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Abstract

We follow some examples from Spivak’s Calculus (4th edition), present a lemma from Munkres’ Topology (2nd edition) and show
another example of continuous extensions (for more on that see Rudin’s Principles of Mathematical Analysis chapter 4 exercise 5 (pp.
99)).

Some Examples for Continuity

r z€Q

e Define f : R — R by the followi le z — .
ne f A4 wing rule x {0 2 €R\Q

— Claim: f is continuous at 0.

Proof:
Let € > 0 be given.
We are looking for a neighborhood of 0, which we denote by & (¢) > 0, such that f (Bs) (0)) € B: (f (0)).
Translating this into more “readable” notation, that would mean that if x € R is such that |x| < 6 (¢) (meaning
7 € Byto) (0), then |f (z) — f (0)] < = (meaning f (x) € B. (f (0))).
Now we should start using the actual definition of f.
f(0)=0as0€Qandon Q, fis the identity function (sends z — z).
So our conditions are that there should be some § (¢) > 0 such that if © € R obeys |z| < § (¢) then |f (z)] <e.
So simply take § (¢) := . Why does this work?

- Divide to two cases:

1. If x € Q then f (z) = x and then since |z| < § (¢), of course |f (z)] < €.
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2. If z € R\Q, then f (z) = 0 and then no matter what 4 (¢) Was‘clhosen to be, |0] < e.
|
— Claim: f is not continuous at x for all z € R\ {0}.
Proof:
* Let some = € R\ {0} be given.
* We need to find some £y > 0 such that no matter which ¢ > 0 we pick, there will always be a point y € Bs (z) which

has f (y) ¢ Be, (f (z)).
x Case 1: If z € Q,
- then f(2) = z and then simply take o := 3 |z].
- No matter how close we get to « (how small 6 > 0 we pick), that interval around x will always contain some irrational

point y € B; (x )\Q That irrational point is then arbitrarily close to x, however, its image is 0, and 0 is too far
away to be in By, (z) [draw picture of the line].

x Case 2: If z ¢ Q,
- Then f (z) = 0. Take again & := 3 |x].
- Then let § > 0 be given (we need to show this breaks down for every ¢ > 0).
- So we can always find some rational y € By, (14, 5) (x) N Q which is sufficiently close to x, and then we will have
|z — y| < % |z| which implies ||| — |y|| < § |z| which implies |y| > 3 |z|.
Then £ (@) = £ (9)] = If ()] = Iy] > 4[| > }al = <o
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— Claim: f is continuous at z for all x € R\Q.
Proof: homework.

— Claim: f is not continuous at x for all x € Q.
Proof: homework.

e Claim: 3f € R® such that f is not continuous at x for all z € R yet |f| (viewed as a new function R — R by the rule z ~ |f ()]
for all 2 € R) is continuous for all z € R.
Proof: homework.

e Claim: f:C — C defined by z — 27 is continuous at z for all z € C.
Proof:
— Pick some z € C.
— Let € > 0 be given.
— Take § (¢, 2) := je.
— Then 2’ € By, . (2) implies |z — 2'| < d (¢, 2).
——

— Then

If(2) = f()] = |22—27|

= 2|E—z/
= 2|z—7|
= 2|z—7|
< 215
-2

so we are in business.

2 Continuous Extensions

e See example from Recitation session of week 8 about continuous extensions.

3 The Pasting Lemma
3.1 A Reminder

e Recall that in the most general definition (the one that transcends metric spaces and with which you shall graduate your degree!)
f: X — Y is continuous iff f~1 (V) € Open (X) for all V € Open (Y).

e Recall that Closed (X)={F C X | X\F € Open (X) }.

3.2 Subspace Topology

e Whatever Open (X) was defined as (we have defined it only for metric spaces. There is a more general definition, which is called
a topology), given some A C X, we may define Open (A) as:

Open(A) :={UCA|3Ve€Open(X)ANU=VNA}
This is called the “subspace topology”.

3.3 The Actual Pasting Lemma

e Let X and Y be a metric spaces.

Let (A, B) € Closed (X)? and assume further that X = AU B.

Assume that we have two functions f: A Y andg: B— Y.

Assume that f (z) = g (z)Vz € AN B.
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() B (if z € AN B then we have no ambiguity by assumption).
glr) ¢

e Define a new function, h: X — Y by x A {

e Claim: If both f and g are continuous then A is continuous.
Proof

— Claim: h: X — Y is continuous iff VF € Closed (Y), h=! (F) € Closed (X).
Proof:
* Assume that h is continuous.
- Let F' € Closed (Y) be given.
- Then Y\F € Open (Y).
- By the continuity of h we have that h=! (Y\F) € Open (X).
- However, as we know, the inverse image respects complements, and so h=* (Y\F) = h=1 (V) \h~! (F).
. But b1 (Y) = X.
- Thus we have that X\h™! (F) € Open (X), which implies h=! (F) € Closed (X) as desired.
* Assume that VF € Closed (Y), h™! (F) € Closed (X).
- Let U € Open (Y) be given.
- Then Y\U € Closed (Y).
- Then by the assumption, A= (Y\U) € Closed (X).
- But as we’ve seen that means that X\h=! (U) € Closed (X), or h~1 (U) € Open (X) and so h is continuous.
— Let F € Closed (Y') be given.
— Claim: h=Y(F) = f~Y(F)ug~1 (F).
Proof:
.
- Let € h=! (F) be given.
- That implies that h (z) € F.
- Case 1: © € A\B. Then h(z) = f (z) and so we have that f (z) € F. This in turn implies that z € f~! (F).
- Case 2: € B\ A. The same logic implies that z € g=* (F).
- Case 3: x € AN B. Then h(z) = f(x) = g(x) and then f(z) € F and g(x) € F which implies that x €
fHE) ™).
- In either case, we have that z € f~' (F)Ug~! (F).
.
- Let w € [f~1 (F)Ug™" (F)] be given.
- Case 1: x € A\B. Then either f (z) € F or g(x) € F.
1. If f(z) € F, then due to x € A we have f () = h(x) and so h (z) € F and so z € h~! (F).
2. If g (z) € F, then due to x € A, we must have that x € AN B and so again h(z) € F or x € h™* (F).

1. The other cases follow similarly.
— Because f and g are continuous, and F € Closed (Y), f~ (F) € Closed (A) and g~ (F) € Closed (B).

— Claim: If A € Closed (X) and F € Closed (A) then F € Closed (X).
Proof:

X

*x A € Closed (X) implies that X\ A € Open (X).



x F € Closed (A) implies that A\F € Open (A).
* But A\F € Open (A) implies that A\F = U N A for some U € Open (X).
x But due to F' C A C X and the fact that unions of open sets are again open, we have:

X\F = (A\F) U (X\A)
(U N A) U (X\A)

FWLQ2@ (x\ Ay uU)n | (X\A)UA
X
- (X\4) U U
€0pen(Xx) €O0pen(X)
€ Open (X)

* That is, X\F € Open (X).
*x Thus F € Closed (X).
— As a result, we have f~! (F) € Closed (X) and g~ (F) € Closed (X).
— But then finite union of closed sets is again closed, that is, [f~! (F)Ug~! (F)] € Closed (X) or h™! (F) € Closed (X).

— Because F' € Closed (X) was arbitrary, we conclude that h is continuous as it fulfills our (new) criteria for continuity.

e Claim: If h as given above is continuous then so are f and g.
Proof:
— First we prove an auxiliary result:
— Claim: Let o : X — Y be continuous and let A C X. Then the new function «a|, defined as a|, : A — Y by the rule
z Mo (x) for all x € A is continuous.
Proof:
* Claim: o|, ' (U)=a'(U)NAforallU CY.
Proof: homework.
* Let U € Open (Y') be given.
* Then af, ' (U)=a 1 (U)N A.
* By the definition of Open(A) = {UC A |3V € Open (X)ANU =V N A} and the continuity of a (which implies
a1 (U) € Open (X)) we have that a|, ~' (U) € Open (A).

— Because f = h|, and g = h|g it follows immediately that f and g are continuous.



