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Abstract

Even though many of the questions in the exam could have been solved easily using smart “tricks”, in what follows I attempt to
present the most naive, straight forward solution that a student could have been expected to come up with during the exam.

1 Taylor Expansions

e In question 5 of the open section, you were asked to compute the Taylor expansion of a function at 0 up to order 4.
e The general recipe to do this is as follows:

e Suppose f: R — R is given which is sufficiently many times differentiable.

e Then we have
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e Thus the proble is reduced to computing derivatives of a function and evaluating those derivatives at 0.

o Let’s take the particular example that was given on the exam:

o f(x)=v1-—2x2:
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e This was expected, because f is an even function, so its Taylor expansion should contain only even powers and if f were an odd
function its Taylor expansion would have contained only odd powers.

e Thus we have
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2 Integrals

2.1 Sinus Squared

e We would like to compute
7T
I:= / [sin (x))% dx
0

e Write [sin (x)]2 = % — % cos (2x) using the formula cos (2x) =1 —2[sin (x)}z.
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e Thus we have
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2.2 Logs

e We want to evaluate
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e The first step is to perform partial fraction decomposition. We know that (1—x?) = (1 —x) (1+x), so we expect ;—— to decom-
poseas 12 + % where A and B are unknown.

e To find A and B, we find the common denominator and get
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from which it must follow that A
A+B
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e Thus we have

2.3 Some Facts
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o Define a function by this graph (at every n € IN):
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e This function is then continuous on [0, co), and is unbounded!

o Yet the integral of this function must exist, because the area of the triangle is bounded by n x
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o [o7 +L;dxis an integral of a continuous function, which converges to zero at infinity, yet the integral does not exist.

e There are differentiable functions whose derivative is not integrable! The best recipe to reach non-integrability is to look at
unbounded functions, because we define Riemann integrability exactly on bounded functions. Note that this wouldn’t work

for improper integrals, but only for integrals on a closed interval. For example: f (x) := {
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e The last statement is exactly Theorem 6.20 in Rudin.
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3 The Continuum Hypothesis

e The continuum hypothesis says that there is no cardinality strictly between [N| and [IR].

e An uncountable subset must have cardinality bigger than |IN|.

A subset of R must have cardinality smaller than or equal to [R|.
e Thus necessarily the continuum hypothesis leads to the fact that every uncountable subset of R has cardinality |R|.

e Thus the third choice must be correct.

Even though it is true that [R| = |2N

, this is not the hypothesis (it is a simple result of the binary expansion of real numbers!)

o The fourth option is exactly the converse of the statement.

4 Infinite Series

4.1 Question About Series in General.
(aside: series is an English word which is the same in both singular and plural form)

e The first option cannot be true because we know

y &°
n
nelN\{0}
converges.

e The second option cannot hold because we know that
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diverges.
e False again by penultimate example.

e The last option must hold then, which indeed it does.
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4.2 Question about } N (%
e Absolute convergence is when }_|a,| converges, which, this one doesn’t. But it does converge, and thus, not absolutely.

e Itis true that if we re-arrange the order of the series, it could be made to converge to any other number (Theorem 3.54 in Rudin).
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However, written as 3 |, e (o) [ this series has only one limit.

5 Intermediate Value Theorem

Let f: [a, b] — R be continuous. Then if u is a number between f (a) and f (b) then 3c € (a, b) : f(¢) = u.

6 Continuity

e Sequential continuity must hold for every sequence. (Theorem 4.2 in Rudin).



