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1 Curvilinear Coordinates

1.1 Directional Derivatives

Claim 1. If u : Rn → Rn is a continuously differentiable vector field and v ∈ Rn

then
(Du) v = ⟨v, ∇⟩ u = ∂vu ≡ [∂εu (·+ εv)]|ε=0

Proof. Since u is continuously differentiable, Du is a matrix given by compo-
nents

(Du)i, j = ∂jui

Then if ei is the ith standard basis vector of Rn and we are using repeating-
index-sum convention, then

(Du) v = ei (Du)ij vj

= ei (∂jui) vj

= vj (∂jui) ei

≡ ⟨v, ∇⟩u

This takes care of the first equal sign in the claim. The last equal sign is a
definition (not part of the claim). For the middle equal sign: Let x ∈ R3 be
given. Then

[∂εu (x+ εv)]|ε=0 ≡ lim
ε→0

u (x+ εv)− u (x)

ε
(u is differentiable and so may be linearly approximated)

= lim
ε→0

u (x) + ε ((Du) (x)) (v) +O
(

ε2
)

− u (x)

ε
= ((Du) (x)) (v)

Since x was arbitrary the claim follows.
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1.2 Differential Geometry

Notation 2. Let M be a smooth manifold over Rn. That means that for any
p ∈ M there is some U ∈ NbhdM (p) such that we have a chart, that is, a
homeomorphism ϕ : U → ϕ (U) ∈ Open (Rn) and that transition maps between
different charts are smooth.

We call F (M) the algebra of smooth maps M → R.
At any point p ∈ M we have a vector space TpM, called the tangent space,

built from maps F (M) → R which are linear and Leibniz at p: If X ∈ TpM, f
and g are in F (M) and α ∈ R then

1. Leibniz: X (fg) = f (p)X (g) +X (f) g (p).

2. Linear: X (αf + g) = aX (f) +X (g).

Given a chart ϕ, TpM has a basis induced by ϕ which we label as {Xϕ
i }ni=1

and is given by

Xϕ
i :=

[

∂i
(

· ◦ ϕ−1
)]∣
∣
ϕ(p)

A metric g ∈ Γ
(

(TM ⊗ TM)∗
)

at any point p ∈ M takes two tangent
vectors and gives a number

gp (Xp, Yp) ∈ R

and then one can verify gp is an inner product at any p.
In the basis {Xϕ

i }ni=1, the components of the metric g are given by
{

gp
(

Xϕ
i , X

ϕ
j

) }n

i, j=1
.

Definition 3. (Musical Isomorphism) We define ♭ : TpM → T ∗
pM by

v♭ := g (v, ·) ∀v ∈ TpM

Furthermore, by the Riesz representation theorem as g is an inner-product, any
ω ∈ T ∗

pM is of the form ω = g (vω, ·) for some vω ∈ TpM so that we can define
♯ : T ∗

pM → TpM as

(g (v, ·))♯ := v

Thus ♭−1 = ♯. Then

g
(

ω♯, v
)

:= ω (v) ∀v ∈ TpM

Definition 4. (The covariant derivative induced by a given metric) A metric
g defines a covariant derivative via the Christoffel symbols: Let { vi }ni=1 be a
basis of TpM, and gij := g (vi, vj). Then we denote by gij the ij components of
the inverse of the matrix { gij }ni, j=1. Then the Christoffel symbols are defined
as

Γi
kl :=

1

2
gim (∂lgmk + ∂kgml − ∂mgkl)
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The covariant derivative ∇ induced by g is then defined via Γ as follows: For a
scalar f , we have

∇f = vi (f) v
∗
i

For a vector X we have

∇X =
(

Γk
ijvj (X) + vi (vk (X))

)

vk ⊗ v∗i

and then there are recursive formulas for how ∇ acts on general tensors (but we
won’t need those formulas here).

Remark 5. We assume everything stated so far is well known to the reader.
Now starts the part about the differential operators and their definitions in
differential geometry.

Definition 6. The gradient grad is a map grad : F (M) → TM defined as

grad (f) := (∇f)♯ ∀f ∈ F (M)

Thus if f ∈ F (M) and X ∈ TM then

g (grad (f) , X) ≡ g
(

(∇f)♯ , X
)

≡ (∇f) (X)

≡ ∇Xf

≡ X (f)

Definition 7. The divergence div is a map div : TM → F (M) given by

div (X) := tr (∇X)

(Note the trace is defined via contraction: If T is a tensor of type (1, 1) then
its trace is the following expression

tr (T ) ≡
n
∑

i=1

T (v∗i , vi)

)

Definition 8. The Laplacian ∆ is a map ∆ : T (k, l) → T (k, l) given by

∆ (T ) := div (∇T )

Question: What about div ◦ grad = div
(

(∇f)♯
)

?
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Example 9. Consider the manifold R2. Define on it an open subset U ∈
Open

(

R2
)

given by deleting from R2 the positive horizontal axis:

U := R
2\

{

x ∈ R
2
∣
∣ x1 ≥ 0 ∧ x2 = 0

}

Define a chart ψ : U → ψ (U) by the following formula: ψ (x) :=

[

∥x∥
arctan

(
x2

x1

)

]

.

Then this defines a homeomorphism (verify...) and ψ (U) = (0, ∞)× (0, 2π) ∈

Open
(

R2
)

. Also check that ψ−1 =

[

r
ϕ

]

0→
[

r cos (ϕ)
r sin (ϕ)

]

. Then the basis of TR2

corresponding to ψ is given by

Xψ
r = cos (ϕ) ∂1 + sin (ϕ) ∂2

Xψ
ϕ = −r sin (ϕ) ∂1 + r cos (ϕ) ∂2

Then we take the Euclidean metric, which is given by

g (∂i, ∂j) = δi, j

in the standard basis { ∂i }2i=1 and write it in our new basis to get:

g
(

Xψ
α , X

ψ
β

)

=
(

Xψ
α

)

i

(

Xψ
β

)

j
g (∂i, ∂j)
︸ ︷︷ ︸

δi, j

=
(

Xψ
α

)

i

(

Xψ
β

)

i

Thus
[

g
(

Xψ
α , X

ψ
β

)]

(α, β)∈{ r,ϕ }2
=

[

cos (ϕ)2 + sin (ϕ)2 cos (ϕ) (−r sin (ϕ)) + sin (ϕ) r cos (ϕ)
−r sin (ϕ) cos (ϕ) + r cos (ϕ) sin (ϕ) r2 sin (ϕ)2 + r2 cos (ϕ)2

]

=

[

1 0
0 r2

]

We find

[g] =

[

1 0
0 r2

]

(1)

which implies

[

g−1
]

=

[

1 0
0 r−2

]

Now we write the gradient of a scalar f ∈ F (M) in this basis:

grad (f) ≡ (∇f)♯

=

[

g
(

Xψ
α , X

ψ
β

)−1
]

Xψ
α (f)Xψ

β

= Xψ
r (f)Xψ

r + r−2Xψ
ϕ (f)Xψ

ϕ
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This is still not the formula we know. This is because the basis
{

Xψ
α

}

α
is not

normalized. In fact

g
(

Xψ
ϕ , X

ψ
ϕ

)

= r2

so that with a normalized vector X̂ψ
ϕ ≡ 1

rX
ψ
ϕ we obtain

grad (f) = Xψ
r (f)Xψ

r + r−1Xψ
ϕ (f)

ˆ
Xψ
ϕ (2)

which is the formula we know from young age (perhaps with the notation Xψ
r =

∂r, Xψ
ϕ = ∂ϕ and we are used to write the (orthonormal) basis of the tangent

space as er and eϕ).
We go on to tackle the divergence. Recall that if u ∈ TM then

∇u =
(

Xψ
β

(

Xψ
α (u)

)

+ Γα βγX
ψ
γ (u)

)

Xψ
α ⊗Xψ∗

β

So if compute the Christoffel symbols for (1) we’ll know how to compute the
covariant derivative of a vector field.

∂r
[

g
(

Xψ
α , X

ψ
β

)]

(α, β)∈{ r,ϕ }2
=

[

0 0
0 2r

]

∂ϕ
[

g
(

Xψ
α , X

ψ
β

)]

(α, β)∈{ r,ϕ }2
=

[

0 0
0 0

]

Hence

∂r
[

g
(

Xψ
ϕ , X

ψ
ϕ

)]

= 2r

and all other derivatives are zero. There are three indices, each with two possible
values, thus eight entries to compute:

Γα βγ ≡
1

2

[

g
(

Xψ
α , X

ψ
δ

)−1
]
(

∂γ
[

g
(

Xψ
β , X

ψ
δ

)]

+ ∂β
[

g
(

Xψ
δ , X

ψ
γ

)]

− ∂δ
[

g
(

Xψ
γ , X

ψ
β

)])

=
1

2

[

g
(

Xψ
α , X

ψ
r

)−1
] (

∂γ
[

g
(

Xψ
β , X

ψ
r

)]

+ ∂β
[

g
(

Xψ
r , X

ψ
γ

)]

− ∂r
[

g
(

Xψ
γ , X

ψ
β

)])

+

+
1

2

[

g
(

Xψ
α , X

ψ
ϕ

)−1
] (

∂γ
[

g
(

Xψ
β , X

ψ
ϕ

)]

+ ∂β
[

g
(

Xψ
ϕ , X

ψ
γ

)]

− ∂ϕ
[

g
(

Xψ
γ , X

ψ
β

)])

=
1

2
δα, r (−δγ,ϕδβ,ϕ2r) +

1

2
δα,ϕr

−2 (δβ,ϕδγ, r2r + δβ, rδγ,ϕ2r)

= −rδα, rδγ,ϕδβ,ϕ + r−1δα,ϕ (δβ,ϕδγ, r + δβ, rδγ,ϕ)

Γr
·· =

[

0 0
0 −r

]
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Γϕ ·· =

[

0 r−1

r−1 0

]

Hence the covariant derivative is

∇u =
(

Xψ
β

(

Xψ
α (u)

)

+ Γα βγX
ψ
γ (u)

)

Xψ
α ⊗Xψ∗

β

=

⎛

⎝Xψ
r

(

Xψ
r (u)

)

+ Γr
rγ

︸ ︷︷ ︸

=0

Xψ
γ (u)

⎞

⎠Xψ
r ⊗Xψ∗

r +

⎛

⎜
⎝Xψ

ϕ

(

Xψ
r (u)

)

+ Γr
ϕγ

︸ ︷︷ ︸

δγ,ϕ(−r)

Xψ
γ (u)

⎞

⎟
⎠Xψ

r ⊗Xψ∗
ϕ +

⎛

⎜
⎝Xψ

r

(

Xψ
ϕ (u)

)

+ Γϕ rγ
︸ ︷︷ ︸

δγ,ϕr−1

Xψ
γ (u)

⎞

⎟
⎠Xψ

ϕ ⊗Xψ∗
r +

⎛

⎜
⎝Xψ

ϕ

(

Xψ
ϕ (u)

)

+ Γϕ ϕγ
︸ ︷︷ ︸

δγ, rr−1

Xψ
γ (u)

⎞

⎟
⎠Xψ

ϕ ⊗Xψ∗
ϕ

= Xψ
r

(

Xψ
r (u)

)

Xψ
r ⊗Xψ∗

r +
(

Xψ
ϕ

(

Xψ
r (u)

)

− rXψ
ϕ (u)

)

Xψ
r ⊗Xψ∗

ϕ +
(

Xψ
r

(

Xψ
ϕ (u)

)

+ r−1Xψ
ϕ (u)

)

Xψ
ϕ ⊗Xψ∗

r +
(

Xψ
ϕ

(

Xψ
ϕ (u)

)

+ r−1Xψ
r (u)

)

Xψ
ϕ ⊗Xψ∗

ϕ

Now that we have the covariant derivative, we can compute the divergence:

div (u) ≡ tr (∇u)

= Xψ
r

(

Xψ
r (u)

)

+Xψ
ϕ

(

Xψ
ϕ (u)

)

+ r−1Xψ
r (u)

Next note that if we expand u as

u = urX
ψ
r + uϕ

ˆ
Xψ
ϕ

(again, we want to use the orthonormal basis
{

Xψ
r ,

ˆ
Xψ
ϕ

}

instead of the merely

orthogonal basis
{

Xψ
r , X

ψ
ϕ

}

) then

u = urX
ψ
r + uϕ

1

r
Xψ
ϕ

so that we find

div (u) = Xψ
r (ur) +

1

r
ur +Xψ

ϕ

(
1

r
uϕ

)
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and finally since Xψ
ϕ and r commute we get

div (u) = Xψ
r (ur) +

1

r
ur +

1

r
Xψ
ϕ (uϕ) (3)

which is the result we know.
To compute the Laplacian of a scalar, we use the definition

∆f ≡ div (grad (f))

and we have already computed the gradient of a scalar f (see (2)) from which
we find find

div (grad (f)) = Xψ
r

(

Xψ
r (f)

)

+
1

r
Xψ

r (f) +
1

r
Xψ
ϕ

(

r−1Xψ
ϕ (f)

)

= Xψ
r

(

Xψ
r (f)

)

+
1

r
Xψ

r (f) +
1

r2
Xψ
ϕ

(

Xψ
ϕ (f)

)

Again the result we are familiar with (with the notation Xψ
r → ∂r, Xψ

ϕ → ∂ϕ).
The Laplacian of a vector field is left as an exercise to the reader.

2 Liouville’s Theorem

Claim 10. Let f : Rn → Rm be smooth. If Df is constant, then f is affine.

Proof. We can always write f as a Taylor expansion:

f (x0 + x) = f (x0) + (Df) (x0)x+ . . .

where the dots denote higher order derivatives, which are written using, for
instance, multi-index notation: α ∈ (N≥0)

n is an n-index. Then

Dαf := ∂α1

1 . . . ∂αn
n f

Then it’s clear that since Df which is expressed via ∂jfi for instance, is constant,
then any higher order derivatives will vanish and we’ll be left with an affine
map.

3 Some Remarks about HW1

3.1 Question 3

• In the change of variables formula there is an absolute value on the deter-
minant.
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3.2 Question 2

Claim 11. Let A ∈ Matn×n (R). If Tr (AB) = 0 for all B ∈ Matn×n (R) such
that B = −BT then A = AT .

Proof. Write A =
1

2

(

A+AT
)

︸ ︷︷ ︸

=:AS

+
1

2

(

A−AT
)

︸ ︷︷ ︸

=:AAS

and observe

Claim 12. Tr (UV ) = 0 for all U symmetric and V anti-symmetric.

Proof. We have by the fact that Tr (X) = Tr
(

XT
)

,

Tr (UV ) = Tr
(

(UV )T
)

= Tr
(

V TUT
)

= Tr (−V U)

= −Tr (UV )

then by the above,

Tr (AB) = Tr ((AS +AAS)B)

= Tr (AASB)

Since this is true for all B, we can pick B = AAS
T to get

Tr
(

AASAAS
T
)

= 0

∥AAS∥2F = 0

AAS = 0

Using the fact that ∥·∥F is a norm. Hence A = AS , that is, A = AT .

Now we are given the matrix A ∈ Mat3×3 (R) such that det (A) > 0, and
write

A =
∣
∣AT

∣
∣RA

We define the (square) distance function g : SO (3) → R:

g (R) = ∥R−A∥2F

We want the derivative of g at an arbitrary R ∈ SO (3), (Dg) (R). This will be
a linear map on the tangent space of SO (3) at R. We know that:

((Dg) (R))
(

R̃
)

= ∂ε|ε=0 g
(

R + εR̃
)
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And
(

R + εR̃
)

!
∈ SO (3) so

(

R+ εR̃
)(

R+ εR̃
)T !

= 1

R̃RT +RR̃T !
= 0

similarly,

(

R+ εR̃
)T (

R+ εR̃
)

!
= 1

RT R̃+ R̃TR
!
= 0

Now the computation of (Dg) (R):

∂ε|ε=0 g
(

R+ εR̃
)

= ∂ε|ε=0 Tr

((

R+ εR̃−A
)T (

R+ εR̃−A
))

= ∂ε|ε=0 Tr
(

(R−A)T (R−A) + εR̃T (R−A) + ε (R−A)T R̃
)

= −Tr
(

R̃TA+AT R̃
)

= −2Tr
(

AT R̃
)

= −2Tr
(

AT R̃RTR
)

= −2Tr
(

RAT R̃RT
)

!
= 0

This constraint should hold for all R̃ such that R̃RT and R̃TR are anti-symmetric.
Since given any W ∈ Mat3×3 (R) with W = −WT , there is some R̃R,W such
that W = R̃R,WRT (in particular, take R̃R,W := RW ), we find using the above
claim that R is a critical point of g iff

RAT is symmetric

The constraint on R is thus that

RRA
T
∣
∣AT

∣
∣ =

∣
∣AT

∣
∣
(

RRA
T
)T

Hence
∣
∣AT

∣
∣
2

=
∣
∣AT

∣
∣
∣
∣AT

∣
∣

=
∣
∣AT

∣
∣
(

RRA
T
)T (

RRA
T
) ∣
∣AT

∣
∣

=
(

RRA
T
)T ∣

∣AT
∣
∣
∣
∣AT

∣
∣
(

RRA
T
)T

=
(

RRA
T
)T ∣

∣AT
∣
∣
2 (

RRA
T
)T
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so
[
(

RRA
T
)T

,
∣
∣AT

∣
∣
2
]

= 0

Hence by the spectral theorem,
[
(

RRA
T
)T

, f
(∣
∣AT

∣
∣
2
)]

= 0 for any function

f , in particular, f =
√
· as

∣
∣AT

∣
∣ > 0, so that

[
(

RRA
T
)T

,
∣
∣AT

∣
∣

]

= 0 and thus

these two matrices may be simultaneously diagonalized by some orthogonal
M ∈ O (3):

(

RRA
T
)T

= MTD(RRA
T )TM

and
∣
∣AT

∣
∣ = MTD|AT |M

where the D’s are diagonal matrices containing the eigenvalues of the respective
matrices. We find that if R is a critical point of g then:

g (R) = ∥R−A∥2F

=
∥
∥
∥(R−A)T

∥
∥
∥

2

F

=
∥
∥RT −AT

∥
∥
2

F

=
∥
∥RA

TRAR
T −RA

T
∣
∣AT

∣
∣
∥
∥
2

F

=
∥
∥RA

T
(

RAR
T −

∣
∣AT

∣
∣
)∥
∥
2

F

(∥·∥F invariant under O (3))

=
∥
∥RAR

T −
∣
∣AT

∣
∣
∥
∥
2

F

=
∥
∥
∥

(

RRA
T
)T −

∣
∣AT

∣
∣

∥
∥
∥

2

F

=
∥
∥
∥MTD(RRA

T )TM −MTD|AT |M
∥
∥
∥

2

F

(∥·∥F invariant under O (3))

=
∥
∥
∥D(RRA

T )T −D|AT |

∥
∥
∥

2

F

≡
3

∑

i=1

∣
∣
∣

(

D(RRA
T )T

)

ii
−
(

D|AT |

)

ii

∣
∣
∣

2

We know that det (A) > 0 so that
(

D|AT |

)

ii
, which is the ith singular value of A,

is necessarily (strictly) positive. Furthermore,
(

RRA
T
)T

is orthogonal, so that
∣
∣
∣

(

D(RRA
T )T

)

ii

∣
∣
∣ = 1, and

(

D(RRA
T )T

)

11

(

D(RRA
T )T

)

22

(

D(RRA
T )T

)

33
= +1

as det
(
(

RRA
T
)T

)

= 1 as
(

RRA
T
)T ∈ SO (3). Hence to minimize g we must

pick R such that
(

D(RRA
T )T

)

ii
= 1, which implies

(

RRA
T
)T

= 1, or R = RA

as desired.
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