Functional Analysis

Princeton University MAT520

HW7, Due Nov 3rd 2023 (auto extension until Nov 5th 2023)

November 1, 2023

1 C-star algebras

In the following exercises, \mathcal{A} is a C-star algebra with involution $*:\mathcal{A}\to\mathcal{A}$ and norm $\|\cdot\|$. $a,b,\dots\in\mathcal{A}$.

- 1. Show that if a is a partial isometry (i.e. $|a|^2$ is an idempotent) then $a = aa^*a = aa^*aa^*a$.
- 2. Show that a is a partial isometry iff a^* is a partial isometry.
- 3. Show that if p, q are self-adjoint projections then $||p q|| \le 1$.
- 4. Show that if u, v are unitary then $||u v|| \le 2$.
- 5. Show that if a is self-adjoint with $||a|| \le 1$ then

$$a + i\sqrt{1 - a^2}, \qquad a - i\sqrt{1 - a^2}$$

are unitary. Conclude that any $b \in \mathcal{A}$ is the linear combination of four unitaries.

- 6. Two self-adjoint projections p, q are said to be orthogonal (written $p \perp q$) iff pq = 0. Show that the following are equivalent:
 - (a) $p \perp q$.
 - (b) p + q is a self-adjoint projection.
 - (c) $p + q \le 1$.
- 7. Let v_1, \ldots, v_n be partial isometries and suppose that

$$\sum_{j=1}^{n} |v_j|^2 = \sum_{j=1}^{n} |v_j^*|^2 = 1.$$

Show that $\sum_{j=1}^{n} v_j$ is unitary.

8. [extra] Show that for any $\varepsilon > 0$ there exists a $\delta_{\varepsilon} > 0$ such that if a obeys

$$\max\left(\left\{\|a-a^*\|, \|a^2-a\|\right\}\right) \le \delta_{\varepsilon}$$

then there exists a self-adjoint projection p with $||a - p|| \le \varepsilon$.

9. [extra] Show that for any $\varepsilon > 0$ there exists a $\delta_{\varepsilon} > 0$ such that if a obeys

$$\max\left(\left\{\left\||a|^2 - \mathbb{1}\right\|, \left\||a^*|^2 - \mathbb{1}\right\|\right\}\right) \le \delta_{\varepsilon}$$

1

then there exists a unitary u with $||a - u|| \le \varepsilon$.

- 10. [extra] Show that $\sigma(p) \subseteq \{0,1\}$ for an idempotent p.
- 11. [extra] Show that ||p|| = 1 for a non-zero self-adjoint projection p.

- 12. [extra] Show that the spectral radius r(a) of a self-adjoint a equals its norm ||a||.
- 13. [extra] Show that $\sigma(u) \subseteq \mathbb{S}^1$ if u is unitary (i.e. $|u|^2 = |u^*|^2 = 1$).
- 14. [extra] Show that $\sigma(a) \subseteq [0, \infty)$ if a is positive (i.e. $a = |b|^2 \exists b$).
- 15. [extra] Show that $\sigma(a) \subseteq \mathbb{R}$ if $a = a^*$.
- 16. [extra] Show that a is invertible if $|a|^2 \ge \varepsilon \mathbb{1}$ for some $\varepsilon > 0$; (recall $a \ge b$ iff $a b \ge 0$ iff $a b = |c|^2$ for some c).

2 Hilbert spaces

In this section \mathcal{H} is a Hilbert space.

17. Show that

$$\mathcal{H}:=\ell^{2}\left(\mathbb{R}\right)\equiv\left\{ \left.f:\mathbb{R}\rightarrow\mathbb{C}\;\right|\;f^{-1}\left(\mathbb{C}\setminus\left\{\,0\,\right\}\right)\;\text{is a countable set and }\sum_{x\in\mathbb{R}}\left|f\left(x\right)\right|^{2}<\infty\right.\right\}$$

is not a separable Hilbert space.

18. Let R be the unilateral right shift operator on $\ell^{2}\left(\mathbb{N}\right)$:

$$Re_i := e_{i+1} \qquad (j \in \mathbb{N})$$

where $\{e_j\}_{j\in\mathbb{N}}$ is the standard basis of $\ell^2(\mathbb{N})$ and extend linearly.

- (a) Calculate R^* .
- (b) Calculate $|R|^2$ and $|R^*|^2$.
- (c) Show that R is a partial isometry.
- (d) Calculate $\sigma\left(R\right), \sigma\left(R^*\right), \sigma\left(\left|R\right|^2\right)$ and $\sigma\left(\left|R^*\right|^2\right)$.

19. Let \hat{R} be the bilateral right shift operator on $\ell^2(\mathbb{Z})$:

$$\hat{R}e_j := e_{j+1} \qquad (j \in \mathbb{Z})$$

where $\{e_j\}_{j\in\mathbb{Z}}$ is the standard basis of $\ell^2(\mathbb{Z})$ and extend linearly.

- (a) Calculate \hat{R}^* .
- (b) Calculate $\left| \hat{R} \right|^2$ and $\left| \hat{R}^* \right|$.
- (c) Show that \hat{R} is a unitary.
- (d) Calculate $\sigma\left(\hat{R}\right), \sigma\left(\hat{R}^*\right), \sigma\left(\left|\hat{R}\right|^2\right)$ and $\sigma\left(\left|\hat{R}^*\right|^2\right)$.

20. Let $\frac{1}{X} \in \mathcal{B}\left(\ell^{2}\left(\mathbb{N}\right)\right)$ be given by

$$\frac{1}{X}e_j := \frac{1}{j}e_j \qquad (j \in \mathbb{N})$$

and extend linearly.

- (a) Calculate $\left(\frac{1}{X}\right)^*$.
- (b) Calculate $\sigma\left(\frac{1}{X}\right)$.
- (c) Show that $\frac{1}{X}$ does *not* have closed range.
- 21. Show that if M is a closed linear subspace and $P_M: \mathcal{H} \to \mathcal{H}$ is given by

$$P_M \psi := a$$

where $\psi = a + b$ in the unique decomposition $\mathcal{H} = M \oplus M^{\perp}$, then P_M is a *self-adjoint projection*, i.e., show that $P_M = P_M^* = P_M^2$. Conversely, given any self-adjoint projection $P \in \mathcal{B}(\mathcal{H})$, find a closed linear subspace M such that $P = P_M$.

22. [extra] Let $\{A_n\}_n \subseteq \mathcal{B}(\mathcal{H})$ such that for any $\varphi, \psi \in \mathcal{H}$,

$$\exists \lim_{n} \langle \varphi, A_n \psi \rangle .$$

Show there exists $A \in \mathcal{B}(\mathcal{H})$ such that $A_n \to A$ weakly.

23. For any t > 0, let $T_t \in \mathcal{B}\left(L^2(\mathbb{R})\right)$ be given by

$$T_t \varphi := \varphi(\cdot + t) \qquad (\varphi \in L^2).$$

- (a) Calculate $||T_t||$.
- (b) Find a limit to which T_t converges as $t \to \infty$ (in which operator topology?).
- 24. [extra] Show that multiplication is not jointly continuous as a map

$$\mathcal{B}(\mathcal{H}) \times \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$$

if $\mathcal{B}\left(\mathcal{H}\right)$ is given the strong operator topology.

- 25. Let $A_n \to A, B_n \to B$ in the strong operator topology. Show that $A_n B_n \to AB$ in the strong operator topology.
- 26. Let $A_n \to A$, $B_n \to B$ in the weak operator topology. Find a counter example for $A_n B_n \to AB$ in the weak operator topology.
- 27. Show that for $A \in \mathcal{B}(\mathcal{H})$,

$$||A||_{\text{op}} = \sup (\{ |\langle \varphi, A\psi \rangle| \mid ||\varphi|| = ||\psi|| = 1 \})$$

and if $A = A^*$ then

$$||A||_{\text{op}} = \sup \left(\left\{ \left| \left\langle \varphi, A\varphi \right\rangle \right| \mid ||\varphi|| = 1 \right\} \right).$$

- 28. Show that if $A_n \ge 0$, $A_n \to A$ in norm (resp. strongly) then $\sqrt{A_n} \to \sqrt{A}$ in norm (resp. strongly).
- 29. Show that if $A_n \to A$ in norm then $|A_n| \to |A|$ in norm.
- 30. [extra] Show that if $A_n \to A$ and $A_n^* \to A^*$ strongly then $|A_n| \to |A|$ strongly.
- 31. [extra] Find a counter example to

$$|||A| - |B||| \le ||A - B||$$
.