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1 Definition of the Lagrangian

• Convention: If f : Rm → R is given then ∂if is the derivative with respect to the ith argument. If f : R → R then
∂f or ḟ is the derivative (with respect to the only argument).

• Let d ∈ N≥1 be given (the number of space dimensions).

• Let n ∈ N≥1 be given (the number of particles).

• Let V :
(

Rd
)n

→ R (the potential) be given; We assume V is differentiable. (we treat the simplest case where the
potential is time independent).

• We define m := dn for breviy.

• Let γi : R → Rd be the trajectory of the ith particle.

• We define Γ : R → Rm as the trajectory of the whole system: Γ := (γ1, . . . , γn).

• Thus V ◦ Γ : R → R.

• Given a collection of masses (m1, . . . , mn) ∈ (R>0)
n, we also define another map T :

(

Rd
)n

→ R via

T (x1, . . . , xn) :=
1

2

n
∑

i=1

mi∥xi∥
2 ∀ (x1, . . . , xn) ∈

(

R
d
)n

where

∥xi∥ ≡
√

(xi)1
2 + · · ·+ (xi)d

2

Note that we may also consider the “flattened” version (denoted with the same letter) T : Rm → R with

(m̃j)
m

j=1 =

⎛

⎝m1, . . . , m1
︸ ︷︷ ︸

d times

, . . . , mn, . . . , mn
︸ ︷︷ ︸

d times

⎞

⎠

T (y1, . . . , ym) :=
1

2

m
∑

j=1

m̃jyj
2 ∀ (y1, . . . , ym) ∈ R

m

Note T is differentiable as it is merely a polynomial.

• The definition of V and T was just to make things concrete but more generally we consider a Lagrangian (differen-
tiable) map

L : Rm × R
m → R

and in our case

L
(

(xj)
m

j=1 , (vj)
m

j=1

)

:= T
(

(vj)
m

j=1

)

− V
(

(xj)
m

j=1

)

We will also use the notation

L ◦
(

Γ, Γ̇
)

: R
︸︷︷︸

time

→ R = T ◦ Γ̇− V ◦ Γ
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2 Definition of the Action

• Let (t1, t2) ∈ R2 be given such that t1 < t2, and (x1, x2) ∈ (Rm)2 (the initial and final conditions).

• Define the Banach space B := C2 ([t1, t2] → Rm) (the twice-differentiable maps from that interval to Rm), with the
supremum norm

∥Γ∥B ≡ sup
(

{ ∥Γ (t)∥
Rm | t ∈ [t1, t2] } ∪

{ ∥
∥
∥Γ̇ (t)

∥
∥
∥
Rm

∣
∣
∣ t ∈ [t1, t2]

})

Of course that norm is well-defined because a continuous image of a compact space is again compact, hence bounded.

• Define the action SL corresponding to the Lagragian L and the time interval [t1, t2] as a map SL : B → R as follows

SL (Γ) :=

∫ t2

t1

(

L ◦
(

Γ, Γ̇
))

(t) dt ∀Γ ∈ S

3 The Frechet Derivative of the Action

• Recall that the Fréchet [1] derivative of a map SL : B → R between two Banach spaces at a point Γ ∈ B is defined as
an operator (DSL) (Γ) ∈ L (B, R) (where L (·, ·) is the space of all continuous linear operators between two spaces)
such that the following limit exists and is equal to zero:

lim
Φ→0

|SL (Γ+ Φ)− SL (Γ)− ((DSL) (Γ)) (Φ)|

∥Φ∥B
= 0

(that is, SL is Fréchet-differentiable at Γ if such an (DSL) (Γ) exists)

3.1 Claim. SL is Fréchet differentiable on the whole of B and its value is

((DSL) (Γ)) (Φ) =
m
∑

j=1

∫ t2

t1

((

(∂jL) ◦
(

Γ, Γ̇
))

(t)− ∂
[

(∂j+mL) ◦
(

Γ, Γ̇
)]

(t)
)

Φj (t) dt

+
[

(∂j+mL)
(

Γ (t) , Γ̇ (t)
)

Φj (t)
]∣
∣
∣

t2

t1

Proof. Let ε > 0 and let Φ ∈ B be given such that 1
2ε < ∥Φ∥ < ε. That implies that ∥Φ (t)∥ < ε and

∥
∥
∥Φ̇ (t)

∥
∥
∥ < ε for all

t ∈ [t1, t2].

SL (Γ+ Φ) ≡

∫ t2

t1

(

L ◦
(

Γ+ Φ, Γ̇+ Φ̇
))

(t) dt

and
(

L ◦
(

Γ+ Φ, Γ̇+ Φ̇
))

(t) ≡ L
(

Γ (t) + Φ (t) , Γ̇ (t) + Φ̇ (t)
)

Since Φ (t) and Φ̇ (t) are smaller than ε, we can make a Taylor expansion of L around Φ (t) = Φ̇ (t) = 0 to obtain:

L
(

Γ (t) + Φ (t) , Γ̇ (t) + Φ̇ (t)
)

≈ L
(

Γ (t) , Γ̇ (t)
)

+
m
∑

j=1

(∂jL)
(

Γ (t) , Γ̇ (t)
)

Φj (t) +

+
m
∑

j=1

(∂j+mL)
(

Γ (t) , Γ̇ (t)
)

Φ̇j (t) +O
(

ε2
)

Next perform integration by parts on the following integral

∫ t2

t1

(∂j+mL)
(

Γ (t) , Γ̇ (t)
)

Φ̇j (t) dt =
[

(∂j+mL)
(

Γ (t) , Γ̇ (t)
)

Φj (t)
]∣
∣
∣

t2

t1
−

−

∫ t2

t1

[

∂
(

(∂j+mL)
(

Γ, Γ̇
))]

(t)Φj (t) dt
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Hence we have (using the same (tentative) formula for ((DSL) (Γ)) (Φ) which was introduced in the claim) to get

SL (Γ+ Φ)− SL (Γ)− ((DSL) (Γ)) (Φ) = O
(

ε2
)

(t2 − t1)

We find that

|SL (Γ+ Φ)− SL (Γ)− ((DSL) (Γ)) (Φ)|

∥Φ∥B
=

O
(

ε2
)

|t2 − t1|

∥Φ∥B

≤ O (ε)
1

2
|t2 − t1|

Since ε > 0 was arbitrary and since we can always find such Φ for a given ε > 0, we concude the statement of the
claim.

3.2 Claim. If for some continuous f : [t1, t2] → R,
∫ t2
t1

fg = 0 for all continuous g : [t1, t2] → R such that g (t1) = g (t2) = 0
then f = 0. [[2] pp. 57]

Proof. Assume otherwise. Then there exists some t3 ∈ [t1, t2] such that |f (t3)| > 0. Since f is continuous, there is
some ε > 0 such that inf (|f (Bε (t3))|) > c for some c > 0. Pick g continuous such that g = 0 outside Bε (t3), g > 0
inside Bε (t3) and g = 1 inside B 1

2
ε (t3). Then

∣
∣
∣
∣

∫ t2

t1

fg

∣
∣
∣
∣

≥

∣
∣
∣
∣
∣

∫

Bε(t3)
fg

∣
∣
∣
∣
∣

> c

∣
∣
∣
∣
∣

∫

Bε(t3)
g

∣
∣
∣
∣
∣

> cε

This contradicts the fact that we should obtain zero on the left hand side.

4 Extremum of Action Implies Euler-Lagrange Equations

4.1 Claim. The extremal points of SL where the extremum is taken over all points such that

Γ (ti) = xi∀ i ∈ { 1, 2 } (1)

is given by solutions to the (total number of m) Euler-Lagrange equations:

(∂jL) ◦
(

Γ, Γ̇
)

− ∂
[

(∂j+mL) ◦
(

Γ, Γ̇
)]

= 0 ∀j ∈ { 1, . . . , m }

Proof. The extremum of a function is obtained (by definition) when its Frechet derivative is zero. That means we should
seek solutions Γ to the equation

(DSL) (Γ)|S = 0

where S is the subset of B such that Φ (t1) = Φ (t2) = 0. The reason we restrict the action of the derivative to S is
because this restriction is precisely what makes sure (1) is satisfied for every element considered for the extremum.

By the result earlier we have for all Φ ∈ S,

(DSL) (Γ)|S (Φ) =
m
∑

j=1

∫ t2

t1

((

(∂jL) ◦
(

Γ, Γ̇
))

(t)− ∂
[

(∂j+mL) ◦
(

Γ, Γ̇
)]

(t)
)

Φj (t) dt

Since (DSL) (Γ)|S (Φ) = 0 should hold for any Φ ∈ S, we can successively pick individual j’s such that Φ =
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(0, 0, . . . , Φj, . . . , 0, 0) and so we actually get the m (separate) equations:

∫ t2

t1

((

(∂jL) ◦
(

Γ, Γ̇
))

(t)− ∂
[

(∂j+mL) ◦
(

Γ, Γ̇
)]

(t)
)

Φj (t) dt = 0 ∀j ∈ { 1, . . . , m }

We now use 3.2 to conclude the statement of the claim.

This means that the solutions to the Euler-Lagrange equations are simply the extremum points of SL in the space of

paths obeying given boundary conditions, in complete analogy to how f ′ (x)
!
= 0 gives the extremum x of a map f : R → R

as seen in high school.
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