The Euler-Lagrange Equation from Hamilton’s “Least” Action Principle

Jacob Shapiro

December 20, 2016

1 Definition of the Lagrangian

• Convention: If \(f : \mathbb{R}^m \to \mathbb{R} \) is given then \(\partial_i f \) is the derivative with respect to the \(i \)th argument. If \(f : \mathbb{R} \to \mathbb{R} \) then \(\partial f \) or \(\dot{f} \) is the derivative (with respect to the only argument).

• Let \(d \in \mathbb{N}_{\geq 1} \) be given (the number of space dimensions).

• Let \(n \in \mathbb{N}_{\geq 1} \) be given (the number of particles).

• Let \(V : (\mathbb{R}^d)^n \to \mathbb{R} \) (the potential) be given; We assume \(V \) is differentiable. (we treat the simplest case where the potential is time independent).

• We define \(m := dn \) for brevity.

• Let \(\gamma_i : \mathbb{R} \to \mathbb{R}^d \) be the trajectory of the \(i \)th particle.

• We define \(\Gamma : \mathbb{R} \to \mathbb{R}^m \) as the trajectory of the whole system: \(\Gamma := (\gamma_1, \ldots, \gamma_n) \).

• Thus \(V \circ \Gamma : \mathbb{R} \to \mathbb{R} \).

• Given a collection of masses \((m_1, \ldots, m_n) \in (\mathbb{R}_{>0})^n \), we also define another map \(T : (\mathbb{R}^d)^n \to \mathbb{R} \) via

\[
T(x_1, \ldots, x_n) := \frac{1}{2} \sum_{i=1}^{n} m_i \|x_i\|^2 \quad \forall (x_1, \ldots, x_n) \in (\mathbb{R}^d)^n
\]

where

\[
\|x_i\| = \sqrt{(x_i)_1^2 + \cdots + (x_i)_d^2}
\]

Note that we may also consider the “flattened” version (denoted with the same letter) \(T : \mathbb{R}^m \to \mathbb{R} \) with

\[
(m_j)_{j=1}^{m} = \left(m_1, \ldots, m_1, \ldots, m_n, \ldots, m_n \right)
\]

\[
T(y_1, \ldots, y_m) := \frac{1}{2} \sum_{j=1}^{m} \tilde{m}_j y_j^2 \quad \forall (y_1, \ldots, y_m) \in \mathbb{R}^m
\]

Note \(T \) is differentiable as it is merely a polynomial.

• The definition of \(V \) and \(T \) was just to make things concrete but more generally we consider a Lagrangian (differentiable) map

\[
L : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}
\]

and in our case

\[
L \left((x_j)_{j=1}^{m}, (v_j)_{j=1}^{m} \right) := T \left((v_j)_{j=1}^{m} \right) - V \left((x_j)_{j=1}^{m} \right)
\]

We will also use the notation

\[
L \circ \left(\Gamma, \dot{\Gamma} \right) : \mathbb{R} \to \mathbb{R} = T \circ \dot{\Gamma} - V \circ \Gamma
\]

1
2 \textbf{Definition of the Action}

- Let \((t_1, t_2) \in \mathbb{R}^2\) be given such that \(t_1 < t_2\), and \((x_1, x_2) \in (\mathbb{R}^m)^2\) (the initial and final conditions).
- Define the Banach space \(B := C^2([t_1, t_2] \to \mathbb{R}^m)\) (the twice-differentiable maps from that interval to \(\mathbb{R}^m\), with the supremum norm

\[
\|\Gamma\|_B := \sup \left\{ \|\Gamma(t)\|_{\mathbb{R}^m} | t \in [t_1, t_2] \right\} \cup \left\{ \left\| \dot{\Gamma}(t) \right\|_{\mathbb{R}^m} | t \in [t_1, t_2] \right\}.
\]

Of course that norm is well-defined because a continuous image of a compact space is again compact, hence bounded.
- Define the action \(S_L\) corresponding to the Lagrangian \(L\) and the time interval \([t_1, t_2]\) as a map \(S_L: B \to \mathbb{R}\) as follows

\[
S_L(\Gamma) := \int_{t_1}^{t_2} \left(L \circ \left(\Gamma, \dot{\Gamma} \right) \right)(t) \, dt \quad \forall \Gamma \in \mathcal{S}
\]

3 \textbf{The Fréchet Derivative of the Action}

- Recall that the Fréchet \(|\cdot|\) derivative of a map \(S_L: B \to \mathbb{R}\) between two Banach spaces at a point \(\Gamma \in B\) is defined as an operator \((DS_L)(\Gamma) \in \mathcal{L}(B, \mathbb{R})\) (where \(\mathcal{L}(\cdot, \cdot)\) is the space of all continuous linear operators between two spaces) such that the following limit exists and is equal to zero:

\[
\lim_{\Phi \to 0} \frac{|S_L(\Gamma + \Phi) - S_L(\Gamma) - (DS_L)(\Gamma)(\Phi)|}{\|\Phi\|_B} = 0
\]

(that is, \(S_L\) is Fréchet-differentiable at \(\Gamma\) if such an \((DS_L)(\Gamma)\) exists)

3.1 Claim. \(S_L\) is Fréchet differentiable on the whole of \(B\) and its value is

\[
(DS_L)(\Gamma)(\Phi) = \sum_{j=1}^{m} \int_{t_1}^{t_2} \left((\partial_j L) \circ \left(\Gamma, \dot{\Gamma} \right) \right)(t) \, dt - \partial (\partial_j + m L) \circ \left(\Gamma, \dot{\Gamma} \right)(t) \Phi_j(t) \Big|_{t_1}^{t_2}
\]

\[
+ \left[(\partial_j + m L) \left(\Gamma(t), \dot{\Gamma}(t) \right) \Phi_j(t) \right]_{t_1}^{t_2}
\]

Proof. Let \(\varepsilon > 0\) and let \(\Phi \in B\) be given such that \(\frac{1}{2}\varepsilon < \|\Phi\| < \varepsilon\). That implies that \(\|\Phi(t)\| < \varepsilon\) and \(\|\dot{\Phi}(t)\| < \varepsilon\) for all \(t \in [t_1, t_2]\).

\[
S_L(\Gamma + \Phi) = \int_{t_1}^{t_2} \left(L \circ \left(\Gamma + \Phi, \dot{\Gamma} + \dot{\Phi} \right) \right)(t) \, dt
\]

and

\[
\left(L \circ \left(\Gamma + \Phi, \dot{\Gamma} + \dot{\Phi} \right) \right)(t) = L \left(\Gamma(t) + \Phi(t), \dot{\Gamma}(t) + \dot{\Phi}(t) \right)
\]

Since \(\Phi(t)\) and \(\dot{\Phi}(t)\) are smaller than \(\varepsilon\), we can make a Taylor expansion of \(L\) around \(\Phi(t) = \dot{\Phi}(t) = 0\) to obtain:

\[
L \left(\Gamma(t) + \Phi(t), \dot{\Gamma}(t) + \dot{\Phi}(t) \right) \approx L \left(\Gamma(t), \dot{\Gamma}(t) \right) + \sum_{j=1}^{m} (\partial_j L) \left(\Gamma(t), \dot{\Gamma}(t) \right) \Phi_j(t) +
\]

\[
+ \sum_{j=1}^{m} (\partial_j + m L) \left(\Gamma(t), \dot{\Gamma}(t) \right) \dot{\Phi}_j(t) + \mathcal{O}(\varepsilon^2)
\]

Next perform integration by parts on the following integral

\[
\int_{t_1}^{t_2} (\partial_j + m L) \left(\Gamma(t), \dot{\Gamma}(t) \right) \dot{\Phi}_j(t) \, dt = \left[(\partial_j + m L) \left(\Gamma(t), \dot{\Gamma}(t) \right) \dot{\Phi}_j(t) \right]_{t_1}^{t_2} -
\]

\[
- \int_{t_1}^{t_2} \partial \left((\partial_j + m L) \left(\Gamma, \dot{\Gamma} \right) \right)(t) \Phi_j(t) \, dt
\]
Hence we have (using the same (tentative) formula for \(((DS_L)(\Gamma))(\Phi)\) which was introduced in the claim) to get

\[S_L(\Gamma + \Phi) - S_L(\Gamma) - ((DS_L)(\Gamma))(\Phi) = O(\varepsilon^2)(t_2 - t_1)\]

We find that

\[
\frac{|S_L(\Gamma + \Phi) - S_L(\Gamma) - ((DS_L)(\Gamma))(\Phi)|}{\|\Phi\|_B} = O(\varepsilon^2)\frac{|t_2 - t_1|}{\|\Phi\|_B} \\
\leq O(\varepsilon)\frac{1}{2}|t_2 - t_1|
\]

Since \(\varepsilon > 0\) was arbitrary and since we can always find such \(\Phi\) for a given \(\varepsilon > 0\), we conclude the statement of the claim. \(\square\)

3.2 Claim. If for some continuous \(f: [t_1, t_2] \to \mathbb{R}\), \(f_{t_1}^{t_2} fg = 0\) for all continuous \(g: [t_1, t_2] \to \mathbb{R}\) such that \(g(t_1) = g(t_2) = 0\) then \(f = 0\). [[2] pp. 57]

Proof. Assume otherwise. Then there exists some \(t_3 \in [t_1, t_2]\) such that \(|f(t_3)| > 0\). Since \(f\) is continuous, there is some \(\varepsilon > 0\) such that \(\inf(|f(B_\varepsilon(t_3))|) > c\) for some \(c > 0\). Pick \(g\) continuous such that \(g = 0\) outside \(B_\varepsilon(t_3)\), \(g > 0\) inside \(B_{\varepsilon/2}(t_3)\) and \(g = 1\) inside \(B_{\varepsilon/4}(t_3)\). Then

\[
\left|\int_{t_1}^{t_2} fg\right| \geq \left|\int_{B_{\varepsilon}(t_3)} fg\right| \\
> c \left|\int_{B_{\varepsilon}(t_3)} g\right| \\
> c\varepsilon
\]

This contradicts the fact that we should obtain zero on the left hand side. \(\square\)

4 Extremum of Action Implies Euler-Lagrange Equations

4.1 Claim. The extremal points of \(S_L\) where the extremum is taken over all points such that

\[\Gamma(t_i) = x_i \forall \ i \in \{1, 2\}\]

is given by solutions to the (total number of \(m\)) Euler-Lagrange equations:

\[(\partial_jL) \circ \left(\Gamma, \dot{\Gamma}\right) - \partial \left[\partial_{j+m}L \circ \left(\Gamma, \dot{\Gamma}\right)\right] = 0 \ \ \forall j \in \{1, \ldots, m\}\]

Proof. The extremum of a function is obtained (by definition) when its Frechet derivative is zero. That means we should seek solutions \(\Gamma\) to the equation

\[(DS_L)(\Gamma)|_S = 0\]

where \(S\) is the subset of \(B\) such that \(\Phi(t_1) = \Phi(t_2) = 0\). The reason we restrict the action of the derivative to \(S\) is because this restriction is precisely what makes sure (1) is satisfied for every element considered for the extremum.

By the result earlier we have for all \(\Phi \in S\),

\[(DS_L)(\Gamma)|_S(\Phi) = \sum_{j=1}^{m} \int_{t_i}^{t_2} \left(\left((\partial_jL) \circ \left(\Gamma, \dot{\Gamma}\right)\right)(t) - \partial \left[\partial_{j+m}L \circ \left(\Gamma, \dot{\Gamma}\right)\right](t)\right) \Phi_j(t) dt\]

Since \((DS_L)(\Gamma)|_S(\Phi) = 0\) should hold for any \(\Phi \in S\), we can successively pick individual \(j\)'s such that \(\Phi = \)
(0, 0, ..., \Phi_j, ..., 0, 0) and so we actually get the \(m \) (separate) equations:

\[
\int_{t_1}^{t_2} \left((\partial_j L) \circ (\Gamma, \dot{\Gamma})(t) - \partial \left[(\partial_{j+m} L) \circ (\Gamma, \dot{\Gamma})(t) \right] \right) \Phi_j(t) \, dt = 0 \quad \forall j \in \{1, \ldots, m\}
\]

We now use 3.2 to conclude the statement of the claim.

This means that the solutions to the Euler-Lagrange equations are simply the extremum points of \(S_L \) in the space of paths obeying given boundary conditions, in complete analogy to how \(f'(x) = 0 \) gives the extremum \(x \) of a map \(f : \mathbb{R} \to \mathbb{R} \) as seen in high school.

References
