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1 What are Eigenfrequencies, or Natural Frequen-
cies?

1 Remark. What follows is a restatement of section 4.2.1 in the lecture’s script,
which I thought might be good to briefly recollect as the idea is what is behind
the solution to the first exercise in homework number eight.

2 Remark. Actually most of this discussion is just a very long way of saying that
any two quadratic forms may be simultaneously diagonalized if one of the is
positive definite. See http://math.stackexchange.com/questions/154540/
simultaneously-diagonalizing-bilinear-forms.

Let f € N>i.

We consider a system whose state may be described by f real parameters—by
some point in R/ .

Let T and V be quadratic forms on R/ (see definition 14). We assume that
T is a positive definite form (see definition 15). This makes sense because the
kinetic energy is always non-negative, and always strictly positive if the speed is
non-zero. Via 16 this induces a positive definite inner product (-, -) : (Rf)2 —
R. The reason we work with the inner product induced by T is in order to
not have to pick a basis for Rf. So the point of what follows is a basis-free
description of the problem.

3 Claim. There is a unique symmetric linear mapping V : R/ — R/ such that

— 1/ R/

V (z) <x, Vz>T Vo €

Proof. T and V define matrices .7 and ¥ in Mat sy s (R):
T(z) = (z, Ta)VzeRS

V() = (x, Vx)Vz e RS

where (-, -) is the standard inner product on R/. Indeed, these matrices are
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defined via: Let { e; }, be the standard basis for R/.

and similarly for 7.
Note that .7 and ¥ do not have to be symmetric. However, we may define

Ts ::%(9+9T),sothat IT = J5 and

< L7+ o) >
= (2. 7o) + (2, TTa))
By (z, Ay) = <ATx, y))

T (e; +e;)—T (e;) —T(ej))ei®e;f
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(x, Tsx)
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= Sz T) + (T, 2))
(By (z,y) = (y, z) in R/
(x, Tx)

N
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We follow a similar procedure for V' to obtain that ¥5 is symmetric and
(x, Vsx) = V(x)

Note that because g is positive definite and symmetric, 17 implies that there
is some matrix .2 € Mat ¢y ¢ (R) such that 5 = £7%. Hence we find:

T(x) = (L2, Lz) VYreRS

Moreover, because T is positive definite, Js is invertible, so that £ is in-
vertible as well. As a result, { £ 'e; }l is also a basis of R/ (albeit not
necessarily an orthogonal one—since Js is not necessarily diagonal). In this
basis, the matrix Js is given by the components (i, j):

(e, Tstles) = (e (27 LTLLe)

<ei’ 6j>

so that in this basis, the matrix Jg5 = 1y« y. As a result, taking the usual
inner product (-, -) in the { £ 'e; }. basis is like taking the (-, -);, inner
product in the standard basis.

We now define (manifestly symmetric)

T

Vo= (27 gt



which is simply the matrix #5 in the basis { L e, }Z Hence

Vi) = (z, Ysx)
in the basis { P e, }Z)
f

= Y a((g ) e 4

P 1)
7, j=1
(in the basis { £ 'e; }, the standard inner product is (-, -);)

= (e 7).

—~
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We define the system’s energy at time ¢ € R, corresponding to the trajectory
v:R = RS via

Ey(t) = TEHE)+V (@)

The label t on the left hand-side is actually redundant, because we actually
employ the assumption that

4 Assumption. E, does not depend on time.

So we shall drop that label.

5 Claim. The assumption 4 implies that any trajectory must obey the differen-
tial equation

¥ o= =V (1)

Proof. Using our notation we may write £, as:

Ey = TEH®)+V (@)

= GO 7O+ (70, V1 (0)

The fact F, is time-independent may be expressed as E7 = 0. Using the fact
that (z, y) = (&, y) + (z, §) we get

0 = E,
= G, O+ GO, O+ (7O, T ()

(By symmetry of the forms invovled)
= 260, 5O +2(30, V7 (1)
= 2(7(0), 7O+ Vr (1)

Which readily implies via the positive-definiteness of T" that either we have a
constant solution (which we are not interested in) or

F(6)+Vy(t) = 0 (2)




O

6 Remark. Recall that real symmetric matrices are orthogonally diagonalizable.
Thus we may find some orthonormal basis { e; }if:l of Rf such that

”/7ei = /\Z—ei (3)
for some set of eigenvalues { \; }{:1- Because ¥ is real symmetric, \; € R.

7 Definition. For each eigenvalue \; € R of ”/7, define w; := v/A;. Thus, w;
may be either real or strictly imaginary. The collection of all w;’s are called
the natural frequencies of the system defined by T and V; the name is due to
equation (4).

8 Remark. We may also write

<eia 7>T €q
1

/
vo=

%

If we define &; (t) := (e;, v (t)) we then have the equation of motion (2) equiv-

alent to the following f equations (for each i € {1, ..., f }):
&) = e 7))y
= <eia y (t)>T

(By the equation of motion)
= <€z‘, —VW (t)>T

(By the fact V is symmetric)
= (Ve v (1))

(By the fact e; is an eigenbasis for f/)

= - </\iei7 v (t)>T
= =N& (1)

T

We find

& = —w’k (4)

The general solution for v is then easily obtain from (4) as these are simply f
uncoupled oscillators. We find:

f
V() = Z& (t) e

(Plug in the general solution for an oscillator)
f

= Z ['fi (0) cos (w;t) + wiz& (0) sin (wit)] €;
z; 1
= . [(ei, 7 (0))p cos (w;t) + o (ei, ¥ (0))p sin (wit)} e;



9 Definition. A symmetry is a linear map S : R/ — R/ which leaves 7' and V
invariant:

ToS = T (5)

VoS = S (6)

10 Remark. Equation (5) implies that S is an orthogonal map:

ToS =T
I
(ToS)(z) = T(z) VreRS
I
(Sx, Sx)p, = (x,x);, VYrecRS

11 Remark. Equation (6) implies that {S, \N/} = 0. Indeed, we have

<S£L', f/Sz>T = <:c, f/x>T Ve e RS
I
<x, STVS:E>T = <:I:, f/x>T Vo e RY
1 (S is orthogonal)

<:c, Silf/Sz>T <£L‘, f/x>T Ve e RS

|4

| <

S~vs

Thus, the eigenspaces of S are V invariant: If z is an eigenvector of S with
eigenvalue A then Vi is also an eigenvector of S with eigenvector A. In symbols:
Sz = Ax then SV =V Sz =Vix = AVz.

12 Algorithm. In order to solve the eigenvalue problem (3) we can first de-
compose

RS = @B im(Py)

Aeo(S)

where Py 1is the eigenprojection onto the eigenspace of S corresponding to eigen-
value . Since the eigenspaces of S (that is, {im (Py) },) are V invariant, V
will also have a block-diagonal form.:

V- PV

AET(S)

zm(P)\)

We then diagonalize each block V separately, which should be much easier

im( Py

than diagonalizing V.



2 Appendix: Forms

13 Definition. A symmetric bilinear form on an R-vector space V is a map
B : V? — R which such that:

B = Bos
Bo (m]RXV X ﬂv) = MRxR© (]lR X B)
Bo(avlelv) = CLR2O(B><B)O[)

where the maps s and h are defined as

V2 > (’Ul, UQ) ’i> (’1}2, ’Ul) S V2

V35 (v1, va, v3) i (v1, v3, v2, v3) € V*

Mrxyv, Mrxr are the scalar multiplication on V' and R respectively, and ay-2,
agz are vector addition on V and R respectively.
In other words, B is symmetric and R-linear in both its entries.

14 Definition. A quadratic form on an R-vector-space V isamap f:V — R
such that there exists some bilinear (not necessarily symmetric) form By : V2 —
R with f = By o A where A : V — V? is the co-multiplication, given by
v (v,v) for allv e V.

15 Claim. A quadratic form f : V — R is positive definite iff f (V\{0}) C Rso.

16 Claim. Any quadratic form on an R-vector-space V defines a unique sym-
metric bilinear form.

Proof. Let f:V — R be any quadratic form. Define Cy : V? — R via

1

Cp (v, v2) = 5 (By (vr, v2) + By (v, v1))

where By is the bilinear form guaranteed by the definition of f as a quadratic
form. By construction, C is symmetric, and note that is is also R-linear in
both its entries, and hence a symmetric bilinear form.

We find that

) = Biv)
= 5By (0, 0) + By (v, 1))
Cy (v, v)

Uniqueness follows by the polarization identity: Let C’f : V2 = R by any




other symmetric bilinear form such that f = C '+ o A. Then

- 1r-~ - - -
C (v ve) = 7 [Cr(vr, v1) +Cy (v, 1) + C (1, 02) + C (v, v0)]
1 ~ -

-1 [C’f (v1, v1) — Cf (v2, v1) — C~’f (v1, v2) + Cf (v, Ug)}

172
= Z[Cf(m—i—vmﬁ +'U2)_Cf<'01_112,vl_'02)}

= l[f(vl +v2) — f (v1 — v2)]

4
(By the same calculation in reverse using C'y)
= Cy (v, v2)

3 Appendix: The Cholesky Decomposition

17 Claim. Iff A € Matyxn (C) is Hermitian and positive definite then there
exists some L € Matnxn (C) such that A = L*L.

’ Proof. Seehttps://en.wikipedia.org/wiki/Cholesky_decomposition. [

18 Remark. This is the analog of the theorem in C-star algebras that says that
an element a is positive (that is, o (a) C [0, co) and self-adjoint) iff it can be
written as a = b*b for some other element b.
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