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1 Natural Units

• To specify physical units, we must specify universal standards for length,
mass, time, temperature, and electric charge (in lieu of electric current).
The natural unit for temperature is usually determined via Blotzman’s
constant. The natural unit for electric charge is usually determiend via
the electron.

• We usually measure length in meters because the meter is a length of the
scale of the human height, which we have experience with. We usually
measure mass in kilograms because the kilogram is of the scale of the
human weight, which we have experience with. We usually measure time
in seconds because the second is of the scale of the human vision system
and neural system’s response time, which we have experience with.

• However, these scales have nothing special about them from the point
of view of abstract laws of physics, and when dealing with other ques-
tions, such as planetary motion or elementary particles, it may be more
comfortable to pick different universal standards for the units.

• So instead, we choose the length, time and mass using other universal
standards. Then we also agree to also drop the units from all equations
(write 10 instead of 10kg in all equations).

• In some previous question (the perihelion precession question), we were
asked to measure mass in units such that G = m = 1. What does this
mean?

• For the mass we should measure in units of m. We are left with length
and time. Let’s call these unknown units λ and τ . What should they be
so that G and m will drop out of the equations?

G ≡ 6.67× 10−11meter3

kg sec2

!
=

λ3

mτ2

Since m is already fixed, we have the freedom to choose λ or τ as we please
so as to satisfy the above equation. One possible choice, for example, is
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to continue to use τ = sec and then

λ =

(

msec26.67× 10−11meter3

kg sec2

) 1

3

=

(

6.67× 10−11 m

kg

) 1

3

meter

Then when we write expressions that contain G they will drop out if we
indeed follow the convention to drop all units:

∥F∥ = −G
mM

r2

so

∥F∥
(
mλ
τ2

) = −
λ3

mτ2
mM

r2
τ2

mλ

= −
M

m

( r

λ

)−2

or simply
∥
∥
∥F̃

∥
∥
∥ = −M̃r̃−2

where the tilde versions denote the numerical values without units.

• Later on there is also a need to “set” the speed of light, c = 1. This will
mean that we cannot anymore choose τ = sec, but rather, we must solve
the system

{

6.67× 10−11meter3

kg sec2
!
= λ3

mτ2

3× 108meter
sec

!
= λ

τ

Which has the solution
⎧

⎨

⎩

λ =
(

6.67× 10−11 m
kg

(

3× 108
)−2

)

meter

τ =
(

6.67× 10−11 m
kg

(

3× 108
)−3

)

sec

Then in an equation like

E = Mc2

we find

E
(

mλ2

τ2

) =
M

m

or simply

Ẽ = M̃

as desired.
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• It is also possible to go back, that is, to go from equations which have
only numerical values and no units and restore the units. This is done by
dimensional analysis. For example, if we know that

Q̃ = ÃB̃C̃

holds in natural units, then we’d like to find the corresponding equation
with all unis restored. The first step is to find out what are the physical
dimensions of Q̃ and then multiply the equation by those units. Then
identify what are the units of Ã, B̃ and C̃ and distribute units across the
expression so that they become dimensionful.

• For example, we know
∥
∥
∥F̃

∥
∥
∥ = −M̃r̃−2

and we know that

[∥F∥] = [M ]
[L]

[T ]2

so we multiply the equation by m λ
τ2 to get

∥F∥ =
∥
∥
∥F̃

∥
∥
∥m

λ

τ2

= −M̃r̃−2m
λ

τ2

= −
(

M̃m
)

m (r̃λ)−2 λ2

m2
m

λ

τ2

= −
(

M̃m
)

m (r̃λ)−2 λ3

mτ2
︸ ︷︷ ︸

=G

= −G
(

M̃m
)

m (r̃λ)−2

• A second example:

d = l2M−1

in natural units. So really,

d̃ = l̃2M̃−1

and we want to know what’s this equation in actual units. We expects
some factors of G and m. To get the right expression: we know that
[d] = [L], so that we multiply the equation by λ. We also know that

[l] = [M ] [L]2 [T ]−1

so we get

d = λd̃

= λ
(

l̃mλ2τ−1

)2

︸ ︷︷ ︸

=l2

(

mλ2τ−1
)−2

(

M̃m
)−1

︸ ︷︷ ︸

=M−1

m

= l2M−1m−2mτ2

λ3

= G−1l2M−1m−2
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which is exactly equation (2.12) in the script.

2 Conservative versus Central Forces

1 Definition. A central force law F : R3 → R3 is a force such that there exists
some f : R → R such that F may be written as

F (x) = f (∥x∥)
x

∥x∥
∀x ∈ R
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2 Example. The gravitational force law, F (x) = −Gm1m2

∥x∥2
x

∥x∥ with f (x) =

−Gm1m2

∥x∥2 .

3 Example. A charged particle of charge q moves in a homogeneous electric
field Ee3 for some E ∈ R and e3 the standard unit vector in the third direction.
Then

F (x) = qEe3 (1)

which is clearly not central.

4 Definition. A conservative force law F : R3 → R3 is a force such that there
exists some f : R → R such that F can be written as

F = −∇f

5 Claim. The work done by a conservative force along a closed path is zero.

Proof. We have

W =

∫

γ

F · dr

(Stokes’)

=

∫

A

(∇× F ) · da

=

∫

A

(∇× (−∇f)) · da

(∇× (∇f) = 0)

= 0

where we have used

∇× (∇f) = eiεijk∂j (∇f)k (2)

= eiεijk∂j∂kf

= 0
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which follows by the commutativity of partial derivatives on f and because
εijk is anti-symmetric.

6 Claim. A force is conservative iff ∇× F = 0.

Proof. If a force F is conservative then it clearly obeys ∇ × F = 0 by (2).
Conversely, if for some F we have ∇× F = 0, define

f (x) := −

∫

γx

F · dr

where γx is any curve from the origin to x that doesn’t self-intersect.

Claim. f is well-defined (that is, it does not depend on the choice of γx).

Proof. If γx and λx are two possible choices of such curves, then we have
∫

γx

F · dr −

∫

λx

F · dr =

∫

γx∧λx

F · dr

where γx ∧ λx is the concatenated loop that goes 0 → x → 0 via γx first
and then the reverse of λx. Then using Stokes’ we have

∫

γx∧λx

F · dr =

∫

A

(∇× F ) · da

where A is the surface enclosed within the loop γx∧λx. The last expression
is then zero by assumption.

Then we have

− (∇f) (x) = ∇

∫

γx

F · dr

= F (x)

by the fundamental theorem of calculus.

7 Claim. Every central force is conservative.

Proof. Let F be a central force with scalar f . Using the above claim we
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verify:

(∇× F ) (x) = eiεijk (∂jFk) (x)

= eiεijk∂jf (∥x∥)
xk

∥x∥

= eiεijk

[

(∂jf (∥x∥))
xk

∥x∥
+ f (∥x∥) ∂j

xk

∥x∥

]

= eiεijk

[

(f ′ (x) ∂j∥x∥)
xk

∥x∥
+ f (∥x∥)

(
(∂jxk)

∥x∥
+ xk∂j∥x∥

−1

)]

= eiεijk

[(

f ′ (x)
xj

∥x∥

)
xk

∥x∥
+ f (∥x∥)

(
(∂jxk)

∥x∥
+ xk∂j∥x∥

−1

)]

(ignore j,k symmetric terms because of εijk)

= f (∥x∥) eiεijk
[(

−xk∥x∥
−2

∂j∥x∥
)]

= f (∥x∥) eiεijk
[(

−xk∥x∥
−2

xj∥x∥
)]

= 0

8 Example. The example of the charged particle in (1) shows that conservative
forces need not be central.

Proof. We must show that (1) is indeed conservative:

(∇× F ) (x) = eiεijk (∂jFk) (x)

= eiεijk∂jqEδ3k

= 0
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