The Euler-Lagrange Equation from Hamilton's "Least" Action Principle

Jacob Shapiro

December 20, 2016

1 Definition of the Lagrangian

- Convention: If $f: \mathbb{R}^m \to \mathbb{R}$ is given then $\partial_i f$ is the derivative with respect to the *i*th argument. If $f: \mathbb{R} \to \mathbb{R}$ then ∂f or \dot{f} is the derivative (with respect to the only argument).
- Let $d \in \mathbb{N}_{>1}$ be given (the number of space dimensions).
- Let $n \in \mathbb{N}_{\geq 1}$ be given (the number of particles).
- Let $V: (\mathbb{R}^d)^n \to \mathbb{R}$ (the potential) be given; We assume V is differentiable. (we treat the simplest case where the potential is time independent).
- We define m := dn for breviy.
- Let $\gamma_i : \mathbb{R} \to \mathbb{R}^d$ be the trajectory of the *i*th particle.
- We define $\Gamma: \mathbb{R} \to \mathbb{R}^m$ as the trajectory of the whole system: $\Gamma := (\gamma_1, \ldots, \gamma_n)$.
- Thus $V \circ \Gamma : \mathbb{R} \to \mathbb{R}$.
- Given a collection of masses $(m_1, \ldots, m_n) \in (\mathbb{R}_{>0})^n$, we also define another map $T: (\mathbb{R}^d)^n \to \mathbb{R}$ via

$$T(x_1, ..., x_n) := \frac{1}{2} \sum_{i=1}^n m_i ||x_i||^2 \quad \forall (x_1, ..., x_n) \in (\mathbb{R}^d)^n$$

where

$$||x_i|| \equiv \sqrt{(x_i)_1^2 + \dots + (x_i)_d^2}$$

Note that we may also consider the "flattened" version (denoted with the same letter) $T: \mathbb{R}^m \to \mathbb{R}$ with

$$(\tilde{m}_j)_{j=1}^m = \left(\underbrace{m_1, \dots, m_1}_{d \text{ times}}, \dots, \underbrace{m_n, \dots, m_n}_{d \text{ times}}\right)$$

$$T(y_1, \ldots, y_m) := \frac{1}{2} \sum_{i=1}^{m} \tilde{m}_j y_j^2 \quad \forall (y_1, \ldots, y_m) \in \mathbb{R}^m$$

Note T is differentiable as it is merely a polynomial.

 \bullet The definition of V and T was just to make things concrete but more generally we consider a Lagrangian (differentiable) map

$$L: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}$$

and in our case

$$L\left((x_j)_{j=1}^m, (v_j)_{j=1}^m\right) := T\left((v_j)_{j=1}^m\right) - V\left((x_j)_{j=1}^m\right)$$

We will also use the notation

$$L \circ \left(\Gamma, \, \dot{\Gamma}\right) : \underbrace{\mathbb{R}}_{\text{time}} \to \mathbb{R} = T \circ \dot{\Gamma} - V \circ \Gamma$$

2 Definition of the Action

- Let $(t_1, t_2) \in \mathbb{R}^2$ be given such that $t_1 < t_2$, and $(x_1, x_2) \in (\mathbb{R}^m)^2$ (the initial and final conditions).
- Define the Banach space $\mathcal{B} := C^2([t_1, t_2] \to \mathbb{R}^m)$ (the twice-differentiable maps from that interval to \mathbb{R}^m), with the supremum norm

$$\|\Gamma\|_{\mathcal{B}} \equiv \sup \left(\left\{ \|\Gamma\left(t\right)\|_{\mathbb{R}^{m}} \mid t \in [t_{1}, t_{2}] \right\} \cup \left\{ \|\dot{\Gamma}\left(t\right)\|_{\mathbb{R}^{m}} \mid t \in [t_{1}, t_{2}] \right\} \right)$$

Of course that norm is well-defined because a continuous image of a compact space is again compact, hence bounded.

• Define the action S_L corresponding to the Lagragian L and the time interval $[t_1, t_2]$ as a map $S_L : \mathcal{B} \to \mathbb{R}$ as follows

$$S_L\left(\Gamma\right) := \int_{t_1}^{t_2} \left(L \circ \left(\Gamma, \dot{\Gamma}\right)\right) (t) dt \quad \forall \Gamma \in \mathcal{S}$$

3 The Frechet Derivative of the Action

• Recall that the Fréchet [1] derivative of a map $S_L : \mathcal{B} \to \mathbb{R}$ between two Banach spaces at a point $\Gamma \in \mathcal{B}$ is defined as an operator $(DS_L)(\Gamma) \in \mathcal{L}(\mathcal{B}, \mathbb{R})$ (where $\mathcal{L}(\cdot, \cdot)$ is the space of all continuous linear operators between two spaces) such that the following limit exists and is equal to zero:

$$\lim_{\Phi \to 0} \frac{\left| S_L \left(\Gamma + \Phi \right) - S_L \left(\Gamma \right) - \left(\left(D S_L \right) \left(\Gamma \right) \right) \left(\Phi \right) \right|}{\| \Phi \|_{\mathcal{B}}} = 0$$

(that is, S_L is Fréchet-differentiable at Γ if such an $(DS_L)(\Gamma)$ exists)

3.1 Claim. S_L is Fréchet differentiable on the whole of \mathcal{B} and its value is

$$((DS_L)(\Gamma))(\Phi) = \sum_{j=1}^{m} \int_{t_1}^{t_2} \left(\left((\partial_j L) \circ \left(\Gamma, \dot{\Gamma} \right) \right) (t) - \partial \left[(\partial_{j+m} L) \circ \left(\Gamma, \dot{\Gamma} \right) \right] (t) \right) \Phi_j(t) dt + \left[(\partial_{j+m} L) \left(\Gamma(t), \dot{\Gamma}(t) \right) \Phi_j(t) \right]_{t_1}^{t_2}$$

Proof. Let $\varepsilon > 0$ and let $\Phi \in \mathcal{B}$ be given such that $\frac{1}{2}\varepsilon < \|\Phi\| < \varepsilon$. That implies that $\|\Phi(t)\| < \varepsilon$ and $\|\dot{\Phi}(t)\| < \varepsilon$ for all $t \in [t_1, t_2]$.

$$S_L(\Gamma + \Phi) \equiv \int_{t_1}^{t_2} \left(L \circ \left(\Gamma + \Phi, \dot{\Gamma} + \dot{\Phi} \right) \right) (t) dt$$

and

$$\left(L\circ\left(\Gamma+\Phi,\,\dot{\Gamma}+\dot{\Phi}\right)\right)(t)\quad\equiv\quad L\left(\Gamma\left(t\right)+\Phi\left(t\right),\,\dot{\Gamma}\left(t\right)+\dot{\Phi}\left(t\right)\right)$$

Since $\Phi(t)$ and $\dot{\Phi}(t)$ are smaller than ε , we can make a Taylor expansion of L around $\Phi(t) = \dot{\Phi}(t) = 0$ to obtain:

$$L\left(\Gamma\left(t\right) + \Phi\left(t\right), \dot{\Gamma}\left(t\right) + \dot{\Phi}\left(t\right)\right) \approx L\left(\Gamma\left(t\right), \dot{\Gamma}\left(t\right)\right) + \sum_{j=1}^{m} \left(\partial_{j}L\right) \left(\Gamma\left(t\right), \dot{\Gamma}\left(t\right)\right) \Phi_{j}\left(t\right) + \sum_{j=1}^{m} \left(\partial_{j+m}L\right) \left(\Gamma\left(t\right), \dot{\Gamma}\left(t\right)\right) \dot{\Phi}_{j}\left(t\right) + \mathcal{O}\left(\varepsilon^{2}\right)$$

Next perform integration by parts on the following integral

$$\int_{t_{1}}^{t_{2}} (\partial_{j+m}L) \left(\Gamma\left(t\right), \dot{\Gamma}\left(t\right)\right) \dot{\Phi}_{j}\left(t\right) dt = \left[\left(\partial_{j+m}L\right) \left(\Gamma\left(t\right), \dot{\Gamma}\left(t\right)\right) \Phi_{j}\left(t\right)\right]\Big|_{t_{1}}^{t_{2}} - \int_{t_{1}}^{t_{2}} \left[\partial\left(\left(\partial_{j+m}L\right) \left(\Gamma, \dot{\Gamma}\right)\right)\right] (t) \Phi_{j}\left(t\right) dt$$

Hence we have (using the same (tentative) formula for $((DS_L)(\Gamma))(\Phi)$ which was introduced in the claim) to get

$$S_L(\Gamma + \Phi) - S_L(\Gamma) - ((DS_L)(\Gamma))(\Phi) = \mathcal{O}(\varepsilon^2)(t_2 - t_1)$$

We find that

$$\frac{|S_L(\Gamma + \Phi) - S_L(\Gamma) - ((DS_L)(\Gamma))(\Phi)|}{\|\Phi\|_{\mathcal{B}}} = \frac{\mathcal{O}(\varepsilon^2)|t_2 - t_1|}{\|\Phi\|_{\mathcal{B}}}$$

$$\leq \mathcal{O}(\varepsilon) \frac{1}{2} |t_2 - t_1|$$

Since $\varepsilon > 0$ was arbitrary and since we can always find such Φ for a given $\varepsilon > 0$, we concude the statement of the claim.

3.2 Claim. If for some continuous $f:[t_1, t_2] \to \mathbb{R}$, $\int_{t_1}^{t_2} fg = 0$ for all continuous $g:[t_1, t_2] \to \mathbb{R}$ such that $g(t_1) = g(t_2) = 0$ then f = 0. [[2] pp. 57]

Proof. Assume otherwise. Then there exists some $t_3 \in [t_1, t_2]$ such that $|f(t_3)| > 0$. Since f is continuous, there is some $\varepsilon > 0$ such that $\inf(|f(B_{\varepsilon}(t_3))|) > c$ for some c > 0. Pick g continuous such that g = 0 outside $B_{\varepsilon}(t_3)$, g > 0 inside $B_{\varepsilon}(t_3)$ and g = 1 inside $B_{\frac{1}{2}\varepsilon}(t_3)$. Then

$$\left| \int_{t_1}^{t_2} fg \right| \geq \left| \int_{B_{\varepsilon}(t_3)} fg \right|$$

$$> c \left| \int_{B_{\varepsilon}(t_3)} g \right|$$

$$> c\varepsilon$$

This contradicts the fact that we should obtain zero on the left hand side.

4 Extremum of Action Implies Euler-Lagrange Equations

4.1 Claim. The extremal points of S_L where the extremum is taken over all points such that

$$\Gamma(t_i) = x_i \forall \quad i \in \{1, 2\}$$
 (1)

is given by solutions to the (total number of m) Euler-Lagrange equations:

$$(\partial_j L) \circ (\Gamma, \dot{\Gamma}) - \partial [(\partial_{j+m} L) \circ (\Gamma, \dot{\Gamma})] = 0 \quad \forall j \in \{1, \dots, m\}$$

Proof. The extremum of a function is obtained (by definition) when its Frechet derivative is zero. That means we should seek solutions Γ to the equation

$$(DS_L)(\Gamma)|_{\mathcal{S}} = 0$$

where S is the subset of B such that $\Phi(t_1) = \Phi(t_2) = 0$. The reason we restrict the action of the derivative to S is because this restriction is precisely what makes sure (1) is satisfied for every element considered for the extremum. By the result earlier we have for all $\Phi \in S$,

$$(DS_L)(\Gamma)|_{\mathcal{S}}(\Phi) = \sum_{j=1}^{m} \int_{t_1}^{t_2} \left(\left((\partial_j L) \circ \left(\Gamma, \dot{\Gamma} \right) \right) (t) - \partial \left[(\partial_{j+m} L) \circ \left(\Gamma, \dot{\Gamma} \right) \right] (t) \right) \Phi_j(t) dt$$

Since $(DS_L)(\Gamma)|_{\mathcal{S}}(\Phi) = 0$ should hold for any $\Phi \in \mathcal{S}$, we can successively pick individual j's such that $\Phi =$

 $(0, 0, \ldots, \Phi_j, \ldots, 0, 0)$ and so we actually get the m (separate) equations:

$$\int_{t_1}^{t_2} \left(\left(\left(\partial_j L \right) \circ \left(\Gamma, \dot{\Gamma} \right) \right) (t) - \partial \left[\left(\partial_{j+m} L \right) \circ \left(\Gamma, \dot{\Gamma} \right) \right] (t) \right) \Phi_j (t) dt = 0 \quad \forall j \in \{ 1, \dots, m \}$$

We now use 3.2 to conclude the statement of the claim.

This means that the solutions to the Euler-Lagrange equations are simply the extremum points of S_L in the space of paths obeying given boundary conditions, in complete analogy to how $f'(x) \stackrel{!}{=} 0$ gives the extremum x of a map $f: \mathbb{R} \to \mathbb{R}$ as seen in high school.

References

- [1] H. Cartan. Differential Calculus. Houghton Mifflin Co, 1971.
- [2] MATHEMATICAL METHODS OF CLASSICAL MECHANICS. Mathematical Methods of Classical Mechanics by V.I. Arnol'd (May 16 1989). Springer, 1989.