## Functional Analysis

## Princeton University MAT520

## HW11, Due Dec 8th 2023 (auto extension until Dec 10th 2023)

## December 14, 2023

1. Let X be the position operator on  $L^{2}(\mathbb{R})$ . Show that

$$\mathcal{D}(X) := \left\{ \psi \in L^{2}(\mathbb{R}) \mid \int_{\mathbb{R}} x^{2} |\psi(x)|^{2} dx < \infty \right\}$$

is the largest vector space V such that for each  $\psi \in V$ ,  $X\psi \in L^2$ .

2. Let

$$\mathcal{A}:=\left\{ \ \psi:\left[0,1\right]
ightarrow\mathbb{C}\ \middle|\ \psi\ \text{is ac and}\ \psi'\in L^{2}\left(\left[0,1\right]
ight) 
ight\} \,.$$

Let  $A_1, A_2$  both be defined as

$$\psi \mapsto -\mathrm{i}\psi'$$

on the respective domains

$$\mathcal{D}\left(A_{1}\right) := \mathcal{A}.$$
 
$$\mathcal{D}\left(A_{2}\right) := \left\{ \psi \in \mathcal{A} \mid \psi\left(0\right) = 0 \right\}.$$

Show that both domains are dense in  $L^{2}([0,1])$  and that  $A_{1}, A_{2}$  are closed. Finally show that

$$\sigma(A_1) = \mathbb{C} 
\sigma(A_2) = \varnothing.$$

- 3. Show that if A is a symmetric operator on a Hilbert space  $\mathcal{H}$  then the following are equivalent:
  - (a) A is essentially self-adjoint.
  - (b)  $\ker (A^* \pm i\mathbb{1}) = \{0\}.$
  - (c)  $\overline{\operatorname{im}(A \pm i\mathbb{1})} = \mathcal{H}$ .
- 4. Let  $A := -i\partial$  on

$$\mathcal{D}(A) := \{ \psi \in \mathcal{A} \mid \psi(0) = \psi(1) = 0 \}$$

with  $\mathcal{A}$  as above.

- (a) Show that A is symmetric as an operator  $A: \mathcal{D}\left(A\right) \to L^{2}\left(\left[0,1\right]\right)$ .
- (b) Calculate  $A^*$  (along with  $\mathcal{D}(A^*)$ ) and conclude A is closed, symmetric but not self-adjoint.
- (c) For any  $\alpha \in \mathbb{C}$ ,  $|\alpha| = 1$ , define  $A_{\alpha} := -i\partial$  on the domain

$$\mathcal{D}(A_{\alpha}) := \{ \psi \in \mathcal{A} \mid \psi(0) = \alpha \psi(1) \}.$$

Show that  $A_{\alpha}$  is self-adjoint, and that it is an extension of A, and is extended by  $A^*$ :

$$A \subseteq A_{\alpha} \subseteq A^*$$
.

Conclude that A has uncountably many self-adjoint extensions.

- 5. Show that A is closable iff  $\overline{\Gamma(A)} = \Gamma(B)$  for some operator B. Show that this operator B is the closure  $\overline{A}$  of A.
- 6. Let  $\{\varphi_n\}_n$  be an ONB for  $\mathcal{H}$  and  $\psi \in \mathcal{H}$  any vector which is *not* a finite linear combination of  $\{\varphi_n\}_n$ . Let  $\mathcal{D}$  be the set of vectors which *are* finite linear combinations of  $\{\varphi_n\}_n$  and of  $\psi$ . Define  $A: \mathcal{D} \to \mathcal{H}$  via

$$A\left(b\psi + \sum_{i=1}^{N} a_i \varphi_i\right) := b\psi.$$

Calculate  $\Gamma(A)$  and show that  $\overline{\Gamma(A)}$  is *not* the graph of a linear operator.

- 7. [R&S VIII. 2] Let  $A: \mathcal{D}(A) \to \mathcal{H}$  be injective.
  - (a) Show that if A is closed and has a closed range then  $\exists C \in (0, \infty)$  such that

$$||A\psi|| \ge C||\psi|| \qquad (\psi \in \mathcal{D}(A)) . \tag{0.1}$$

- (b) Show that if A has dense closed range and obeys (0.1) then A is closed.
- (c) Show that if A is closed and obeys (0.1) then it has a closed range.
- 8. Calculate the adjoint of  $-\partial^2: C_0^{\infty}(\mathbb{R}) \to L^2(\mathbb{R})$ . Determine if  $-\partial^2$  is essentially self-adjoint. Here  $C_0^{\infty}(\mathbb{R})$  is the set of functions  $f: \mathbb{R} \to \mathbb{C}$  smooth of compact support.
- 9. Let  $-i\partial: C_0^\infty([0,\infty)) \to L^2([0,\infty))$  where the domain is the set of smooth functions with compact support away from the origin. Is it essentially self-adjoint?