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1 What are Eigenfrequencies, or Natural Frequen-

cies?

1 Remark. What follows is a restatement of section 4.2.1 in the lecture’s script,
which I thought might be good to briefly recollect as the idea is what is behind
the solution to the first exercise in homework number eight.

2 Remark. Actually most of this discussion is just a very long way of saying that
any two quadratic forms may be simultaneously diagonalized if one of the is
positive definite. See http://math.stackexchange.com/questions/154540/
simultaneously-diagonalizing-bilinear-forms.

Let f ∈ N≥1.
We consider a system whose state may be described by f real parameters–by

some point in Rf .
Let T and V be quadratic forms on Rf (see definition 14). We assume that

T is a positive definite form (see definition 15). This makes sense because the
kinetic energy is always non-negative, and always strictly positive if the speed is

non-zero. Via 16 this induces a positive definite inner product ⟨·, ·⟩T :
(

Rf
)2 →

R. The reason we work with the inner product induced by T is in order to
not have to pick a basis for Rf . So the point of what follows is a basis-free
description of the problem.

3 Claim. There is a unique symmetric linear mapping Ṽ : Rf → Rf such that

V (x) =
〈

x, Ṽ x
〉

T
∀x ∈ R

f

Proof. T and V define matrices T and V in Matf×f (R):

T (x) = ⟨x, T x⟩ ∀x ∈ R
f

V (x) = ⟨x, V x⟩ ∀x ∈ R
f

where ⟨·, ·⟩ is the standard inner product on Rf . Indeed, these matrices are
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defined via: Let { ei }i be the standard basis for Rf .

T :=
f
∑

i, j=1

1

2
(T (ei + ej)− T (ei)− T (ej)) ei ⊗ e∗j

and similarly for V .
Note that T and V do not have to be symmetric. However, we may define

TS := 1
2

(

T + T T
)

, so that T T
S = TS and

⟨x, TSx⟩ =

〈

x,
1

2

(

T + T
T
)

x

〉

=
1

2

(

⟨x, T x⟩+
〈

x, T
Tx

〉)

(

By ⟨x, Ay⟩ =
〈

ATx, y
〉)

=
1

2
(⟨x, T x⟩+ ⟨T x, x⟩)

(

By ⟨x, y⟩ = ⟨y, x⟩ in R
f
)

= ⟨x, T x⟩
≡ T (x)

We follow a similar procedure for V to obtain that VS is symmetric and

⟨x, VSx⟩ = V (x)

Note that because TS is positive definite and symmetric, 17 implies that there
is some matrix L ∈ Matf×f (R) such that TS = L TL . Hence we find:

T (x) = ⟨L x, L x⟩ ∀x ∈ R
f

Moreover, because T is positive definite, TS is invertible, so that L is in-
vertible as well. As a result,

{

L −1ei
}

i
is also a basis of Rf (albeit not

necessarily an orthogonal one–since TS is not necessarily diagonal). In this
basis, the matrix TS is given by the components (i, j):

〈

L
−1ei, TSL

−1ej
〉

=
〈

ei,
(

L
−1

)T
L

T
L L

−1ej

〉

= ⟨ei, ej⟩
= δij

so that in this basis, the matrix TS = 1f×f . As a result, taking the usual
inner product ⟨·, ·⟩ in the

{

L −1ei
}

i
basis is like taking the ⟨·, ·⟩T inner

product in the standard basis.
We now define (manifestly symmetric)

Ṽ :=
(

L
−1

)T
VSL

−1

2



which is simply the matrix VS in the basis
{

L −1ei
}

i
. Hence

V (x) = ⟨x, VSx⟩
(

in the basis
{

L
−1ei

}

i

)

=
f
∑

i, j=1

xi

(

(

L
−1

)T
VSL

−1
)

ij
xj

(

in the basis
{

L
−1ei

}

i
the standard inner product is ⟨·, ·⟩T

)

=
〈

x, Ṽ x
〉

T

We define the system’s energy at time t ∈ R, corresponding to the trajectory
γ : R → Rf via

Eγ (t) := T (γ̇ (t)) + V (γ (t))

The label t on the left hand-side is actually redundant, because we actually
employ the assumption that

4 Assumption. Eγ does not depend on time.

So we shall drop that label.

5 Claim. The assumption 4 implies that any trajectory must obey the differen-
tial equation

γ̈ = −Ṽ γ (1)

Proof. Using our notation we may write Eγ as:

Eγ = T (γ̇ (t)) + V (γ (t))

= ⟨γ̇ (t) , γ̇ (t)⟩T +
〈

γ (t) , Ṽ γ (t)
〉

T

The fact Eγ is time-independent may be expressed as Ėγ = 0. Using the fact

that ˙⟨x, y⟩ = ⟨ẋ, y⟩+ ⟨x, ẏ⟩ we get

0 = Ėγ

= ⟨γ̈ (t) , γ̇ (t)⟩T + ⟨γ̇ (t) , γ̈ (t)⟩T +
〈

γ̇ (t) , Ṽ γ (t)
〉

T
+
〈

γ (t) , Ṽ γ̇ (t)
〉

T

(By symmetry of the forms invovled)

= 2 ⟨γ̇ (t) , γ̈ (t)⟩T + 2
〈

γ̇ (t) , Ṽ γ (t)
〉

T

= 2
〈

γ̇ (t) , γ̈ (t) + Ṽ γ (t)
〉

T

Which readily implies via the positive-definiteness of T that either we have a
constant solution (which we are not interested in) or

γ̈ (t) + Ṽ γ (t) = 0 (2)
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6 Remark. Recall that real symmetric matrices are orthogonally diagonalizable.
Thus we may find some orthonormal basis { ei }fi=1 of Rf such that

Ṽ ei = λiei (3)

for some set of eigenvalues { λi }fi=1. Because Ṽ is real symmetric, λi ∈ R.

7 Definition. For each eigenvalue λi ∈ R of Ṽ , define ωi :=
√
λi. Thus, ωi

may be either real or strictly imaginary. The collection of all ωi’s are called
the natural frequencies of the system defined by T and V ; the name is due to
equation (4).

8 Remark. We may also write

γ =
f
∑

i=1

⟨ei, γ⟩T ei

If we define ξi (t) := ⟨ei, γ (t)⟩T we then have the equation of motion (2) equiv-
alent to the following f equations (for each i ∈ { 1, . . . , f }):

ξ̈i (t) = ∂2
t

¨⟨ei, γ (t)⟩T
= ⟨ei, γ̈ (t)⟩T

(By the equation of motion)

=
〈

ei, −Ṽ γ (t)
〉

T
(

By the fact Ṽ is symmetric
)

= −
〈

Ṽ ei, γ (t)
〉

T
(

By the fact ei is an eigenbasis for Ṽ
)

= −⟨λiei, γ (t)⟩T
= −λiξi (t)

We find

ξ̈i = −ωi
2ξi (4)

The general solution for γ is then easily obtain from (4) as these are simply f
uncoupled oscillators. We find:

γ (t) =
f
∑

i=1

ξi (t) ei

(Plug in the general solution for an oscillator)

=
f
∑

i=1

[

ξi (0) cos (ωit) +
1

ωi
ξ̇i (0) sin (ωit)

]

ei

≡
f
∑

i=1

[

⟨ei, γ (0)⟩T cos (ωit) +
1

ωi
⟨ei, γ̇ (0)⟩T sin (ωit)

]

ei
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9 Definition. A symmetry is a linear map S : Rf → Rf which leaves T and V
invariant:

T ◦ S = T (5)

V ◦ S = S (6)

10 Remark. Equation (5) implies that S is an orthogonal map:

T ◦ S = T

↕
(T ◦ S) (x) = T (x) ∀x ∈ R

f

↕
⟨Sx, Sx⟩T = ⟨x, x⟩T ∀x ∈ R

f

11 Remark. Equation (6) implies that
[

S, Ṽ
]

= 0. Indeed, we have

〈

Sx, Ṽ Sx
〉

T
=

〈

x, Ṽ x
〉

T
∀x ∈ R

f

↕
〈

x, ST Ṽ Sx
〉

T
=

〈

x, Ṽ x
〉

T
∀x ∈ R

f

↕ (S is orthogonal)
〈

x, S−1Ṽ Sx
〉

T
=

〈

x, Ṽ x
〉

T
∀x ∈ R

f

↕
S−1Ṽ S = Ṽ

Thus, the eigenspaces of S are Ṽ invariant: If x is an eigenvector of S with
eigenvalue λ then Ṽ x is also an eigenvector of S with eigenvector λ. In symbols:
Sx = λx then SṼ x = Ṽ Sx = Ṽ λx = λṼ x.

12 Algorithm. In order to solve the eigenvalue problem (3) we can first de-
compose

R
f =

⊕

λ∈σ(S)

im (Pλ)

where Pλ is the eigenprojection onto the eigenspace of S corresponding to eigen-
value λ. Since the eigenspaces of S (that is, { im (Pλ) }λ) are Ṽ invariant, Ṽ
will also have a block-diagonal form:

Ṽ =
⊕

λ∈σ(S)

Ṽ
∣

∣

∣

im(Pλ)

We then diagonalize each block Ṽ
∣

∣

∣

im(Pλ)
separately, which should be much easier

than diagonalizing Ṽ .

5



2 Appendix: Forms

13 Definition. A symmetric bilinear form on an R-vector space V is a map
B : V 2 → R which such that:

B = B ◦ s

B ◦ (mR×V × 1V ) = mR×R ◦ (1R ×B)

B ◦ (aV 2 × 1V ) = aR2 ◦ (B ×B) ◦ h

where the maps s and h are defined as

V 2 ∋ (v1, v2)
s.→ (v2, v1) ∈ V 2

V 3 ∋ (v1, v2, v3)
h.→ (v1, v3, v2, v3) ∈ V 4

mR×V , mR×R are the scalar multiplication on V and R respectively, and aV 2 ,
aR2 are vector addition on V and R respectively.

In other words, B is symmetric and R-linear in both its entries.

14 Definition. A quadratic form on an R-vector-space V is a map f : V → R

such that there exists some bilinear (not necessarily symmetric) form Bf : V 2 →
R with f = Bf ◦ ∆ where ∆ : V → V 2 is the co-multiplication, given by
v .→ (v, v) for all v ∈ V .

15 Claim. A quadratic form f : V → R is positive definite iff f (V \ { 0 }) ⊆ R>0.

16 Claim. Any quadratic form on an R-vector-space V defines a unique sym-
metric bilinear form.

Proof. Let f : V → R be any quadratic form. Define Cf : V 2 → R via

Cf (v1, v2) :=
1

2
(Bf (v1, v2) +Bf (v2, v1))

where Bf is the bilinear form guaranteed by the definition of f as a quadratic
form. By construction, Cf is symmetric, and note that is is also R-linear in
both its entries, and hence a symmetric bilinear form.

We find that

f (v) = Bf (v, v)

=
1

2
(Bf (v, v) +Bf (v, v))

≡ Cf (v, v)

Uniqueness follows by the polarization identity: Let C̃f : V 2 → R by any
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other symmetric bilinear form such that f = C̃f ◦∆. Then

C̃f (v1, v2) =
1

4

[

C̃f (v1, v1) + C̃f (v2, v1) + C̃f (v1, v2) + C̃f (v2, v2)
]

−1

4

[

C̃f (v1, v1)− C̃f (v2, v1)− C̃f (v1, v2) + C̃f (v2, v2)
]

=
1

4

[

C̃f (v1 + v2, v1 + v2)− C̃f (v1 − v2, v1 − v2)
]

=
1

4
[f (v1 + v2)− f (v1 − v2)]

(By the same calculation in reverse using Cf )

= Cf (v1, v2)

3 Appendix: The Cholesky Decomposition

17 Claim. Iff A ∈ MatN×N (C) is Hermitian and positive definite then there
exists some L ∈ MatN×N (C) such that A = L∗L.

Proof. See https://en.wikipedia.org/wiki/Cholesky_decomposition.

18 Remark. This is the analog of the theorem in C-star algebras that says that
an element a is positive (that is, σ (a) ⊆ [0, ∞) and self-adjoint) iff it can be
written as a = b∗b for some other element b.
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