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Abstract

We follow some examples from Spivak’s Calculus (4th edition), present a lemma from Munkres’ Topology (2nd edition) and show
another example of continuous extensions (for more on that see Rudin’s Principles of Mathematical Analysis chapter 4 exercise 5 (pp.
99)).

1 Some Examples for Continuity

• Define f : R → R by the following rule x 7→

{
x x ∈ Q
0 x ∈ R\Q

.

– Claim: f is continuous at 0.
Proof :

∗ Let ε > 0 be given.
∗ We are looking for a neighborhood of 0, which we denote by δ (ε) > 0, such that f

(
Bδ(ε) (0)

)
⊆ Bε (f (0)).

∗ Translating this into more “readable” notation, that would mean that if x ∈ R is such that |x| < δ (ε) (meaning
x ∈ Bδ(ε) (0)), then |f (x)− f (0)| < ε (meaning f (x) ∈ Bε (f (0))).

∗ Now we should start using the actual definition of f .
∗ f (0) = 0 as 0 ∈ Q and on Q, f is the identity function (sends x 7→ x).
∗ So our conditions are that there should be some δ (ε) > 0 such that if x ∈ R obeys |x| < δ (ε) then |f (x)| < ε.
∗ So simply take δ (ε) := ε. Why does this work?

· Divide to two cases:
1. If x ∈ Q then f (x) = x and then since |x| < δ (ε)︸︷︷︸

ε

, of course |f (x)|︸ ︷︷ ︸
|x|

< ε.

2. If x ∈ R\Q, then f (x) = 0 and then no matter what δ (ε) was chosen to be, |0| < ε.
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– Claim: f is not continuous at x for all x ∈ R\ {0}.
Proof :

∗ Let some x ∈ R\ {0} be given.
∗ We need to find some ε0 > 0 such that no matter which δ > 0 we pick, there will always be a point y ∈ Bδ (x) which

has f (y) /∈ Bε0 (f (x)).
∗ Case 1: If x ∈ Q,

· then f (x) = x and then simply take ε0 := 1
2 |x|.

· No matter how close we get to x (how small δ > 0 we pick), that interval around x will always contain some irrational
point y ∈ Bδ (x) \Q. That irrational point is then arbitrarily close to x, however, its image is 0, and 0 is too far
away to be in B 1

2 |x|
(x) [draw picture of the line].

∗ Case 2: If x /∈ Q,
· Then f (x) = 0. Take again ε0 := 1

2 |x|.
· Then let δ > 0 be given (we need to show this breaks down for every δ > 0).
· So we can always find some rational y ∈ Bmin

(
1
4 |x|, δ

) (x) ∩Q which is sufficiently close to x, and then we will have
|x− y| < 1

4 |x| which implies ||x| − |y|| < 1
4 |x| which implies |y| > 3

4 |x|.
· Then |f (x)− f (y)| = |f (y)| = |y| > 3

4 |x| >
1
2 |x| = ε0.
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• Define f : R → R by the rule x 7→

{
0 x ∈ R\Q
1
q x = p

q ∧ p ∈ Z ∧ q ∈ N\ {0} ∧ gcd (p, q) = 1
.

– Claim: f is continuous at x for all x ∈ R\Q.
Proof : homework.

– Claim: f is not continuous at x for all x ∈ Q.
Proof : homework.

• Claim: ∃f ∈ RR such that f is not continuous at x for all x ∈ R yet |f | (viewed as a new function R → R by the rule x 7→ |f (x)|
for all x ∈ R) is continuous for all x ∈ R.
Proof : homework.

• Claim: f : C → C defined by z 7→ 2z is continuous at z for all z ∈ C.
Proof :

– Pick some z ∈ C.

– Let ε > 0 be given.

– Take δ (ε, z) := 1
2ε.

– Then z′ ∈ Bδ(ε, z) (z) implies |z − z′| < δ (ε, z)︸ ︷︷ ︸
1
2 ε

.

– Then

|f (z)− f (z′)| =
∣∣2z − 2z′

∣∣
= 2

∣∣z − z′
∣∣

= 2
∣∣z − z′

∣∣
= 2 |z − z′|

≤ 2
1

2
ε

so we are in business.
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2 Continuous Extensions
• See example from Recitation session of week 8 about continuous extensions.

3 The Pasting Lemma

3.1 A Reminder
• Recall that in the most general definition (the one that transcends metric spaces and with which you shall graduate your degree!)

f : X → Y is continuous iff f−1 (V ) ∈ Open (X) for all V ∈ Open (Y ).

• Recall that Closed (X) ≡ { F ⊆ X | X\F ∈ Open (X) }.

3.2 Subspace Topology
• Whatever Open (X) was defined as (we have defined it only for metric spaces. There is a more general definition, which is called

a topology), given some A ⊆ X, we may define Open (A) as:

Open (A) := { U ⊆ A | ∃V ∈ Open (X) ∧ U = V ∩A }

This is called the “subspace topology”.

3.3 The Actual Pasting Lemma
• Let X and Y be a metric spaces.

• Let (A, B) ∈ Closed (X)
2 and assume further that X = A ∪B.

• Assume that we have two functions f : A → Y and g : B → Y .

• Assume that f (x) = g (x)∀x ∈ A ∩B.
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• Define a new function, h : X → Y by x
h7→

{
f (x) x ∈ A

g (x) x ∈ B
(if x ∈ A ∩B then we have no ambiguity by assumption).

• Claim: If both f and g are continuous then h is continuous.
Proof :

– Claim: h : X → Y is continuous iff ∀F ∈ Closed (Y ), h−1 (F ) ∈ Closed (X).
Proof :

∗ Assume that h is continuous.
· Let F ∈ Closed (Y ) be given.
· Then Y \F ∈ Open (Y ).
· By the continuity of h we have that h−1 (Y \F ) ∈ Open (X).
· However, as we know, the inverse image respects complements, and so h−1 (Y \F ) = h−1 (Y ) \h−1 (F ).
· But h−1 (Y ) = X.
· Thus we have that X\h−1 (F ) ∈ Open (X), which implies h−1 (F ) ∈ Closed (X) as desired.

∗ Assume that ∀F ∈ Closed (Y ), h−1 (F ) ∈ Closed (X).
· Let U ∈ Open (Y ) be given.
· Then Y \U ∈ Closed (Y ).
· Then by the assumption, h−1 (Y \U) ∈ Closed (X).
· But as we’ve seen that means that X\h−1 (U) ∈ Closed (X), or h−1 (U) ∈ Open (X) and so h is continuous.

– Let F ∈ Closed (Y ) be given.

– Claim: h−1 (F ) = f−1 (F ) ∪ g−1 (F ).
Proof :

∗ ⊆
· Let x ∈ h−1 (F ) be given.
· That implies that h (x) ∈ F .
· Case 1: x ∈ A\B. Then h (x) = f (x) and so we have that f (x) ∈ F . This in turn implies that x ∈ f−1 (F ).
· Case 2: x ∈ B\A. The same logic implies that x ∈ g−1 (F ).
· Case 3: x ∈ A ∩ B. Then h (x) = f (x) = g (x) and then f (x) ∈ F and g (x) ∈ F which implies that x ∈
f−1 (F ) ∩ g−1 (F ).

· In either case, we have that x ∈ f−1 (F ) ∪ g−1 (F ).
∗ ⊇

· Let x ∈
[
f−1 (F ) ∪ g−1 (F )

]
be given.

· Case 1: x ∈ A\B. Then either f (x) ∈ F or g (x) ∈ F .
1. If f (x) ∈ F , then due to x ∈ A we have f (x) = h (x) and so h (x) ∈ F and so x ∈ h−1 (F ).
2. If g (x) ∈ F , then due to x ∈ A, we must have that x ∈ A ∩B and so again h (x) ∈ F or x ∈ h−1 (F ).

1. The other cases follow similarly.

– Because f and g are continuous, and F ∈ Closed (Y ), f−1 (F ) ∈ Closed (A) and g−1 (F ) ∈ Closed (B).

– Claim: If A ∈ Closed (X) and F ∈ Closed (A) then F ∈ Closed (X).
Proof :

∗ A ∈ Closed (X) implies that X\A ∈ Open (X).
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∗ F ∈ Closed (A) implies that A\F ∈ Open (A).
∗ But A\F ∈ Open (A) implies that A\F = U ∩A for some U ∈ Open (X).
∗ But due to F ⊆ A ⊆ X and the fact that unions of open sets are again open, we have:

X\F = (A\F ) ∪ (X\A)

= (U ∩A) ∪ (X\A)

HW1Q2(d)
= ((X\A) ∪ U) ∩

(X\A) ∪A︸ ︷︷ ︸
X


= (X\A)︸ ︷︷ ︸

∈Open(X)

∪ U︸︷︷︸
∈Open(X)

∈ Open (X)

∗ That is, X\F ∈ Open (X).
∗ Thus F ∈ Closed (X).

– As a result, we have f−1 (F ) ∈ Closed (X) and g−1 (F ) ∈ Closed (X).

– But then finite union of closed sets is again closed, that is,
[
f−1 (F ) ∪ g−1 (F )

]
∈ Closed (X) or h−1 (F ) ∈ Closed (X).

– Because F ∈ Closed (X) was arbitrary, we conclude that h is continuous as it fulfills our (new) criteria for continuity.

�

• Claim: If h as given above is continuous then so are f and g.
Proof :

– First we prove an auxiliary result:

– Claim: Let α : X → Y be continuous and let A ⊆ X. Then the new function α|A defined as α|A : A → Y by the rule

x
α|A7→ α (x) for all x ∈ A is continuous.

Proof :

∗ Claim: α|A −1 (U) = a−1 (U) ∩A for all U ⊆ Y .
Proof : homework.

∗ Let U ∈ Open (Y ) be given.
∗ Then α|A −1 (U) = α−1 (U) ∩A.
∗ By the definition of Open (A) ≡ { U ⊆ A | ∃V ∈ Open (X) ∧ U = V ∩A } and the continuity of α (which implies
α−1 (U) ∈ Open (X)) we have that α|A −1 (U) ∈ Open (A).

– Because f = h|A and g = h|B it follows immediately that f and g are continuous.
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