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1 Definition of the Lagrangian

Convention: If f: R™ — R is given then 0;f is the derivative with respect to the ith argument. If f : R — R then

Of or f is the derivative (with respect to the only argument).
Let d € N>; be given (the number of space dimensions).
Let n € N>; be given (the number of particles).

Let V: (Rd)n — R (the potential) be given; We assume V is differentiable. (we treat the simplest case where the
potential is time independent).

We define m := dn for breviy.

Let v; : R — R? be the trajectory of the ith particle.

We define I' : R — R™ as the trajectory of the whole system: T := (71, ..., V).
Thus Vol : R — R.

Given a collection of masses (my, ..., m,) € (Rsg)", we also define another map 7 : (Rd)n — R via
1 - 2 d\"m
T(z1, ..., Tp) = 527’%”%” V(ml,...7xn)€(R)
where

ol =y, 2+t (@),

Note that we may also consider the “flattened” version (denoted with the same letter) T : R™ — R with

(mj);”:l = [miy,...,m1, ..., Mp, ..., My
d times d times
1 m
T(yla-"aym) = gzmjij V(ylv"'vym)eRm
j=1

Note T is differentiable as it is merely a polynomial.

The definition of V' and T was just to make things concrete but more generally we consider a Lagrangian (differen-
tiable) map

L:R™"xR™ — R
and in our case
Ly ) o= T (@) =V (@)
We will also use the notation

Lo(r,F):\R;—n& — Tol'—=Vol

time



2 Definition of the Action

e Let (t1, t5) € R? be given such that ¢; < t, and (21, 23) € (R™)? (the initial and final conditions).

e Define the Banach space B := C? ([t1, t] — R™) (the twice-differentiable maps from that interval to R™), with the
supremum norm

ICls = sup (U0 Ol [ £€ [0, ]y O { [P [t et ] })
Of course that norm is well-defined because a continuous image of a compact space is again compact, hence bounded.
e Define the action Sy, corresponding to the Lagragian L and the time interval [t1, t2] as a map Sz, : B — R as follows

Sp(I) = /tz(Lo(I‘,f))(t)dt W es

t1

3 The Frechet Derivative of the Action

e Recall that the Fréchet [1] derivative of a map S, : B — R between two Banach spaces at a point ' € B is defined as
an operator (DS,) (I') € L (B, R) (where L (-, -) is the space of all continuous linear operators between two spaces)
such that the following limit exists and is equal to zero:

o 120+ ®) = Si. (1) = (DS1) (1)) (@)
o ol

= 0

(that is, Sy, is Fréchet-differentiable at T if such an (DSp) (T') exists)

3.1 Claim. Sy, is Fréchet differentiable on the whole of B and its value is

sy = 3 [ (000 (r.0)) -0 [@m)e ()] @) & 00

ta

+ @) (P®), T ) @, (1)

t1

Proof. Let e > 0 and let ® € B be given such that & < [|®|| < e. That implies that || (¢)|| < & and H<I> (t)H < ¢ for all
te [tl, tz].

S, (T +®) = /tz (L<>(F+<I>,F+<i>))(t)dt

and
(Lo(r+q>,F+<i>))(t) = L(r(t)+q>(t),r(t)+<i>(t))

Since ® (t) and ® (t) are smaller than e, we can make a Taylor expansion of L around ® (t) = & (£) = 0 to obtain:
L(re+em. tm+em) ~ L(TE),F@)+> 00 (T, )0, 0+
j=1

+3° @eml) (T(0), T 1)) &5 (1) + O ()
j=1

Next perform integration by parts on the following integral

ta

ty

_ / ” [0(@5mD) (T, 1)) () @; (1)

t1

[ 0enn) (P00 @) &yt = @) (D@, T 0) ;0]

t1




Hence we have (using the same (tentative) formula for ((DSg) (I")) () which was introduced in the claim) to get

SL(C+®)— S, (D)= ((DSL) M) (@) = O () (t2 —t1)
We find that
ST+ ®) = Su (1) = (DS () (@) O(3) Jta— ]
15 12l

1
< 05tz

Since € > 0 was arbitrary and since we can always find such ® for a given € > 0, we concude the statement of the
claim. |

3.2 Claim. If for some continuous f : [t1, t2] — R, f:f fg = 0 for all continuous g : [t1, t2] — R such that g (¢;) =g (t2) =0
then f = 0. [[2] pp. 57]

Proof. Assume otherwise. Then there exists some t3 € [t1, t2] such that |f (¢3)] > 0. Since f is continuous, there is
some ¢ > 0 such that inf (| f (B (t3))|) > ¢ for some ¢ > 0. Pick g continuous such that g = 0 outside B; (t3), g > 0
inside B: (t3) and g = 1 inside B%E (t3). Then

to
/ fg‘ > / 19
ty Be(ts3)
> c / g
Bg(tg)
> ce
This contradicts the fact that we should obtain zero on the left hand side. O

4 Extremum of Action Implies Euler-Lagrange Equations
4.1 Claim. The extremal points of S;, where the extremum is taken over all points such that
F(tl) = x;V iE{l,Q} (1)

is given by solutions to the (total number of m) Euler-Lagrange equations:

(ajL)o(r,f)—a[(a,-+mL)o(r,f)] = 0 Vje{l,...,m}

Proof. The extremum of a function is obtained (by definition) when its Frechet derivative is zero. That means we should
seek solutions I' to the equation

(DSL)(F)‘S = 0

where S is the subset of B such that ® (t1) = ® (¢2) = 0. The reason we restrict the action of the derivative to S is
because this restriction is precisely what makes sure (1) is satisfied for every element considered for the extremum.
By the result earlier we have for all ® € S,

sy ®ls@ = 3 [ (@00 (1)) -0 [@mp)o (1.1) ) 2, (1

Since (DSL)(I')|g(®) = 0 should hold for any ® € S, we can successively pick individual j’s such that ® =




(0,0, ..., ®,,...,0,0) and so we actually get the m (separate) equations:

/t2(((ajL)o(r,f))<t)—a[<aj+mL)o(r, D) m)e;ma = o0 vie{1, ... m}

t1

We now use 3.2 to conclude the statement of the claim. O

This means that the solutions to the Euler-Lagrange equations are simply the extremum points of S, in the space of

paths obeying given boundary conditions, in complete analogy to how f’ () 20 gives the extremum z of amap f: R - R
as seen in high school.
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