Ox2
O (53) where ¢,, are expansion coefficients of 7 in a complete set of eigenfunc-
2 .
tions of the differential operator f% + %.
Proof

o We have that x (t) =z (t) +en (t).

e Treat S [x] as an analytic function of £ to make a Taylor expansion of it
around ¢ = 0. Thus formally we have:
Slz] = Slwa +en) = S wal+ 285 [wa +en)| _ e+3 %S [ + en) . g2+
e=
O (%)

e Observe that d%S [z + 57]]‘6:0 = 0 by definition. Verification:



d
Sl +en

e=0

T d
= dt—L x4 en, & + en)
de

-3 e=0
_/5dtaL[+ eiin s Ot s en il 3
= ). By [ Tem &tenln+t oo ten, @ +eili _0—
NI +/ g (25 dOLY
- 9i") _x 2 \or " dator )"

- =

=0 because n(+Z)=0
T (0L . d oL
= /2 dt <8 [il'cl, (ECZ] dt 8 [l'cl; xcl}) n

Since 1 was arbitrary we get the classical equation of motion, % [Tery Te]—

ddt ?)a: [mcla j?cl] =0.

is slightly more involved:

o LSlaa +enl| _

2

d—€25 [Ter + en)

oL . .
= — dt — [xa +en, T +enln+ % [Ta +en, T +en)n

PL, G OPL L PL,
- _zdt 32" 25t G

— For most Lagrangians (including the harmonic oscillator) 88 8L

e=0 e=0

— For Lagrangians of the form L [z] = £i? —V [z] we have g% =1and

2 (L) _ (5 g a1 (R g
so [Zpdt (Gzn?) = [ 25 dtii = il 2y — [ 2y dtijn.
——
0
— Thus we find that the second derivative with respect to ¢ is:

[y dun (— (~ 2Vl ) = [, diy (g5 + ZVe2al)

e All together we find that:
Slwa +en ~ Slwal + 4 [ 2 dten (t) (— i + 22 ) e () +0 (%)

e Let {yn},cn be a complete set of orthonormal functions which all vanish at

T
+L: 2 dtyn (t) Ym (t) = dpm, which are eigenfunctions of the differential
2

0’V[zer, del

operator — =z + e . Using the boundary conditions we can find

! dt2
the eigenvalues:

— Make an Ansatz with y (t) = A cos (At) + Bsin (At)



( 5:2 + W) y(t) = </\2 %) (t). Thus the eigen-

values are \? + %. But what is A\?
— Employ the boundary conditions:
{A cos (ML) + Bsin (A\L) =0
Acos ()\%) — Bsin ()\%) =0

— The only way to get a nontrivial solution is if — cos ()\Z) sin ()\%) -

2
sin (AL) cos (ML) = 0, which means sin (AT') £ 0 which is true when-

ever A\, T = mn for any n € Z.
a2 .
— Thus our eigenvalues are (%)2 + % for all n € N (we don’t

need to take negatives values of n since that term is anyway squared).

e Because {yn},y is a complete set, we may expand any given function
using it. In particular, write en (t) := >, o Ca¥n (t) where {c,}, oy are
the expansion coefficients.

e Plugging this into S [x] we get:

1 B d? 0?2 V .Z‘Cl, Ty
S [xcl + 577] ~ 5 [xcl] + 5 /—?; dt Z CnYn (t) (_dtg + Ox2 ) chyl

nEN

TLEN leN
. 1 9 ™ 2 0? V[:Ecl; jf'cl]
= Skal+52 <<T> L e

1.3.2 Path-Integral Approximation
1.3.2.1 Claim

<07 z% | 0, —z%> R 217T Smh(wT) for the simple harmonic oscillator.

Proof We have taken z; = x; = 0 in order to simplify the formulas.

e Going back to our path-integral, because we know there is only one unique
solution to the harmonic oscillator potential, we need to approximate
around only one classical path. Thus our path integral, given our ap-
proximation becomes:

<O,iT‘O,i—T> ~ J\// Dz x
2 2 {weB®: o (T)=0ra(~ 1) =0}

leN

N | 0%V [wa, i
Slzal + = ZZ/ dtenyn (t <<7;> +%

) ay (t)

X exp{ xcl %Z 721 <(7Tn)2 82‘/52?2’ xd])}
neN

10



e Now we can reap the fruits of the approximation to the action which we
have made. Because S [z.;] does not depend on z, we can pull it out of the
integral (in fact it is zero but we keep writing it for a while none the less).
We may make a “change of variable” x + n which is a mere “translation”
in function space, so that Dz = D (en). But now, because en is expanded
in terms of expansion coefficients {c,}, cy, integrating over all possible 1
is really the same as integrating over all possible values of ¢,, for each
n € N. Thus we get now |N| ordinary integrals:

<0, iT‘O, —¢T> e—S[M]N/dco/dcl...exp
2 2 R R neN
2 V Cly C
N/dCo/dCl Hexp{ ((n) +8 gvx; xl])}
neN

(ool 3728 )

neN

Q

SEe () -2

l\.')\l—\,_/h\

e Because we have separated our |N|-dimensional integral into a product of
IN| integrals, we may perform them one by one. They are easy, being
ordinary Gaussian integrals which we can readily solve:

WL e () + 2l

neN
a2\ 2 A2\ 0%V [, Gl o
- VILE(F)) (1 () ) -
a2\ 2 any2\ OV [, Gl 2
= VI {”“((T) ) }H (” ((T) ) o) (7
neN neN
- R T (e A P e sy L
N T m2n2 ox?
neN neN
free particle result contribution from potential

e Now we take advantage of the fact we haven’t defined N yet. Observe
that the first infinite product is the result we would have obtained for a
free particle (had V = 0). But for this case, we know how to compute
<O, z% ’ 0, —i%>, and so we can calculate what A must be:

11



2
— pe 2
27T R
- 1
a 2T
1
e Thus we define N := —Y2"T____ g5 that our results match in the case
l_IneN{m%

of V.=0.
e Another trick is the identity: [, cn (o} (1 + (%>2) — %’1(‘1) which fol-

lows from Euler’s infinite product formula for sin [2].

e Thus we find that the path integral is equal to: (0, i% |0, —i%) ~ /5= ST

2 _ o? Vizer, zcl]

as desired, where w o

1.3.3 Ground State Energy for the Harmonic Oscillator

To get an actual expression for the energy eigenvalues, we take the limit 7" — oco:

li 0 L 0 T li ! ?
im - —i—) = lim | ———F—x =
P SN R T—oo \| 27 sinh (wT)
—wT
= lim (/2

Tooo \| 11 — e~ 20T

E . —_wT 1 —2wT
\/WTlgnooe ’ <1+20(€ ))

e Comparing this result with the expression from usual quantum mechanics

we find: | lim e P07 |4 (0))* ~ ,/g lim e 27T

Q

T—o0 T T—o0

The sense in which this is an approximation is that higher order terms
on the left hand side will give us contributions from higher states of the
system (only n € 2N though because for n € 2N+ 1, ¢, (0) = 0).

e Thus we deduce that | Ey = % and | |1 (0)]* = e , which thankfully
7T

agrees with the usual canonical quantization computation, as in [9].

12



1.4 Conclusion

In conclusion, to find the ground state energy of a system and the ground state

wave function evaluated at 2 = 0, we have found the formula: limy_, o e =207 |4 (0)]? ~
_ . _w _ 02Vza, &
e=Slwel VEImy_o e 2T where w = %.

13



Chapter 2

The Double-Well Potential

Our setup is the same as before, however now our potential is given by V [z] =
8“72 (2% — a2)2 where {a, w} C (0, c0).

In order to simplify the expressions to come, define \ := 8“’72 so that V [z] =
A (x2 - a2)2.

This is the quartic double well potential, which we study as an archetype for
tunneling phenomena in quantum mechanics. It is a prominent example for a
system where employment of perturbation theory (for example, expansion in \)
will not reveal tunneling, and we must use another approach to see the effect.

2.1 Computation With Usual QM Methods

The Schroedinger equation reads (if we assume m = 1 and define i = 1):

L;; —2x(2? —a?)” + QE} b(z) =0 (2.1)

2.1.0.1 Claim
The two lowest energy eigenvalues of this differential equation are given by:

Ey =

NI
—
|
5[
@
»
T
/~
=
N
>
~—

3
By =% (142 e (—i25)
Note: Fy— Fq ~ exp (—%), which cannot be expanded in perturbation series
for small \.
Proof

e The solution of this problem is presented in full detail in chapter 50 of [5]
page 183 problem 3.

14



Figure 2.2: In Euclidean spacetime the potential is inverted.

2.2 Computation With Euclidean Path Integral

Our strategy for the double-well is the same as the quantum harmonic oscillator:
find the classical paths (which minimize the action), and expand the action
around them. Finally plug this expansion into the path-integral. This means
that classical paths whose action is infinite will have no contribution to the path

integral. We shall now try to compute <—a ‘ e~TH ) a> (from here on referred to
as BC1) and <a ‘ e TH
which we associate with quantum tunneling.

—a> (from here on referred to as BC'2), two transitions

2.2.1 The Classical Euclidean Paths of Finite Action

Because we are working in Euclidean spacetime, our potential is inverted and
we are looking for solutions for the following equation of motion:

G (1) = 4 [zcl (1) — aQ] o (1) (2.2)

2.2.1.1 Claim

The only solutions to this equation are |a - tanh (:t% (t— T)) for all T € R,

where the + variant corresponds to BC'1 and the — variant corresponds to BC2.

15



Proof

e Multiply the equation by 2i:; (t) to obtain a differential equation which
we integrate to get an integration constant Cf:

280 () et (t)

9 fis

2y (1) - 4 (xd 1) - a2> o (1)

2)\% [mcl (t)* — aQ} ’

i (1)) = 2X [xd (t)? - aﬂ e

e Determine C; using the boundary conditions (by the way, C is the en-
ergy): At :i:%, we require that x.; = +a and that @, = 0 (asymptotically
go to +a) and so C; must be 0.

o Write . (t) := a tanh [u (t)] and plug it into the equation to get:

{asech[u(t)]Qﬂ(t)}Q = n{a? tanh[u(t)}z—a2}2
a2{17tanh[u (t)]2}2[u O] = 2 {tanh[u (t)}271}2
[0 ()] = 2Xd?
at) = ia\/ﬁzia@:i;’
u(t) = :I:%tJrC’Q

where Cy is some integration constant.
e Define T := %02

e Thus we find that the most general solution is: a tanh (:i:%t + %T) for
any 7 € R.
|

2.2.1.2 Remarks

e These solutions’ boundary conditions are:

— For + version, z. (—00) = —a and 2 (00) = a. This solution is
called an instanton at time 7 and shall be denoted from here until
the end of this chapter as I ().

— For the — version z.; (—00) = a and z. (00) = —a. This solution is
called an anti-instanton at time 7 and shall be denoted A7 (t).

e Thus they are only approximate solutions if our boundary conditions are

T (:I:%) = #+a, and become precise solutions only when 7" — oo.

e These solutions, which correspond to tunneling are only made possible
by the fact we are working in the Euclidean spacetime framework. In
Minkowski spacetime 7 such solutions, because classically # tunneling!

16



Figure 2.3: An instanton at T.

e Observe that lim; o (I7 (t) —a) = limy— oo —2ae™

w(t=T) and so we can

imagine the “width” of an (anti) instanton in time is proportional % In
other words, it happens within a time window of width about % centered
at T, where before and after nothing happens.

2.2.1.3 Claim
Let n € 2N+ 1. Let 77 €

(-3: %) T2 €

oo ekt

Jj=1

(7: 5);

,7;16(7' 1, 2) Then

are approximate solutions to the equation of motion.

The + (—) variant corresponding to BC'1 (BC?2).

Proof

e Work on the + version first.

e For brevity denote 7; := %w t—1T;

).

e Denote our suggested approximate solution by y (t) = a H?Zl tanh (7).

e and
1 n
gt) = Jwa
=1
1 n
= —wa
2

watanh (1) (sech (1))

J

_w%y (t) (sech (7'1))2 + Z

17

k#l

Then g (t) =a) ., [Hj# tanh (7;) jw (sech (7’1))2}

Z H tanh (75) (Sech(Tk))Z

k#L \g#l, 7k

H tanh (7;) | (sech (7))

J#L j#k



e Plugging this into the equation of motion we have:

7.
0 L G-y (y)-a?)

& 1 > 2

= iwaz fway(t) (sech (7)) Jrz | H tanh (7;) | (sech (1))
=1 k#l \j#l, j#k
2
1
—§w2y (t) Htanh ()] —1
J
1. First case, t € (T}, —¢, T;, +¢,) for some jo € {1, ..., n} and for some

e < 1. For such values of ¢, y (t) is almost zero. In addition, sech (7;) ~
0Vj # jo and 1 otherwise and so we have (neglecting already the terms

with y (¢)):
1 n )
~ Fwa H tanh (7;) | (sech (1))
1=1 | kAl \#L j#k
1
~ iw a tanh (T]) 6k,j0
1=1 |kl \j#l j#k
1 —~ JO I = jo
= —wa .
2 ; { (H#z,jm tanh (Tj)) L # jo
1
= pwa H tanh (7;)
I#j0 \J#l, 3#Jjo
~ 0
sum of 1 and -1 even number of times
2. Second case, when [t — T;| > % Vi € {1, ..., n}, that is, it is “very” far

away from any instanton-event at any of the 7;’s. Then sech (7;) ~ 0Vj,
[tanh (7;)| =~ 1V;j and so our equation is fulfilled.

|

We call the solution with the plus “n instantons”, denoted by I7  r (%).
Observe that it obeys exactly the same boundary conditions as the single in-
stanton. The solution with the minus is called “n anti-instantons”, denoted
by A% 1 (t), and obeys the same boundary conditions as the single anti-
instanton.

2.2.2 Features of Instanton Solutions
2.2.2.1 Claim

ElIr] = %]7— () =V [I7] = 0 and the same for A7. Thus we would see that
the instantons and anti-instantons have zero total (Euclidean) energy.
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Figure 2.4: A 3-instanton.

2

_ % (—a2 [sech (£% (t — 7'))]2) =0.

Proof 1a? (%)2 [sech (£% (t — T))]4

2.2.2.2 Claim

SlIr]=S[Ar] = % (in particular, the action of instantons and anti-instantons

is independent of their parameter 7!)

Proof

e Using the preceding claim, we can simplify the computation of the action:

S(Ir] = /_D; dt (;I'T > +V [IT]>
= 700 dtLr (t)°
= =da° (f)z /:: dt {sech (:tg (t— 7'))}4
)
2 2
= ga w
w3
T 123

e Because the result of the integral is independent of the plus or minus sign,
this computation holds also for Ar.
|

3

w
Defi =
efine | Sy o

2.2.2.3 Claim
Sy, 7, ®] =8[4% 7. )] =nS



Proof Using the fact that instantons have width % we may separate the
: n 0 n 2 n
integral: S [I7 . ()] = [7_dt (% (L1p . @) +V[IE (t)D =

2?21 ttjjj; (%ITJ t)>+V [Iﬁ]) = nSy, where ¢ is chosen such that 1 < e <
man ({|7; — Tel : {4, k} C {1, ..., n}}). Later we would see that this should
always be possible for such n that we care about.

2.2.3 Structure of Transition Amplitude Approximation

We find that the most general classical approximate solution to the equation
of motion with either BC1 or BC2 is indexed by some odd integer n, together
with n consecutive numbers in the interval (—%, ) c R.

As we remarked in the first chapter, if we want to make an approximation
for the path integral around stationary paths, and if 3 more than one station-
ary path, then in general we could approximate the path integral as a sum of
approximations around the various stationary paths.

Thus we expect

<—a ) e~ TH ‘ a> (2.3)
T/2 T/2
~ / dT; ... / dT, [path integral approximation around I%, - (t)]
nean+1” —1/2 Tn-1
and the anti-instanton approximation for <a ‘ e~TH ‘ —a>.

Furthermore, by similar procedures it is clear that an even number of in-
stantons or anti-instantons obey the boundary conditions of (i%) = ta
respectively, and thus, they form an approximate solution with these boundary
conditions, and it is also clear that +a (the constant map sitting always at either
a or —a) is an ezact solution to the classical equations of motion with zero ac-

tion. We will use these solutions to compute <a e~ HT ‘ a> or <fa e HT ’ fa>

respectively.

2.3 Single Instanton Contributions

Our next step would be to compute the contribution of a single instanton (of

some given T) to <—a ’ e~TH ‘a> for which we expand the action around I7.

(Or vice versa of an anti-instanton to {a e~ TH ‘ —a)). Using our experience

with the harmonic oscillator, we can readily write down that contribution:

(el e,

%

e*S[lT]NH {m&:%}
= e SN {H En}_%

2 0V [17—, I'T}

where ¢,, are the eigenvalues of the operator -4 527
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Next, to make the following expressions shorter, define det (operator) :=
] (eigenvalues of operator). This definition is not without sense, because as
we’ve seen in the previous chapter, the product of the eigenvalues represents
the contribution to the transition amplitude of quadratic quantum fluctuations
around the classical path.

Then we can rewrite the contribution as:

R e

For convenience, we take the harmonic oscillator, {det (—;TZ + w2>} ,as a

[N

reference for our computations:

Nl

Ox?

<—a ’ o—TH ‘a>n:1 = e SN {det (—5:2 + wz) }_2 T

dt?

det <—;:2 + LV[IT’ iT] )

N

det( g +82V[IT’IT})

a2 Ox?
—sy |1 w

27 sinh (wT) det (_di + w2)

dt?

= €

Next, a simple calculation shows that
82V [IT, ifr}

- nee e,

2
5 3 w

YT {cosh [%w (t— T)] }2

so we obtain finally:

[N

_d> 2 _ éw—z) B
<7a efTI:I ’a> _ 6750 i w det ( dt2 +w 2 {COSh[%UJ(t*T)]}Q
n=1 27 sinh (WT) det (—% + w2)

where we have used our computation from the first chapter for the harmonic
oscillator operator determinant, and “all” that is left for us is to compute

_ d% 2.3 w2
det( e z{cosh[%wm]f)

det(—%—i—uﬂ)

. . d? 5 3 w?
Thus the eigenvalue equation reads: | | —— + w Yn (t) = enyn (t) |

dt? 2 {cosh [%w (t— T)] }2

It is clear that as w? —e,, > 0 we will have a discrete set of eigenvalues and when
w? — &, < 0 there will be a continuous spectrum. However, with our boundary
conditions y, (:i:%) = 0 the eigenvalues which are bigger than w? will also be
discrete, and only when taking the limit 7' — oo they will “become” continuous.
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2.3.0.1 Claim

{0, 2w?} C {en} ey, Where {e,}, oy are all the eigenvalues of —% + w? —

3_ W ; ; ; _d> 2 _
2 Teosh o= T T In particular, 0 is the lowest eigenvalue of oz tw
3 w?

2 {cosh[$w(t—T)] }2 ’
Proof

e We follow [5] pp. 73 problem 5:

3,2
2w

) 2
— Rearrange the equation as (55? +en —w?+ W) Yn (t) =
0
— Make a change of variables t — T — t to get:

w23

2
- (e =+ o) v (0 =0
— Define £ (t) := tanh (jwt), € := 2V/w? —¢,, 5:=2

2
_ dy _ dEdy Py _ d (dedy) _ d’¢dy g\ " d%y
Thendt‘dtdgandsodﬂ—dt dide) = arae T
2

— 5 = Jufsech (Jot)] =

27
— So that % = —%w2 (1 —& 5%4-%(,02 (1 _52) o=
_1,24d d
- 50‘,2(7£ [(1 _ 52) ng}
— €= 2—nandso% w? — g, =2—nandsow?—¢, = “72 (4—4n+n2) =

1
w2—w2n+iw2n2 and so| &, = w’n (1 — n) for n € N. But € must

W (- e%+ 1 (1-¢0)" ¥] =

4

be positive! so we obtain only two eigenvalues in this way, and the
rest will be obtained differently.
|

2.3.1 Zero Modes—Collective Coordinates

We are in trouble, because the first eigenvalue is 0, and we have a term (50)_% =
& in our transition amplitude.

We identify the yq (t) eigenvector—the eigenvector corresponding to eigen-
value zero—as a “direction” in function space that leaves the action invariant.

, )

This is because (—j; + W) is actually g% where 7 is a quantum
variation around the classical path I+. But we know of such a “direction”
already: varying It — Iyya7 leaves the action invariant. Thus yo must

correspond to this shift in 7. Thus if Iy (¢t) + ATy (t) < Iria7 (t) then
Yo (1) x %’W ATH0 7%17— t) = %IT (t). We must still normal-
ize this vector to be able to use it: ffooo dtyo (t)2 £ 1, but this computation
we have already made, and found ffooo dt (%IT (t))2 = Sp. Thus we find:

_1d

Yo (t) = (So) 2 aIT (t) |
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So in the path integral which we separated in chapter one into an |N| dimen-
sional integral over coefficients corresponding to eigenvectors, we must separate
the zero mode, because it is in fact not Gaussian fR deoe®. Tt is clear that ¢
actually corresponds to 7 and so we can swap this integral with an integral over
T. This is conventionally called the introduction of a collective coordinate. This
fits well with our scheme as we already anticipated integration of the various 7
parameters.
2.3.1.1 Claim

deOZV?Ode

Proof

e If ¢y changes by Acg, our path (the integration variable in the path inte-
gral) changes by Az (t) = yo (t) Aco.

e On the other hand, if 7 changes by AT, our path changes by Az (t) =
Alr (t) = ZLOAT = —/Soyo (1) AT

e Because the change to z (¢) must be the same, we conclude that dey =
VSodT . (The minus sign is irrelevant).

2.3.2 The Remaining Eigenvalues

e Define det (operator) := ] (eigenvalues of operator except the zero one).

Going back to our product of eigenvalues, we thus omit the zero eigenvalue and
replace it with “preparation” for integration over the zero mode:

82V Iy, I 82V I, I
det (—j:z + L;T]> \/S—O dety (‘Zlf? + L;T]>
= —d
2T T

det (—% + oﬂ) det (—% + w2)

[N

For normalization purposes we must also multiply by \/%

would have obtained from the Gaussian integral of the zero mode. Recall from

chapter one that the eigenvalues of —% + w? were (%)2 +w? 25 w2, So for

every term we don’t include in the product we should “compensate” by dividing
by w? so that all together we have:

which is what we

1
d2 82‘/{[7’, IT] 2
S deto <dt2 t
—wdT =
2m w=? det (= Gz +w?)

23
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2.3.2.1 Claim
deto <_£+M>

dt2 dz2

— 3«1
w2 det(—%—&-uﬂ) 4 9

Proof

e The next eigenvalue after 0 is %wz. But since we are also dividing by

the harmonic oscillator eigenvalues in the limit T" — oo, we must divide
each eigenvalue by w?. Thus we get for the first nonzero eigenvalue a
contribution of %.

e The % factor is computed in [5] pp. 80 and also applied to our particular

problem in [12].
|

Notes So all together we have| lim <—a ’ e*Tﬁ ‘ a> . = lim (, / we;T) DwdT
T—00 one-instanton T—oo s

/6
where we define | D := / —+/Spe "% | to make the expressions shorter.
™

2.4 Dilute Instanton Gas

2.4.1 Energy Eigenvalues

Because we know that a correction of one-instanton to the harmonic oscillator
entails a factor of DwdT to the transition amplitude, we may readily generalize
that the contribution of n instantons is (DwdT)".

2.4.1.1 Claim

The contribution of an n-instanton to the transition amplitude is (Dw)" d7; ... dT,.

Proof We only need to explain the \/gw term, because the power in the

exponent follows from the fact that the action of the multi-instanton solution
is merely n times the action of the single instanton. The other factors are
n

byproducts of the collective coordinates, and so only \/é actually follows from

computing the functional determinant. We leave this as an exercise to the
reader.
|
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(1 [

/A

Figure 2.5: A 4-instanton. The green arrows point to instantons and red arrows
point to anti-instantons in the sequence.

2.4.1.2 Conclusion

So we may finally write:

g (e () S [ [ i
n= nE2N+1 -T/2 T
w w ™
- 1 W _erp n "
Ti‘éo<\/;e ) > (Dw)
ne2N+1
. W _wp) .
— Thm —e 2 Sinh[DwT}
— 00 T
= i g -5 1 DwT —_DwT
B :Ph—{noo(\/;ez)Q[e e ]
— Jim © & [ §THDWT _ =T =DuT]
T—)OOQ T
Y [e*%(lsz)T,e*%(HzD)T]
T—)OOQ T
WS B
T—>002 T

And so we find exactly the same two lowest energy eigenvalues as the ordinary
quantum mechanics techniques.

2.4.2 Symmetry of Ground State

Using exactly the same procedure, we can evaluate <a ’ e‘HT‘

a>. Now we
have one classical solution which is the solution z (¢) = a. But as above, we also
must take into account multi-instanton approximate solutions, which take us
back and forth. However, in contrast to before, now we need an even numbered
multi-instanton.
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2.4.3 Wave Functions

From our analysis it is also possible to extract the energy eigenfunctions: 1y (—a) 9§ (a) =

1
Wt
o (a) =3/< = |0 (a) = Yo (—a) = (E) " | and so it is appears that
the wave function for the lowest state remains symmetric after all under the

exchange of +a.

2.4.4 Validity of Dilute Instanton Approximation

Even though we are seemingly summing over an arbitrarily large number of
instantons (and so the dilute gas approximation should break down at some
point), in infinite sums of the form ) _y jl—,, only the terms for which n < «
are non-negligible. That means for us only terms where n < DwT are actually

important in the infinite sum, where we recall D = \/g Spe=% from before.

For the dilute gas approximation to be valid, we have assumed that instan-
tons don’t “interact”, that is, that one instanton event is finished well before
another one starts: |7; — T;| > l So we must make sure this condition holds

at least for all solutions with n < DwT. On average, we have |T; — T;| =

and so, we only care about the “worst” case in which |7; — 7| = DZT = 11)

So we find that in order for this approximation to hold we need D < 1, Wthh

;7
1

means ——e 123 K 1| This will be true if A <« 1.

SEIEN
£
w
€
w
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Chapter 3

The Periodic Well

Consider the same unit mass particle as before, but now under the influence of
the potential V [z] = 3, ., v (¥ — na) where v () is a single well inside (—%, &)
and zero outside that interval
A practical example for a system that has such a potential is the sine Gordon
in QFT or just a simple pendulum in QM.

The z-values of the minima (maxima) of the potential are the set aZ.

3.1 Kronig-Penny Type Model

Using Bloch’s theorem we know that the eigenvalues of this system will be
divided into energy bands, each of which a continuum (indexed by k € (—3 1))

a’ a
and that the energy eigenstates are also eigenstates of the translation operators
by aZ: Tymatbr () = Y (x +ma) = €™y, (z). We shall try to obtain results
using “instanton calculus” instead.

3.2 Generic Transition Amplitude

A single instanton § [tanh (% (t— T)) + 25+ 1} shifts site j to site j + 1, anti-

instantons 5 [tanh (—% (t— T)) + 25 + 1] shift from j+1 to j. Now an instan-

ton is an event localized both in space and in time.

3.2.1 A sequence of single-instantons versus A single big
instanton

If we want to move from j to j + 5 we could think of two options:

1. Stringing together 5 1-instantons, j — j+ 1, j+1 — 5742, ... Then the
contribution is proportional to e~° where Sy = 5%&20.1 (as we computed
in the double well).

2. Taking a single 5-instanton: 2 [tanh (£ (t — 7)) + 2j + 1] contribution
proportional to e~%0 where S} = 2 (5a)® w. Thus this is O ((6*50)5)! We

will only take into account stringing 1-instantons then.
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Figure 3.1: The periodic well.

-V

Figure 3.2: In Euclidean spacetime the potential is inverted.

So if we want to go from j — j' we assume any sequence of l-instantons and
anti 1-instantons are combined, just so that the number of instantons minus the
number of anti-instantons is equal 5/ — j.

3.2.2 The Transition Amplitude

If we denote our minimum sites by j for x = ja where j € Z, then we can write
a transition amplitude as:

. o F . . W _w nIm n' T"I
o <J ‘e o ‘J'> ~ limy_ o (y/we 2T) D (Dw)" = Y (Dw)" o 8= (nmm)
—_—

neN " n/eN

SHO ninstantons n»’ anti-instantons
What we have asserted with this statement is that we can have any number

of instantons and anti-instantons (doesn’t matter where) just as long as the total
change in position j — j’ is equal to the total number of instantons n minus the
total number of anti-instantons n’.

Next, write ;) —(n—n’) = fo% %eie[(j_j/)_("_",)} to get:
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lim <j ‘ e~HT

T—00

n'!

neN

2
= lim< e 3T / %ew[(j*j/)] exp [Dw2 cos (0) T
T—o0 0 2
27
. w ., d@ 16[(] j)} w
= FTlgr;O/O - exp{ 2(1 4Dcos(9))T]

3.2.3 The 6-Vacuum

We can read-off the energy eigenvalues from the previous expression readily:

Ey = % — Dw2 cos ()

This is the same result we would obtain using Bloch’s theorem. The barrier
penetration coefficient enters in D via e~5°. This is already a “theta-vacuum”
which will be important later in gauge theory: Even though we originally for-
mulated a tunneling between |j) and |j’), it turns out that the actual vacua (by
Bloch’s theorem) have to be eigenstates of of the translation operator, and so,
as we found, it is more natural to write |0) := ", e~ |n). Then

Z e—z’na@j—vma |n>
n

Ze—inae |n + m>
n

eimae |9>

Tma |60)
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Part 11

Instantons in Quantum Field
Theory
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Chapter 4

Pure Yang-Mills Theory

In this chapter we finally get to field theory, in which the main goal will be to
show that the vacuum has such a structure as to effectively add a CP-violating
term to the Lagrangian. We follow the presentation in [4].

4.1 Gauge Theory

4.1.1 Gauge Groups and their Corresponding Lie Alge-
bras

Let G be a compact Lie group, called the gauge group. Let {T“}ff:l be the
generators of its corresponding Lie algebra g. Thus we have [T“, Tb] = fabere
where f¢ are called the structure constants of g and we employ the Einstein
summation convention on the group indices (despite all group indices being
superscript). For SU (2) for example, f2%¢ = £, the totally anti-symmetric
tensor. If G is Abelian, for instance, for U (1), the structure constants are
fabc =0.

We pick a representation of g in which ¢r (TaTb) ~ §% . For example, for
SU (2), T* = —i%- where 0® are the Pauli matrices. For SU (3), T% = —i%"
where \® are the Gell-Mann matrices.

4.1.1.1 Definition

Define the Cartan inner product between two generators so that we would have
(7%, T?) := 5,

4.1.1.2 Claim
For SU (2) in the representation of su (2) specified above, (T“, Tb) = —2tr (T“Tb).
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Proof

—2tr (T°T") = —tr K—/’J) (—fj)}

= %tr (ia‘lbcac + 6‘”’])

1
5 5abt7“ (I)
6ab

4.1.2 Gauge Fields

Consider a field theory of N real vector fields, {A,, “}ivzp where N is the dimen-
sion of g above. Because we are interested in instanton solutions, we will work
exclusively in Euclidean spacetime. Thus all spacetime indices, still in Greek
letters, will be subscript, yet Einstein summation convention is still in effect.
For convenience work instead with one matriz-valued vector field A, :=
gA, “T* where g € R is a coupling constant. So A, takes values in g. Define

the field-strength tensor ’FW =0, A+ ApAy

4.1.2.1 Note on Abelian Groups

If G = U (1), this is the electromagnetic field-strength tensor because U (1) is
Abelian and for Abelian groups [4,, A,] = 0.

4.1.2.2 The Action

Assume that the (Euclidean) action for this theory is given by S [4,] = 4’% Jpa d*x (Fuy, Flu).
This is a reasonable assumption (that is, this is the most generic term to put in
the action) taking into consideration certain constraints:

e Lorentz invariance.
e Gauge invariance (to be verified later on).

e The need for renormalizability (that is, we need the mass dimension of
this term to obey a certain constraint).

e Naively assuming C'P invariance of the theory (this will turn out to be a
misguided assumption, and as a result, we will add another term to the
Lagrangian).

Note: because we are in Euclidean spacetime, there is no distinction between
lower and upper spacetime indices.
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4.1.3 Gauge Transformations

Define a local gauge transformation as the following mapon 4,,: | A, — VAMV_1 + V(?MV_1

for any V € GR' (here V is function of spacetime, and should really be written
V (z), but this is not explicit in the notation in order to keep the expressions in
manageable size).

4.1.3.1 Claim

Under such a map, F,, — VF,“,V_l.

Proof

Fo w— 0,A, —0,A,+AA —AA,

= VAV '+VOV ) —pev

+(VAV P + VoV ) (VAV I + VOV —perv

= OV)AV I+ V(0,A)V I+ VAV +(0,V)0V I+ VIV —pev
HVAAV VALV V0,V H VAV V0,V H VOV — e

w p 0 3 K
(O V)ALV +V (0,A) VT + VAV + (0, V)0,V —p e v
N————

I
+VAAV I+ VALV —(0,V)AV I —0,V)0,V ! —pev

N————

I

I

= V0, A)V ! —pev
—|—VAMAVV_1 — v
= VE,V!

where in * we have used two facts:
L 9, (Vvvh
2. 91,0, =0

|

4.1.3.2 Claim
The action we defined above is gauge invariant
Proof S [VA,V™'+V9, V1 = ﬁ Jpa d*z (VE, VT VELV ).

But this inner-product is proportional to the trace, which is cyclic, so we get
ﬁ fR4 d4x (F,ullv Fp.y) =S5 [A#]
|

4.1.4 The Covariant Derivative

Define a covariant derivative for Fy,, by DxF}, = OxFu, + [Ax, Fu|.
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4.1.4.1 Note

This reduces to the ordinary derivative when G is Abelian, because we have
[Ax; Fu] = 0.

4.1.4.2 Claim

Then the equation of motion stemming from the action defined above is given

by (which is a generalized inhomogeneous source-free Maxwell’s

equation.)
Proof
o We have £ = (FW, F,).
e The equation of motion is given by 93 a(aﬁﬁ 73— S92 = 0 for all o

in the spacetime indices ({1, 2, 3, 4}) and for all d in the group indices

({1, ..., N}).

e We compute one derivative first:

0 0
78AadFW = A d[A ALl
0
= i 94T, gA, ']
— g2 8;;1 dA,LL aAu bfabcTc

— 92fabcTc (6au6daAu b 4 AM a(sal’(sdb)
= g2 (fdbc(;a#AU b + fach“ aéay) TC

o If we write F},, = gF},, °T° where F,,, © = 0,A, °—0,A,°+gA,"A, bf“bC
then we have for the complete derivative of the Lagrangian:

oL S 0 1 0
9ALd (8A gaalm b ) Ve (F aAdF)
]' c adc a c erpe 1 9
= T(Q(fdbéauAub+fdA,u 5au)TagF,uu T)+4:‘92(FuD’WFHV>
1
— 2 (fdbc(sa“A + fach aéau) L c

1 > c adc a c
= gg (fdbCAu bFaV +f ¢ Au F/J,oz )

1 . .
_ 59 (fdacAMaFauc_fdacAuaFuac)
_ gfdacA“ aFa,u c

1

e Next we need to compute W 12 (WF

)
[ F/“/>+4g (Fuw 905 Aa )F )
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e Computing only one derivative we have:

N
9(FpAad) ™ 0(9pAad)
= 9[08u00r 0" — 05,00, T

g [5/5#5041/ - 5&/504#] T

gT°0,A, % — gT*0, A, “]

e Thus we get for the complete derivative:

oL 1 o 1 o
o~ = T | 7= FUaFU FV? FV
9054, Ag? <a<aﬁAad> el ) T < 9 (OpAa ) " )
1 1 o
T 4 (9 9810ar = 3pu0ay] T, gFyu “T°) + g2 (F;w, 0 (9pAa d)F;w)

1
= ) [5/3u5av - 5ﬁv5au] Fy ¢
= Fp,*
e Thus we found the equation of motion is given by dg Fgq d—gfd“CAu CFon =
0.

e Multiply this equation by g and also by T¢. We will get N such equation
for each d. Sum up all these equations to get: JgFq —g2fdacAu “Fapu erd =
0.

e Using the definition of the structure constants f2<T? = facdpd — [T T¢]
we have:

05Fp0 — g° A, Fo, [T, T = 0
IpFpa —[9AL T, gFay“T] = 0
OsFpa — [Au; Fau] = 0

OpFpo + [Ap, Fua] = 0

DyFua = 0

4.1.4.3 Note about Abelian Groups

When G is Abelian, [A,, F),,] = 0 and the solution is A, = 0. In the non-
Abelian case, this equation is non-linear and non-trivial solutions may exist.

4.2 Finite Action

Just as for quantum mechanics, now for gauge field theory we are interested in
the lowest energy eigenvalues. Thus we want to compute a path-integral. As
we’ve seen in the case of quantum mechanics, it is thus worthwhile to know the
classical solutions to the equations of motion and approximate the path-integral
about those solutions.

Something that was implicit above should now be made clear: for this type
of approximation (semi-classical approximation), classical solutions which have
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an infinite value for their corresponding action are not important, because their
contribution to the path-integral is proportional to e~ 5[5\ (however, in general,
it is actually the solutions with finite action which form a set of measure zero
in the space of all functions (and so should not contribute to the integral), and
only gain significance in the context of the semi-classical approximation.)

4.2.0.4 Claim

In four spacetime dimensions if S < oo then F),, must decrease more rapidly
than ﬁ

Proof Otherwise S~ [p, d'z (%2)2 ~ JoS drr3 ~ log (r)[7 — oo.
|

4.2.1 Field Configurations of Finite Action

So we are interested in such field configurations so that in some series expansion

of lim,_,., F' in powers of %, the first term in F' is %3 Naively, this means that

in some series expansion of lim,_,., A in powers of %, the first term in A is %2,
because F' o< 0, A r%

4.2.1.1 Pure Gauge Configurations

However, it turns out that there is another possibility, which is more interesting.
F could also be zero if A is some gauge transformation of zero (such a configu-
ration is called a pure gauge). That is, A, = V9,V for some V (z) € GR*,
4.2.1.2 Claim

If A is a pure gauge then F' = 0.

Proof
E,, = O (Vo v+ [Vov ' vo, v
= Vvt ,+vvt -V, vt vyt
+vv-t vv-t, —vvt vyt
R o R o o T e N T R VA Ve N Vo T
<(Vvi1)‘~:0) -1 -1 -1 -1
= Vuv 2 VVV N V;LV vt VVV o
= 0
]

Conclusion Thus for finite action we need such fields configurations so that
lim| )00 Ay X Vo,V + O(ﬁ) for some V (z) € GE'. However, be-
cause in this expression V is only evaluated for |z| — oo, we can conve-

niently think of V (z) € G5° instead of V (z) € GE', where S3, mathemati-
cally the 4-dimensional sphere with radius one, is for us homeomorphic to the
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4-dimensional sphere with radius infinity. So every finite action field config-
uration is associated with an element V (z) € G5°. But if two pure gauge
field configurations are in the same gauge orbit, their corresponding V' is not
the same. That is, V', which characterizes a field configuration, is not gauge
invariant.

4.2.1.3 Claim

Gauge transforming a pure gauge field configuration V9,V ! with U € G trans-
forms V into UV

Proof If we perform a gauge transformation A, — UA, U +U8,U " on a
pure gauge configuration Vauvfl we get:

VoVt — uv (@, v HuTt+us, Ut
= UV, (Vv'uh)-uvvvlo,ut+Uo Ut
= UV, (Uv)!

Conclusion Thus effectively we have V +— UV instead of V — V', which is
what we would expect from a gauge invariant object.

4.2.1.4 Claim

It is not possible, in general, to “gauge away” any pure gauge field configuration
to zero by picking U|,___ = V! —o» thereby arranging that A, = 19,171 =
0.

Proof We assume all gauge transformations are continuous throughout space-
. . . g3 .

time, so U|,__, must a continuous deformation of U|,_, € G, which must be

a constant (because it cannot depend on the angles). But all constant elements

in G5 are continuously deformable into 1 (because we assume G is connected).

So that we may only pick such U|,__ which are continuous deformations of 1.

Thus, if V! is not continuously deformable into 1 (which in general could be

the case) then we cannot pick U = V1.
[ |

Conclusion Even though we found V — UV instead of V +— V| U must be
continously deformable to 1 and so: V and UV are continuously deformable
into one another.

As a result, we find that the gauge-invariant object associated with A, =
V9, V=1 is not V (z) per se but the class of all elements of G5 which are
continuously deformable into V' (x).
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4.3 Homotopy

Two maps that are continuously deformable into one another are homotopic. So
to classify the gauge-invariant objects associated with finite-action field config-
urations, we need to find all homotopy classes in G*° °. We also specialize to the
case G = SU (2) and so g = su (2).

4.3.0.5 Claim
SU (2) ~ 83

. b
Proof Write a general element of SU (2) as [ag C_l} where {a, b} C C and
la|*+|b|* = 1. This is indeed the most general form of an element in Mats s (C)
which is unitary (is its own inverse) and has determinant 1 (to see that write a
general 2 X 2 matrix with complex-number entries and solve the system of equa-

tions stemming from these two constraints). Define a map C? — Matays (C)

b —b
uous, and inverse is continuous). Thus SU (2) can be identified with the vectors
in (a, b) € C2 which have |a|> 4+ |[b]> = 1, which is exactly the unit sphere in
C? ~ R*-the 3-sphere.
|

by [a} — { “ Z} . This is a homeomorphism onto its image (injective, contin-

Conclusion Using this homeomorphism we only need to think of homotopy

. . . 5% . 3 S .
classification of maps in (S?)” instead of SU (2)°, which is more convenient.

4.3.1 Third Homotopy Group of SU (2) and the Winding
Number

The classifications of all maps S® — S2 belongs in the field of algebraic topology
[6]. For topologists, one main goal is to classify the spaces which constitute the
range of these maps. Thus, in very crude terms, they decide if the topological
spaces A and B are equivalent if the set of maps S™ — A is “equivalent” to the
set of maps S™ — B for some n € N, where S™ is the n-sphere in R™. It turns
out that these sets of maps (or rather equivalence classes of them—homotopy
classes) form the mathematical structure of a group. This group is called the
n-th homotopy group of a space. In order to decide if two groups are equivalent
we have at our disposal the notion of group isomorphism. Algebraic topologists
can then very clearly rule that A and B are not equivalent (homeomorphic, in
topological jargon) if the corresponding n-th homotopy groups are not isomor-
phic (the converse is not in general true).

For our current purposes, the distinction between two topological spaces is
not so important, but rather a “by product” of the hard work that algebraic
topologists have made: the construction of the homotopy group. In order to
give the n-th homotopy group the structure of a group, an equivalence relation
is defined on the set of maps S™ — A. Two maps {f, g} C A%" are equivalent
iff 3 a point z € S™ and a continuous map h € Al1*5" called a homotopy
between f and g, such that:
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L h(0, =)= f(=)
2.h(1, =) =g(-)
3. h(—, z) = f(x) = g (z) for some z € S™.

That is, h can be thought of as a continuous deformation or interpolation be-
tween the “path” f to the “path” g, where all the deformations are based at
f(z) = g(z). The group of classes of maps in AS" which have a homotopy
between them is denoted by m, (A). The law of composition on this group is
defined in a natural way by concatenating two paths (and taking the equiva-
lence class of that), the identity is the constant path at a point (or all paths
equivalent to that), and inverses are paths that go in reverse direction. Thus
it is clear that, for instance, if w1 (A) ~ {0}, that is, the trivial group, then all
paths are homotopic to the constant point. What that means is that all paths
can be continuously contracted into one point (or rather, a path that just goes
through one point for its range). This is not always possible, but when it is, the
space is called simply connected.
Back to our matter at hand, we are interested in computing 73 (83).

4.3.1.1 Claim
3 (SS) ~ 7.

Proof

e We know that 3 a group homomorphism 73 (5%) — Hj (S®) where Hj is
the third homology group with integer coefficients.

e According to Hurewicz’ theorem [13], because S is 2-connected, this map
is an isomorphism.

e But Hj (53) = Z is easy to calculate.
|

Conclusion This integer in Z represents the number of times the 3-sphere
wraps around itself (negative values for opposite orientation).

So the finite-action field configurations are “indexed” by Z, in the sense that
each A, obtains a label from Z and iff two finite-action field configurations have
the same label they are homotopic.

This label is conventionally called the winding number of an element of

(5.
4.3.2 Standard Mappings of Integer Winding Numbers
Define the following reference maps which will serve us later:

1. B(2)” =1

2. B (a:)(l) = ﬁ (241 + 42 - &) where |z| = \/(3@4)2 + (1) + (22)° + (w3)%
Observe how in this definition the group indices and the spacetime indices
are mixed.
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3. B(z)") = [B (x)(l)r for any v € Z.

4.3.2.1 Claim

Using the homeomorphism we established between SU (2) ~ S3 B (x)(l) is
2
actually the identity mapping between 52 B(J SU (2) ~ S3.

Proof Plugging in the actual Pauli matrices, we have

B(x)(l) = My +i£ .G
|z ||
. i Ty +1r3 1T+ X9
|x| iSCl — T2 X4 — ing

Now we use the homeomorphism from S to SU (2) which we established {Z] —

[a 2}7 to write = {M s —&—m] — [334 +m3} € C2. Now use

||

—b 1T1 — Ty X4 — 1T3 || 11 + To
Ty
. . T4+ 1x T
the homeomorphism between C? ~ R* to write = | s L 173 So
Izl iz + 2o [zl | 2y
Z1

clearly if we started in S® we ended up in ezactly the same point.
[ ]

4.3.2.2 Claim
B(z)") e SU (Q)S3 for all v € Z.

Proof

e When v = 0 the claim is true.

e When v = 1:
L -1 R L -
_ (za E 2 — Ta_,; T = Zaqf _; % . 7) (24 Z
(|x\]l +’|x\ 0) |m|]1 ] 0 because (|x\]l ] 0) (Ifr\]l +Z|m\
(x4)*14(35)?
) <] ’
* But

—
8
M
(V]
Il
\E

;X004

1,7=1

I
:M“

T;Tj (5,']']1 +1 Z sijk’a'k>

i,j=1 k
3
2 }
= (@141 E €ijkTiT 0k
i k=1
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relabelingi+—sj TiTj =T

* 451775 = 0 because €;;,T;x; €jikT;T; =
EjikTiTj = —EijkTiTj.
2 2\ 2
R Lz o 1 1
% Sowe have (241 —iZ . 3) (21 +4-L .5) = &4 +2(I) -1
|| || || || ||

- N = R *
* This shows that ‘%‘]l—l—iﬁﬁ is unitary, because (ﬁ]l + zﬁ : 0‘) =

il - z% - & (recall that the Pauli matrices are Hermitian).

— To show that the determinant is really one:

det (14 il g N
|1»|2 ixl—l'g $4—i$3

|z| |z|
= |:yl|2 {(334)2 + (z3)% - [_ (w1)* — (xz)ﬂ }

=1

— So we conclude that 41 + z% - 0 is a bona fide element of SU (2).

e We know that SU (2) is a group. In particular, it is closed under multipli-
cation and inverses. So B (a:)(”) = {B (a:)(l)} " must lie in SU (2) as well,
for any v € Z.
|

Note With these standard mappings we can construct finite-action field con-
figurations of arbitrary winding numbers.

4.3.3 Topological Charge

4.3.3.1 Definition

Define the Cartan-Maurer Integral Invariant,

3
1 o .. _ o _ _ 0 ., _
I/[V (.’E)] = 182 /53 df1dBO>db3 E Eijk (Vaev 17 Vv (89]‘/ 1) Vaiekv 1)
i,5,k=1 !

VV (z) € SU (2)Sgwhere 61, 02 and 03 are angles that parametrize S® and ()
is the Cartan inner product.

4.3.3.2 Claim

The definition does not depend on a particular choice of parametrization

Proof Follows directly from the fact that 5ijkg—§% gz& = det (%—%) Elmn.-
k3 J ¢
[ |

4.3.3.3 Example

In particular, for the representation we chose of SU (2) we have:

™ ™ 2
v[V(z)] = —ﬁ/o d91/0 d02/0 dOzeintr (V (0;V YV (0;V ) VoV )
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4.3.3.4 Claim
viV(z)=v [f/ (x)} if V (z) is homotopic to V (x).

Proof Suffice to show that v [V (x)] is invariant under infinitesimal deforma-
tions to V (z), because we can build continuous deformations from infinitesimal
deformations.

o If V(x) =exp (iA® (x) T*), then 6V = VA (x) T* = VoT.
e Then
s(VovTh) = (V)o,vt+Vo; (sV )
= V(T)o,V '+ Vo, (=0TV ™)
= —V(9T)V !

Because all three derivatives in v [V (x)] make an equal contribution, we
find that

v[V] / d1d02d0se7F (VO,V =, V (0;V 1)V (0r6T) V1Y)
33

o / d61d02d0se 7 (0, V1, — (9;V) (0,0T))
SS

If we make partial integration we get a term symmetric in ¢k or jk, and
together with % v [§V] = 0.

4.3.3.5 Claim
v [B (x)(l)} =1

Proof
e Because the trace is cyclic, we have
egptr (V (VY V(;V VoV = 3tr[V(0.V )V (V) VoV
=3tr [V (0.V )V (9sV 1) Vo,V ]

24 cos (61)
. . . 3 |zs| sin (61) cos (62)
e We introduce the following parametrization of S*: 2a| = |sin (6,) sin (65) sin (65)
1 sin (01) sin (03) cos (63)

where {61, 62} C [0, ] and 05 € [0, 27). For brevity introduce the follow-
ing notation: s; := sin (6;) and ¢; := cos (#;) for all j € {1, 2, 3}. So we

Ty C1
x S1C
have | 73| = 172
Z2 515283
Z1 5152€3
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e Then

—

B (01, 92, 03)(1) = ﬁ ﬁ o
= (Cl]l + 281826301 + 818285309 + 816203)
. c1 +1s1co 15182C3 + S159S3
o ’i815263 — 818283 C1 — iSlcQ
e Thus
—1
B (01, 927 93)(1):| = (01]1 — i51$2630'1 — 81898309 — 51620'3)
e Compute the derivatives:
— For 6;:
71 . .
(1) _ —S81 —1C1C2 —1C182C3 — C15283
891 { |:B (91’ 92, 03) ] } - |:—’i018263 + C18283 —S81 + ’i0162 :|
— For 65:
—1 - -
(1)] _ 18152 —181C2C3 — S1C283
802 { |:B (917 6‘27 93) } |:—i816283 + §1C2S83 —i81$2 :|
— For 65:
—1 .
(1)] _ 0 —5182C3 + 1515253
9, {[B (61, 65, 65) } [518203 ©isisass 0

e Thus for the first term:

1)8 [B(l ] -1 . c1 +1s1¢2 181S2C3 + S15983 —81 — 1C1C —1C182C3 — C158253
01 15182C3 — S152S3 c1 — 181Co —1C182C3 + 18253 —S1 t+icico
. —iCQ S92 (—ng — 83)
So (—’ng + Sg) 1Co
e For the second term:
1)89 |:B(1 :| -1 _ c1 +1s1¢2 1S182C3 + S152S3 15189 —151C2C3 — §1C2S3
18189C3 — S159S3 c1 — 1S1C2 —181C2C3 + S1C2S3 —15182
_ i618152 S1 (81 — iClcg) (03 — ng)
—S81 (81 + iclcg) (Cg + ng) 7@018182
e For the third term:
BWg, [B(l)} -t _ c1 +is162 15152C3 + 515253 0 —5189C3 + 1518253
3 iSlsgcg — 815983 C1 — i5102 §182C3 + i515283 0
. 2 2 . .
_ [ i(s1)” (s2) —s189 (is1¢2 + ¢1) (c3 — 233)]
== . . . 2 2
s182 (—is1co + c1) (c3 + is3) —i(s1)° (s2)
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e So we find

B (@91 {Bu)}l) B (892 {Bu)}l) BWa,, [Bu)}’l _ { (56)252

which has a trace of —2 (s)” s.

e and

B (391 {Bu)}‘l) B (303 {Bu)}‘l) BWa, [Bu)]‘l _ {(312)2 s

which has a trace of 2 (s1)? s.

e Thus all together we find that the integrand is equal to 3 x [—2 (31)2 52} -
3 X {2 (81)2 82:| =—12 (81)2 S9.

e Plugging this into the Cartan-Maurer integral we find:

L A AN [—12( )2 }
—W o 1 o 2 o 3 S1) S2

e T 27
L / it / 0, / ds [sin (6:)]? sin (6)
272 Jo 0 0
1

v [B (61, 6, 93)“)}

4.3.3.6 Claim
v[U()V(x)] =v[U (x)]+v[V (x)] for any {U (), V (x)} C GS.
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Proof Plugging into the formula the product we have:

1 T T 21 B B B
V] = -5 /0 d6, /O 6, /0 dOseijutr (UV (a,» V) 1) Uv (aj UV) 1) UV, (UV) 1)

™ ™ 2
- _241772/ d@l/ d92/ dbzeizutr (V (0,V YV (0;V )V (V)
0

™ 2w
— d91/ daz/ dOseijitr (UV (;V )V (9,1 (U 1))
247T 0 0 0

247r2/0 del/oﬂde2 02ﬂd935”ktr V(@1 (0,0 UV (0,v 1)
24772/0 a6, /Oﬂdﬂg/(:ﬂd@gs”ktr UV (0v) (U ) U (.U 1)
247r2/0 del/owd%/o%deﬁwk” HUTY UV (0, ) V (V1))
2472/0 dHl/OﬂdGQ/OQWngE”ktr U @U-) UV ((9,vY) (0:U)
24772/0 d91/0ﬂd02/027rd93swkt7’ aU U (B,U) UV (V1))
247r2/o d91/0ﬂd92/02ﬂd936”ktr U (@U-1) U (9,01 U (9.0))

= v[V]+v[U] + remainder

The remainder is zero (using cyclicity of the trace and the fact we are summing
on €55, 80 ijk = jki etc.):

traced remainder = U (0;V) (aj

= V™)
= —3U (8;V) (0;V 1) o, U™t =3V (0;V ) (U ") OiU
—3U (8;V) (0;V 1) 0, U™ =3(0:U) V (9;V 1) (0,U ™)

ij/ik symmetric terms vanish

-30; [UV (0;V 1) 0,U"]

Integrating this and using the fundamental theorem of calculus, we cancel the
derivative with the integral and get the difference of UV (9;V ~1) 8,U ! between
the two end points of the range of §;. Because we expect UV (0;V 1) 9, U~}
to be continuous, the value on the two endpoints must be exactly the same and

we get all together zero.
|
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Conclusion Then we have v {B (z)(")] = n Vn € Z. This follows from the
fact that the winding number of a constant map is clearly zero, so 0 = v [1] =
” [(B(l))*lBuq = v [BCVBW] = » [BD] + v [BW] so v [BEV] = 1.

Then we can get all the other integers using the above formula.

4.3.3.7 Claim
B (x)(nl) is homotopic to B (x)("2) iff ny = no.

— We assume that B (2)™") is homotopic to B ().
— We have shown that the Cartan-Maurer integral invariant is stable

under homotopies, so v {B (m)("l)} =v {B (x)(m)].

— But we have just proved before that v {B (x)(")] =nVn € Z, thus it

follows that n; = ns.
.
— Because ny = ny we have that v [B (x)("l)} =v [B (x)(nz)]

— But v is stable under homotopies, so that means that B (ac)(nl) must
be homotopic to B (z)"?.

4.3.3.8 Claim
VYV (x) € SU (2)S3 In € Z such that B (x)(") is homotopic to V ().

Proof Define n:= v [V ()] € Z. Then by construction B (z)™ is homotopic
to V (z), as they have the same winding number.
]

4.3.3.9 Claim

vV (2)] = 5523 fpu d*z (F, F) where F/w = 2o F)o is the Hodge dual of
F,,, and F'is a field strength associated with some field configuration such that
at r — oo, 4, = V9, V1.

Note This formula is important because it gives us a way to compute the
winding number of a field configuration rather than of a gauge group element
which corresponds to a pure gauge field configuration. With this formula at
hand, we can compute the winding number for any field configuration. For
finite action field configurations, we are guaranteed the result would be some
integer.
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Proof

e Define G, :=2e,000 (A,,, Ay + %AAAJ), conventionally called the Chern-
Simons current.

e Note that we can also write G, = €020 (Av, Firo) — %Eu,,)\g (A, Ar\Ay).

To see this:

2
Euvio (F)\a - 3A)\AJ>

Epvio l_S AS

1
- Epvio AU’, AT A)\, o AUA)\ + 3A)\AU)

3

- Epvio

1
Epvio (Aa, At AO’, At A)\Acr + A)\Aa>

QA(,7 A+ ;lAAAU)

— If we calculate 0,,G,, we would obtain 9,G,, = (FW, Fuu)3

9,G,.

trace is cyclic

2
26#’/)\08# (Al,, 8)\140 + 3A)\Ag>
2
*45;1”)\03#757“ <AV8>\AC, + 3AVA)\AU)

—46‘“”)\0157’ |:8M (Al,a)\Ag) + 28“ (A,,AAAU):|

—4e ot [(GMAV) O\Ay + 6M>\AU]
—

zZero

8
—gsw,\gtr [(0,A4)) AxAs + Ay (0, AN) As + AL ANDL AL

—4€H,,>\gt’l“ [(8MA,,) 8)\140]

8
—ge,w)\gtr [(0,A4)) AxAs + (0, AN) A Ay + (0,A0) AL Ai]
—4€lw)\gt7’ [(aﬂA,,) 8)\140] — SE#U,\gtT [(8#14,,) A)\Ag]
25;41/)\0 [(Au, 1w Ao, /\) + 2 (Au, I A}\AO')}
25;1,1/)\0 [(AV, Wy Ao, >\) + (AV, I’z AAAG') + (AMAV7 AU, /\)]

26;1,1/)\6 (AV,;L; AU, )\) + (AV, wr A)\AJ) + (A,uAua AO’, )\) + (A;LAD7 A)\Aa)
—_————

zero by cycl.
25/1,1/)\0 (Au, N + A/LAV7 Aa, A+ A/\Ao)
1
55;1,1/)\0' (14117 n Au, vt AHAV - AVA/,H AU, AT A/\, o+ AAAU - AUA)\)
1

55;1,1/)\0' (F;u/a F)\a)

(F‘uuv ELV)
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e Finally we have

/}R d'a (R F) = /R d'20,G,,

Stokes / PBSi,G,
53 at infinity

2
= dgsf'u |:5uu>\o (Aw FAJ) - gs,ul/)\a (Aw A/\Aa)
g3

= /33 d3Sf# [Eﬂu)\a' (Allv F)\U)}

F—0 as r—oo SO this term is o

2
—g g5 dBS’f.Mauyka (AV7 A)\AU)

e Because the last term is evaluated at r — oo, we can bafely assume that
A is a pure gauge field configuration. Assume V € G5 is the element
associated with A: 4, = V9,V ~1. So we have:

/d%(F, F) = —% Bt e (V (0,V71), V (03V 1)V (8,V71)
R4 g3

T ™ 2m
= 2/ d91/ ng d93€ijk (V (aiV_l) s \%4 (6jV‘1) V@kV‘l)

27
= —7/ d91/ d@g/ dbseijitr (V (V") V (0,V ) VoV
= 327 [V
[

4.3.4 The Bogomol’nyi Bound and (anti-) Self Dual Field
Strengths

4.3.4.1 Claim
S[AL] > 89%2 [v[A,]| and equality is obtained when F,,, = +F,,,.

Proof 1

o FuFp = 1F0 LFyn 2121603, = Fuu F,
fd4 Fuv, Flw) = {fd4 Fu, F fd m( nZ )}
fd4m (F#V’ F ) < fd4 Fuu, F, fd4 ( iz ~MV)

So we have that [ d*z (F,,, F,.,) > ‘f d*zTr (FW, F )

nvs

[ ]
=

But by the Schwartz inequality,

Thus 4925 [A,] > 3272 v [A,]].

The Schwartz inequality is an equality iff F},, = :I:Z:"W.
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Proof 2

e We have

1
— [ d*z(F,.,, F,
492 R4 I( 1222 )
1 4
72@ R4d xtr [F,LLVF;LU]

SALl

1 - 1
= —2— [ d*atr |+tF, F. F vFu + =
1 Jes xir [ wo b + 5 + 5
1
= —2@ d4(Ij tr |::|:FIU’F:U'V + = (

1
= i [ da (P B )f d%tr{

)
7 (e

872 1 4
_ ﬁ:g—zy[A#]—@/Wd wtr [(FW:FFW) }

e So when F = F we have the extremal value of the action as

and when F = —F we have the extremal value as —SLZ/ [A,].

4.3.4.2 Conclusion

We conclude that if we found such field configurations for which

S0 (A,

Ey

,=+F,,

X

they would actually solve the equations of motion, because such configurations
indeed extremize the action. This is good because this equation is a first order
differential equation compared with the second order EoM. We also know what is

872
gT

the value of the action when it is minimal: | Sy :=

4.4 The BPST Instanton

(for nontrivial solutions).

In 1975 Belavin, Polyakov, Schwarz and Tyupkin suggested the following solu-

tion to the (anti-) self-dual field strength equation in [3].

4.4.0.3 Claim

The following family of field strengths, parametrized by p € R:

whereB (x)(l) e SU (2)R4 is as defined above, fulfill the anti-self-dual condition.
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Notes

e This solution is called the BPST instanton (of winding number 1).

e Since [3] has been published, solutions of higher winding number to the
self-dual equation have been found, but they are not so useful in finding the
vacua structure as explained in the discussion of the periodic well detailing
the difference between 5 single-instantons versus one 5-instanton. Further
discussion can be found in [4].

e pis called the size of the instanton. The existence of solutions of arbitrary
sizes is a necessary consequence of the scale invariance of the classical field
theory.

e Anti-instanton is obtained by replacing B (x)(l) with B (:v)(fl). The anti-
instanton will fulfill the self-dual condition whereas the instanton fulfills
the self-dual condition.

e Observe how in the limit |2| — oo, this solution is indeed a pure gauge,
and as we computed already (using the formula for the winding number
in terms of F' (which is in turn given in terms of A)), its winding number
is thus exactly 1.

e We shall denote these solutions as Ainst, p, u ().

e We can also define a shifted instanton as Ainst, p, w0, u (€) = Ainst, p, u (€ — o)
which we can think of as merely having a “center” in spacetime at zq in-
stead of 0.

Proof

e For a 4x4 anti-symmetric tensor, the self-dual condition can be formulated
as three conditions:

— For the 01 component we have

FOl = 5501WFW
1
= 550123F23 + 550132F32
= Iy
— For the 02 component we have Fyo = —F3

For the 03 component we have Fy3 = Fi

All other conditions are redundant due to anti-symmetry of F', so all
in all, in order to verify that F},, is self-dual, we must make sure that
the following condition holds:

o1 = Fys
Foo = —Fi3
Foz = Fip
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— Note: this means that a self-dual 4 x 4 anti-symmetric tensor has
merely 3 real parameters.

We compute F),, step by the step:

— Define f, (r) := # vr € R.
— Note that 2f, (r) + [, (r)]? = o:

2f, () +1f, (M) = 2(-1) + =0

— Define s,, := { 14]
—id

— Then B (x)(l) = &5, and [B (1:)(1)} =Z,5,.

— And so we may write the BPST instanton as A, = f, (|x|2) i ElR Fo0sh0, [2485).

— Observe that 0,4, = =% (6, — &,8,).

el

— So the BPST instanton is
1 N "
Ay = g (12) 5 ol asto, [Esss]
N1l o o1 .
= o (1of7) g ol 2ashisnry (Gus = 2uta)

1
2 ~ A A A
= 1y (10P) & ol (Bushs, — 2udyashss)

— Define s, = i (susl — s,,sL) and 5, = i (sLsU — S}L,s#). These
are closely related to SO (4) and also to the 't Hooft symbols, as we
shall see.

*x Note that these objects are anti-symmetric:

. — 1 T Ty = —

Sup = 1 (SVSH Sush) = =S

.5, =L (gTg _ of - _3
Sup = 3; (s]sn suSV) Spv

* Note that 5,, = (_1)60u+60u S

- When g =0and v # 0, 50, = % (S(T‘)s,, — s};so) = i (—toy, —io,) =

~ & (s0] = sush) = 50
- When g # 0 and v =0, 5,0 = =50, = +S0p = —Spo0-
- When pt # O0and v # 0, 5, = % (sLs,, — sisu) = % (sﬂsi — sl,sL) =
Spp-
* Note that s is self dual:
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- First condition for s:

1
S01 = E (SOSI — 8188)
1 . .
= Z (]120'1 - (_7»0'1) ]IT)
1
= —0
2 1
1
= IZ [0—23 0—3]
1 . . . .
= o ((—iog)ios — (—iog) ioa)
1
Zi (8283 — 8382)
= S23

- Second condition for s:

1
Sp2 = ZZ (8082 — SQSI))
1
= 4; (Lios — (~io2) 1t)
1
= -0
502
1
= _ZZ [Ulu 0—3}
=~ ((—ior)ios — (—ios) ion)
= 1 101) 103 103) 101
1
= _i (818;’ — 8351)
= —S813
- Third condition for s:
1
Spo3 = E (808; — 8385)
1
= 5 (Lios — (—ios) 11)
1
1
= E [0-13 02]
1 ) . . .
= ((—io1)ioy — (—ioy) io9)

* and § is anti-self-dual:
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- First condition for s:

So1 =

(5851 - SJ{S()>

(17 (—ioy) — (io1) 1)
1

— T 7%

gl =&l

g
2
1
= _Zi[O-Qa 0—3}

L (03 (—ios) — ios (~ion))
= —— (10 —1103 ) — 10 —10
4Z 2 3 3 2
1

= _E (8583—8382)

= *523

- Second condition for

S:
1
Sp2 = E (5552 — s;so>
1
@ (]IT (—iO'Q) - (iUz) ]l)
1

= 750'2

1
Z |

01, 0—3]
(iO’l (72.0'3) — ’L‘0'3 (71‘0'1))

1
43
1

ZZ_ (8183 — sgsl)

= 3§13

- Third condition for

(8883 — 82;80)

1
4i
4%_ (17 (—io3) — (io3) 1)

= —=03

2

1
= _E [Ula 0’2}

1 . . . .
4 (ioy (—iog) —ioy (—io2))
1
= E (SJ{SQ — SISQ)

= —S512
* Note that susj, = 0L + 245yt
1. susL = 1 because if y # 0 then 02 = 1, for all 1 € {0, 1, 2, 3}.
;- =io; = 3 (ioj +i0j) = 3 (sos; - sjsg) = 2is¢, for all
je{1,2 3}

2. 508
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sjsz) = —io; = % (—io; —io;) = 1 (sjsg - sos;) = 2is,( for

all j € {1, 2, 3}.

SiST- = 0,05 = isijko—k = % (Eijk - gjik) O = % (O'igj — ajai) =
J

i (sis} - sjsD = 2is;; for all {3, j} C {1, 2, 3} such that

i 7.

* and that SLS,/ =0, + 245,

1.
2.

sLs# = 1 because if 4 # 0 then 02 = 1, forall 1 € {0, 1, 2, 3}.

S(T)Sj = —iO'j = %(—idj — iO'j) = % (sgsj — S;SO) = 2i§0j for
all j € {1, 2, 3).

s;r»so =i0; = % (to; +i0;) = % (s;so — sgsj) = 2i5jg for all
j€{l, 2,3}

sls; = 05 = 5 (0io; —0j03) = 3 (sjsj — s;sl) = 2i§;;for

all {4, j} C {1, 2, 3} such that i # j.

* Similarly we find that s,s, = 0,1 — 2i5,, (—1)5“01

1.
2.

susu = 1 because if  # 0 then 0? = 1, forall u € {0, 1, 2, 3}.
508 = —io; = 3 (—io; —io;) = 3 (Sgsj - s;so) = 2i5¢; for
all j € {1, 2, 3).

5j80 = —i0j = f% (to; +i0;) = f% (s;so — s:-r)sj) = —2i5;¢
for all j € {1, 2, 3}.

sis; = —0,05 = —3 (0505 —0j0;) = —% (s;[s] — s}si> =

—2i5,; for all {i, j} C {1, 2, 3} such that i # j.

* and that SLSL =01 — 2is,, (—1)6”0:

1.
2.

5,5, = 1 because if ;4 # 0 then o? =1, forall u € {0, 1, 2, 3}.

sés; =io; = 1 (ioj +ioj) = 3 (505; - sjsg) = 2isg; for all

jedl, 2,3}

stsl =io; = =% (—io; —io;) = =% (s;80 — sosh) = —2is;
J°0 J 2 J J 2 \?7°0 055 jO
for all j € {1, 2, 3}.

SIS; = —0;0; = —%(O’Z'Uj—JjO'i) = —% (SiS;—SjSI) =
—2is;; for all {4, j} C {1, 2, 3} such that ¢ # j.

3 1

* Finally we claim that s,, = > " _; 57au0q for all {u, v} C

{0,

1, 2, 3} where 74, is the 't Hooft symbol, defined as 14, =

5;1,05ua - 61/05;La + E0apv:

1 1
§nap,vo'a = 5 ((5#051&1 - 61/06;“1 + 50(1;1,1/) Oa
1
= 5 (5;1,00—11 - 6VOUH + EOa;LVUa)

If u = v we get 0, which is good as sgg = 0.

If 4 = 0 and v # 0 we get %a,, = L (io, +i0,) = L (sosi — 5,8

41 41

Sov
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- If p#0and v =0 we get —%a#:—s(m:s#o.

- If u#0and v # 0 and p # v we get %so,m,,cra = 2110#0,, =
Spw-

— Using s and § we find that the BPST instanton is equal to:

1
A, = [ (|x|2) 3 le (Zashs, — Faduipslsg)

1
= <|x|2) 3 le (Za (Bapl + 2i8ay) — ZaZuip (0asl + 2i543))

1
= f (|x|2) 3 x| | 2i%05a, — 21, Ta®Sas

————
o by anti-symmetry
2

= fp <|{17| )Zxasap,

— Then
8,4, = 0, [fp (|m|2)xai§w}

13 (12%) (8 1o ) @aisas + 1, (al?) i3,

2f;) (|1‘|2) xuﬂjaigoa/ + fp (|$|2) Z‘gul/

275 (12) e+ f (1o1) dan] 5

e Thus we find:
Fu = 0,4, —0,A,+ A, A, — A A,

= {2fé (|39|2) T, %0 + £, (\xlg) &w} 5oy
~ (26 (1) 2ua+ p (1017) B ] 50
6y (1) iwaandy (1of”) i
—f, (12} iws550 f, (|21 ia5ap

= 27} (Iof) 2zaiSap g
+ |5 (\x|2)rxaac5 [i5ap, i550)
+f, (|:17|2) 205,11

e Using the 't Hooft symbols (the rules of which can be found in the appendix
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of [I0]) we can easily compute the awkward commutator. First for s:

[(Sau, 1Sgv] = [—iSau, —158,]
Oq Jp
- 77@(1;1%7 771;,61/%]

= - Znaaunbﬁv2i5abcac

1
= 271'0-6 (5cab7]aa/t7]b[3u)

1
= ?iac (dxﬁﬁcpy - 5ozu7]c,uﬂ - 5#577cay + 5,uynco¢5)

= (—i0apSuv + 10avSus + 10u8Sar — 10,503)
e And so for our actual expression we have:
. . . Sa0+5 . 530+6,
[Zsam ’Lsﬁy] — [Z (_1) 0+0,u0 Sejis ’L(—l) Bo+du0 Sy

iSapu, 158v)

(_ 1)5ao +6,0+680+600 [
_ 1)5ao +0,0+680+6v0 (

(

= i

—+1

72.(504[351“, —+ iéal/sllﬁ + id#ﬁSau — i6l“,sa/3)
(_1)5a0+550 (5(155“” +i (_1)5ao+5uo 5a1/§uﬂ

5
(7

1) 1n0+3850 5#B‘§CW —i (71)5,10—&-5,/0 qusaﬁ
e When we sum these with z,z3 we get:

. . . 2 _ . — .
T [i5apu, 1580) = —i|x]” Su + 12,2858 + TalpiSay

= — \x|2 Sy — 122054[,Ty)
e So we find that the field strength tensor is:
F. = 2f, (|x|2) %aiSafyTy) + I (W) 25,
18 (08)] (<l S0 — i2005aury)

= 2T oSy {2f,3 (|$|2) + [fp (|x|2)ﬂ

Zero

2
2 2
= it |l | s ) 2
Prpr) T

p _
T2 2w
(le + p2>

e In conclusion, we found that F},, has the same tensor structure as 5,,,
which we proved earlier is anti-self-dual, and so, we have just proven that

F,=-F,|

= 4
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4.4.1 Collective Coordinates

In the double well, we had one “collective coordinate”, T, a parameter of the in-
stanton solution which the action was invariant under. It was crucial to identify
that coordinate in order to compute the path integral. In our case, there are 8
different collective coordinates for the instanton solutions we have just found.

4.4.1.1 Claim
S [Ainst, pr, u] = S [Ainst, po, ] (scale invariance). This gives us 1 collective co-

ordinate.

Note The classical Yang-Mills Lagrangian is scale-invariant, as 7 a dimension-
ful parameter.

Proof The minimal action which we found, Sy := 89%2, is independent of p. A

4.4.1.2 Claim

S [Ainst, p, wo, 1) = S [Ainst, p, ) for all zy € R* (translation invariance). This
gives us 4 collective coordinates.

Proof Any volume integral must be translation invariant. H

4.4.1.3 Claim

The action is invariant a global SU (2) gauge transformation on Ajnst, p, 2 u-
This gives us 3 collective coordinates (as many as there are generators of SU (2)).

Proof If we perform a global constant transformation on Ay, p, 2, . We would

get: Ainst, poxop = VAinst, pao uV "1+ Vo, vt , where V € SU (2).
———
0 because v is const.
Taking any other element, U € SU (2), because A;,st, p, 2, u 15 asymptotically a

pure gauge, we may also write:

VA, @V = g, (al) % 2V B (@) 9, | B (x)(l)}_l v

o (1% % e VB@® U0, VB @Y U]

And so we see that really what we have by this constant gauge transformation
of Von Ais B (:v)(l) — VB (:v)(l) UL
Now, due to the isomorphism between SO (4) ~ SU (2) ® SU (2), under

a general rotation of the instanton, we have B (z)" s V B (2)™") U~ where
{V, U} C SU (2) and are determined by the particular rotation of R* we pick.

So we could pick exactly the right rotation of A € SO (4) so that B (Ax)(l) =

VB (w)(l) U~!, and thus, effectively, by redefining our chart on R* undo this
constant gauge transformation, and get back A;nsi, p, o -
|
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4.4.1.4 Claim

P other invariants for the action (via an index theorem by Atiyah, Ward in [T]
which determines the dimension of the modulo space of SU (2) as exactly 8).

4.4.1.5 Conclusion

As before, we would need to integrate over these coordinates directly, when
computing the contribution of these solutions to the path integral.

4.5 Finding the Vacuum

Following [4],we work in an axial gauge, in which Aj < 0. (Then the path-
integral formulation is equivalent to the canonical quantization, and there is no
need for ghost fields or extra conditions on the space of states.)

We work in a spacetime box of spatial volume V from time f% to time
%. Eventually we will send V' — oo and T' — co. We employ boundary
conditions on the three-dimensional boundary of the box at times :I:% such that
the tangential term (to the surface of the box) of A, is constant. Then the
surface term of §5 will be zero.

This constant, however, is not arbitrary. It must obey the following condi-
tions to maintain consistency:

1. As 20 gauge must be respected.

2. At infinity we should have finite-action field configurations. Since only
the tangential component of A, determines the winding number (...), this
means that spacetime will be filled with field configurations of a definite
winding number.

As V' — oo, the definiteness of the winding number (which follows from the
finiteness of the action) is the only specific feature that remains of the boundary
conditions. So in the path-integral we can forget about the boundary conditions
and simply add a delta function for field configurations that have a definite
integer winding number. In this way we will clearly obtain only finite action
field configurations:

P(V,T,n) =N [DADADAe™5Aul5 (n — v[A,]) for some n € Z.

4.5.0.6 Claim

For large T and Ty, P(V, T1 + To, n) =Y PV, T1,n1) P(V, Ts, no)

ni1+ns=n

Proof Follows from the expression v[A4,] = 321#2 [dz (F, F), the winding

number as a local density.
|

4.5.1 The 6-Vacua

This composition law is not what we would expect from a transition matrix
element that has a contribution from only a single energy eigenstate. In order
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to get the composition law we want, e~ Fi(T1+72) we make a Fourier transform
of P(V, T, n):

P(V,T,0) := > e™P(V,T, n)
nez

_ N/rDAp‘efS[A#]eiu[Au]B

As a result of the previous composition law now we have P (V, Ty + T, 0) =
P(V, T, 0) P(V, Ty, #). So P must be proportional to <e’HT> in some energy
eigenstate. We naturally label these eigenstates with 6 and as before call them
the f-vacua:

(6] 7| 0) :N’/DAue_S[A“]ei”[A“]e (4.1)

The conclusion is that our theory is split into disconnected sectors labelled by 6,
each with its own vacuum. Naively, we could have obtained the same result by
merely postulating an extra term in the Lagrangian proportional to v [A,] ~

fd4x (F, ﬁ') This term was, in fact, only rejected to begin with because it
violates C'P ((F7 F) ~ E-B and B doesn’t change sign under P), but otherwise

it is just as good as [ d*z (F, F). In addition, we found it is a total divergence,
and so should have no effect on the EoMs. But there seems to be an effect to it
none the less, which is not classical.

4.5.2 Dilute Instanton Gas

Just as in the periodic well, we build approximate solutions which consist of n
instantons and n’ anti-instantons, where their centers o are integrated over.
We then sum over all such possible configurations:

n 1
n'!

[(Ke=%o) vr]™ eiln=n)?

(o] T]0) o 3 L [(Ke ) V]
(n, n’)eN? e
= exp{2KVTe ® cos ()}

where Sy = %, V is volume and K is some constant which can be computed
by calculating the infinite product of eigenvalues of a corresponding differential
operator (see [12]). In general K will contain an infrared “embarrassment™a
divergence—but fortunately it only diverges when we assume our approximation
is not valid. From this we can read off the energy of |6):

@ = —2Ke 50 cos (6)

Because the energy and also the vacuum expectation value depend non-trivially
on # we must conclude that all the 6 states are in fact distinct!
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4.5.3 Other Gauge Groups
4.5.3.1 Claim
Every simple Lie group contains a subgroup isomorphic to SU (2).

0

e For example, 0| is a general element of such a subgroup of SU (3)
1

oo e

b

d

0

where [a b} e SU (2).
c d

4.5.3.2 Notes

3 a theorem due to Raoul Bott saying that if G is any simple Lie group, H < G
such that H ~ SU (2), then any element of G5 is homotopic with some element
of H’. Then we can consider the same BPST solutions we have considered
where A, =a-A, (H) 4 p. A, (G\H) and we would take b = 0.

e For example, for SU (3), which has 8 gauge fields, the following is an
instanton solution: three of the fields are just as the SU (2) instanton,
and the remaining five are zero.

e This is the only instanton solution of SU (3) with winding number 1.

e Then there would be 12, and not 8 collective coordinates (the action is
invariant under a global SU (3) transformation, so 8 coordinates instead
of the 3 of SU (2), but one of the generators commutes with SU (2), so
we are left with total of 7 collective coordinates from the global SU (3)
transformation)
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Chapter 5

The Strong C'P Probelm

As we have seen, the instanton solution effectively creates a 6 term proportional
to 6 [ d*x <F7 F) in the Lagrangian, which, if 6 # 0, violates C'P.

Using the C'PT theorem we conclude that T is violated.

According to experimental measurements using the electric dipole moment

2
of the neutron (d,, ~ 96%), the amount of T violation corresponds to § < 10~

(JT4]) or even 6 < 10~9. This raises a fine-tuning question, which is known as
the strong CP problem. To explain this fine tuning we need to go beyond the
standard model.

One couldn’t just throw away the instanton concept, because it does solve the
U (1) problem: The non-observation in experiments of a U (1) axial symmetry
which is expected in QCD. It was thought to come from spontaneous symmetry
breaking, but no corresponding Goldstone Boson was found. Finally it was
explained by 't Hooft in [I1] that this symmetry is anomalous and the instanton
solution fits perfectly to explain how. So we definitely need the instantons.

5.1 Peccei—Quinn theory

Following [7], 3 three approaches to explaining the value of 6:
1. Unconventional dynamics.
2. Spontaneously broken C'P.
3. An additional chiral symmetry.

Peccei employs the third approach.

This chiral symmetry can arise from assuming m, = 0 (up quark) which is
inconsistent with experimental data. But if that were the case, we could perform
a global chiral rotation 1 + e'*f751) ;. The change in the path integral measure

introduces a term proportional to exp {— 1%9:2 as [ d*x (F F ) } So by picking

ay properly we could eliminate the 6 term that comes from the instantons.
However, as has been said, when we do this, we introduce a phase to the mass
of the f Fermion, mys — e~ *“/my. This could have only worked if we had one
quark which is massless.
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Alternatively the chiral symmetry can arise from an additional global U (1)
chiral symmetry, U (1) PQ- This symmetry is then to be spontaneously broken.
Its introduction into the theory replaces the static 6 term in the effective La-
grangian with a dynamical C'P conserving field which has come to be known as
the azion—the Goldstone Boson of the broken U (1) pg symmetry. This symme-
try could not have been exact because the axion cannot be exactly massless.

Thus the #-term in our Lagrangian becomes:

L= 329772 (£ F) - % (Oua) (9%a) + %2:20 (£ F)

where a is the dynamical axion field and M is the mass scale at which it appears.
Then by an opportune shift in the axion field a — a — M we can get rid of the
6 term. If the axion is very light (~ 1eV), the cut-off scale at which it appears
is very low.

We can also add interaction terms for the axion with the quarks, for in-
stance, for the up quark, a term of the form —ifﬁu (Opa) uysy*u where f, is
the coupling constant for the interaction. Following the very same procedure
of chiral perturbation theory we can construct an effective Lagrangian for the
pion-axion interaction.
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