1 Haunted by Analysis 2

1.1 The Frechet Derivative

We give a reminder of what a Frechet derivative is.

Definition 1. Let \(f : V \rightarrow W \) be a mapping between two Banach spaces \(V \) and \(W \). The Frechet derivative of \(f \) at some \(x \in V \), denoted by \((Df)(x) \), is a bounded linear operator \(B(V, W) \) which is an approximation of \(f \) near \(x \) in the following sense:

\[
\lim_{h \to 0} \frac{\|f(x+h) - f(x) - ((Df)(x))(h)\|_W}{\|h\|_V} = 0
\]

\(f \) is called Frechet-differentiable iff \((Df)(x) \) exists for all \(x \in V \).

Claim 2. Assume that \(V \) and \(W \) are finite dimensional. Then every linear operator is bounded. Furthermore, if all partial derivatives of \(f \) exist and are continuous, then \(f \) is Frechet differentiable and \((Df)(x) \) is identified with the matrix given with entries \((\partial_i f_j)(x) \) (the Jacobian matrix). The converse is false as seen in some pathological examples.

Claim 3. If \(f \) is linear itself then \((Df)(x) \) is independent of \(x \) and is equal to \(f \).

Proof. \((Df)(x) \) is unique if it exists (…). Then assuming \(f \) is linear, we have

\[
\frac{\|f(x+h) - f(x) - ((Df)(x))(h)\|_W}{\|h\|_V} = \frac{\|f(h) - ((Df)(x))(h)\|_W}{\|h\|_V}
\]

so that \((Df)(x) := f \) does the job.

Remark 4. Note that \((Df)(x) \) can also be seen as a map \(V \ni x \mapsto (Df)(x) \in B(V, W) \). In this sense, this map is not generically linear. Indeed, here’s an
example: \(f : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) given by \(f \left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) := \begin{bmatrix} (x_1)^3 \\ (x_2)^3 \\ (x_3)^3 \end{bmatrix} \). The Fréchet derivative of this map is given by the matrix

\[
[(Df)(x)]_{i,j=1}^3 = \begin{bmatrix}
(\partial_1 f_1)(x) & (\partial_2 f_1)(x) & (\partial_3 f_1)(x) \\
(\partial_1 f_2)(x) & (\partial_2 f_2)(x) & (\partial_3 f_2)(x) \\
(\partial_1 f_3)(x) & (\partial_2 f_3)(x) & (\partial_3 f_3)(x)
\end{bmatrix}
\]

\[
= \begin{bmatrix}
3(x_1)^2 & 0 & 0 \\
0 & 3(x_2)^2 & 0 \\
0 & 0 & 3(x_3)^2
\end{bmatrix}
\]

and this matrix, as a function of \(x \), is clearly not linear.

\section{Linear Algebra}

\subsection{Orientation}

Let \(V \) be a finite dimensional vector space. We know that there is an isomorphism \(V \cong \mathbb{R}^n \) for some \(n \in \mathbb{N}_{>0} \).

Definition 5. A choice of such an isomorphism \(f : V \rightarrow \mathbb{R}^n \) is an orientation on \(V \).

Definition 6. Two orientations \(f_1 : V \rightarrow \mathbb{R}^n \) and \(f_2 : V \rightarrow \mathbb{R}^n \) are called “equivalent” if the linear map \(f_1 \circ f_2^{-1} : \mathbb{R}^n \rightarrow \mathbb{R}^n \), which is an \(n \times n \) matrix, has positive determinant.

Claim 7. There are exactly two equivalence classes for orientations.

Definition 8. A map \(f : V \rightarrow V \) is orientation preserving iff \(\det((Df)(x)) > 0 \) for all \(x \in V \).

Example 9. Consider the reflection on \(\mathbb{R}^3 \), given by \(-I_{3\times3} \). Its determinant is \((-1)^3 = -1\) so it is not orientation preserving.

Remark 10. Deformations of rigid bodies should preserve orientation.

\subsection{Symmetric positive definite matrices}

Definition 11. (Cholesky decomposition) A matrix \(P \in Mat_{n \times n}(\mathbb{R}) \) is called positive iff there is some \(A_P \in Mat_{n \times n}(\mathbb{R}) \) such that \((A_P)^T A_P = P \).

Claim 12. The following are equivalent:

1. \(P \) is positive.
2. P is symmetric and has eigenvalues in $[0, \infty)$.

3. P is symmetric and $\langle x, Px \rangle \geq 0$ for all $x \in \mathbb{R}^n$.

Proof. 1. implies 2.: Assume that P is positive. Then $P = A^T A$ for some A. Then $P^T = (A^T A)^T = A^T (A^T)^T = A^T A = P$ so that P is symmetric. Let $\lambda \in \sigma(P)$. Then there is some $v \in \mathbb{R}^n \setminus \{0\}$ such that $Pv = \lambda v$. If $\lambda = 0$ we are finished. Otherwise, $A^T Av = \lambda v$ implies

$$1 = \frac{\|v\|^2}{\|v\|^2} = \frac{\langle v, v \rangle}{\|v\|^2} = \frac{1}{\|v\|^2} \langle v, \lambda v \rangle = \frac{1}{\|v\|^2} \langle v, A^T Av \rangle = \frac{1}{\|v\|^2} \frac{\|Av\|^2}{\|v\|^2}$$

which implies that $\lambda = \frac{\|Av\|^2}{\|v\|^2} > 0$. Since λ was an arbitrary eigenvalue of P, we find $\sigma(P) \subseteq \mathbb{R}_{\geq 0}$.

2. implies 3.: Any symmetric matrix may be orthogonally diagonalized: $P = O^T DO$ where $O \in O(n)$ and D is a diagonal matrix whose entries are the eigenvalues of P. Since we assume $\sigma(P) \in \mathbb{R}_{\geq 0}$, the entries of D are in $\mathbb{R}_{\geq 0}$. Then if $x \in \mathbb{R}^n$ is given,

$$\langle x, Px \rangle = \langle x, O^T DOx \rangle = \langle Ox, DOx \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} (Ox)_i D_{ij} (Ox)_j \quad \text{(D is diagonal)}$$

$$= \sum_{i=1}^{n} (Ox)_i D_{ii} (Ox)_i = \sum_{i=1}^{n} [(Ox)_i]^2 D_{ii} \geq 0$$

Each term in the last sum is non-negative numbers due to it being the product of two non-negative numbers.
3. implies 1.: \(P \) is symmetric, so we diagonalize it as \(P = O^T D O \) as above. Then note that by the above calculation, \(D_{ii} \geq 0 \) for all \(i \) (otherwise we reach a contradiction). As a result, \(\sqrt{D} \) is defined and is a diagonal matrix whose entries are \(\sqrt{D_{ij}} \). Define \(A := \sqrt{DO} \). Then

\[
A^T A = (\sqrt{DO})^T \sqrt{DO} \\
= O^T \sqrt{D} \sqrt{DO} \\
= O^T DO \\
= P
\]

\[
\square
\]

2.3 Polar Decomposition

Let \(A \in \text{Mat}_{n \times n}(\mathbb{R}) \) be given. As we’ve seen in the lecture, there are unique left and right polar decompositions given by

\[
A = O |A| \\
= |A^T| O
\]

where \(|A| \equiv \sqrt{A^T A} \) and \(O := A |A|^{-1} = |A^T|^{-1} A \).

Example 13. (Thanks to Hansueli) Note that in general \(|A| \neq |A^T| \). Indeed, let \(A = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \). We have

\[
A^T A = \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \right)^T \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \\
= \frac{1}{2} \begin{bmatrix} 2 & 2 \\ -2 & -2 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \\
= \frac{1}{2} \begin{bmatrix} 5 & -3 \\ -3 & 5 \end{bmatrix}
\]

whereas

\[
AA^T = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \left(\frac{1}{\sqrt{2}} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \right)^T \\
= \frac{1}{2} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ 1 & 1 \end{bmatrix} \\
= \frac{1}{2} \begin{bmatrix} 8 & 0 \\ 0 & 2 \end{bmatrix} \\
= \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}
\]
This example corresponds to $|A^T| \equiv \sqrt{AA^T}$ being stretch along the e_1 axis and then $A|A|^{-1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ being rotation by 45 degrees.