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Abstract
We present Theorem 7.18 from Rudin’s Principles of Mathematical Analysis pp. 154.

1 Debt from Last Rectiation Session: Differential Equations

1.1 Ordinary Equations

Ordinary equations specify conditions which are either true or false; as such they are logical statements. For example, the equation
2 = 3 is false while 2014 = 2014 is true. Certain equations are parametrized by a variable, which ranges over some set. For example,

x? = 1 where x ranges over R

is an equation (a condition) parameterized by x. Then we may ask for which values in R the condition is true. In a way, what the
equation (read: “the condition”) is telling you is a recipe: Take an element of R, multiply it by itself, and check if the result is equal to
1. If yes, the condition is met and you found a solution to your equation.

1.2 Differential Equations

Sometimes, the parameter of the equation ranges over a set not of numbers, but over a set of maps. For example: consider the
following equation:
[f (x) = 5¥x € R] where f ranges over RR

is an equation parametrized by f. As above, we may ask, for which values in RR (now values are whole maps from R to R) the
condition is true. What the equation is saying is: take some element of RR, evaluate it at some point x (any point), and the result
should equal 5. The condition should hold for every x. The answer is clear: the solution to the equation is (x — 5) € RR. In a way, this
is how we have been defining functions all along: by giving conditions.

But sometimes the conditions may involve more complicated operations—operations we have only studied about in the past few
weeks. This is still fine. One such operation is differentiation. Consider the following equation:

[f’ (x) =5Vx € R] where f ranges over RR

It is telling you to take an element of RR, differentiate it, evaluate the result at some x (chosen arbitrarily), and the result should
equal 5. I claim that a solution to this equation is given by f : R — IR defined by x — 5x + C where C is any real number. To verify this,
plug it into the equation:

5x+C) = 5

is indeed true. So we have found a solution. Later on you will study some theorems that prove existence and uniqueness of solutions
to differential equations (equations where the unknown is a function, and there is differentiation of the functions).

2 A Continuous Function that is Nowhere Differentiable

e Claim: 3f € RR such that f is continuous yet nowhere differentiable.
Proof:

— Every number r € R may be written uniquely as 2n, + «, for some n € Z and some « € [-1, 1].



— Define
@ (x) := o

for all x € R. Observe that ¢ (x +2) = ¢ (x) Vx € R.
F

— Claim: ¢ is continuous on IR.

Proof :
x Claim: ¥ (s,t) e R2, |@ (s) — @ (t)] < |s —t.
Proof :
- Let (s, t) € R? be given. Then we know that we may write uniquely s = 2ns + «s and t = 2n¢ + ot for some
(ns, ny) € Z2 and (o, o) € [-1, 112
- Then
lp(s)—@(t) = llas|—loctll
< Jas — o
- If ng = n¢ then we are finished: |as — o¢| = &g +2ng — 2Nt — o] = |s — .
- If ng # n¢ then
os — o] = Jog +2ng —2ng +2ng — 2N — ot
= |s—2ns+2n;—t|
< s —tl+12ng — 2ng
< |s—1
|
— Define a new function, f : R — R by
n
X (%) @ (4™x)
nelNU{0}

Using the Weierstrass M-test (Theorem 7.10 in Rudin) we can conclude that 3" (%)n @ Anx) N g uniformly :

x Define M,, := (%)n.
* Then ‘(%)n @ (4“x)’ = (%)n @ (4™x) < My, because ¢ (y) € [0, 1] forally € R.
* But ) My, converges.

But then it follows that f is continuous, as R — R given by x -+ Y N (2) ™ @ (4™x) is continuous for all N € IN U{0} (Theorem
7.12 in Rudin).

Claim: f is not differentiable at any given point on IR.
Proof :

* Let x € R be some given point.

* Define a new numerical sequence (8 ), by the following rule:

[l flezn(@mx, 4mx+ )
=114, MezZn@mx—1,4mx)
2 27

* Claim: (8m)eny — 0@s m — oco.

* Define
@ (4™ (x+0m)) — @ (4™x)

dm

Yn,m =

forall (n, m) € N2 and x € R.



x Claim: ‘

- Claim: [ym, m| =4™.

Proof
e (@™ (x+8m)) — @ (4™x)
|Vm,m| = 5
_ lo (4™ (x +dm)) — @ (4™x])|
[61m ]

now, because as we defined ¢, there is no integer between 4™ (x + &) and 4™x, |@ (4™ (x +8m)) — @ (4™x)| = &
(we are evaluating the function along one unbroken straight line, so we’ll merely get the distance between the two
points). As a result,

1

2
=34

“Ym, ml

- Claim: yn,m =0 foralln > m.
Proof:
Observe thatif n > m, 48, € 2Z because 4™6,, = 4" %4_’“ = i4“_m% € 27Z. Thus, when n > m we have
@ (4" x+4"8m) — @ (4™x)
Ynm =
dm
@ (4™x) — @ (4™x)

dm

= 0

- Claim: Whenn €{0, ..., m}, [yn, m| < 4™
Proof:
Using the fact that V (s, t) € RZ, | (s) — @ (t)] < |s — t|, we ascertain that

- '@(4“ (X +dm)) — @ (4™x)

dm
4™ (x4 dm) —4™x

dm

N

fx+0m)—f(x)

- 2%(3m+1)forallm€]N.

Proof -
- Compute

Y nenuioy (1) @ (4™ (x+8m)) — Y nenupoy (3) " @ (47x)
dm

’f(x—l—&m)—f(x)

uni. conv. 2 neNU{o} (%)n [o (4™ (x4 6m)) — @ (4™x)]

dm
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* In particular, if the limit existed, then lim¢_,y FOtdm) —f(x)

= limm_00 - asdm — and if the limit exists

flx+dm)—f(x)
dm

f(t)—~f(x)
t—x

then it doesn’t matter how we approach it. But we just showed that limm o = oo. Hence f cannot be

differentiable at x.



