1 Exercise Sheet Number 8

1.1 Question 1

- Let $s \in \mathbb{Q}$ be given.

Claim: The map $f : (0, \infty) \to \mathbb{R}$ given by $x \mapsto x^s$ is continuous.

Proof:

- Note: You *may not* use the fact that if f and g are continuous then so is their multiplication map, because $s \in \mathbb{Q}$ and not necessarily in \mathbb{Z}, so you may not write $x^s = x \cdot x \cdot \cdots \cdot x$ s-times.

- So we know the map is continuous for $s \in \mathbb{Z}$ so assume $s \not\in \mathbb{Z}$ and write $s = \frac{p}{q}$ where $\gcd(p, q) = 1, p \in \mathbb{Z}$ and $q \in \mathbb{N} \setminus \{0\}$.

- We can write $x^\frac{p}{q} = \left(x^\frac{1}{q}\right)^p$, and again, we know that $x \mapsto x^p$ is continuous when $p \in \mathbb{Z}$, so WLOG we may assume that $p = 1$ (using the fact that composition of continuous functions is continuous).

- Thus our goal is reduced to prove that $x \mapsto x^\frac{1}{q}$ where $q \in \mathbb{N} \setminus \{0\}$ is continuous at x for all $x \neq 0$.

- So let $\varepsilon > 0$ be given and let some $x_0 \in (0, \infty)$ be given.

- Take $\delta(x_0, \varepsilon) := \varepsilon \left| x_0^{\frac{1}{q}-1} \right|$.

- Then if $|x - x_0| < \varepsilon \left| x_0^{\frac{1}{q}-1} \right|$, we have

$$|x^\frac{1}{q} - x_0^\frac{1}{q}| = \left| \frac{x - x_0}{x^{\frac{1}{q}-1} + x^{\frac{1}{q}-2}x_0 + \cdots + x_0^{\frac{1}{q}-2} + x_0^{\frac{1}{q}-1}} \right| \leq \varepsilon \left| x_0^{\frac{1}{q}-1} \right| \leq \varepsilon.$$

- Part (b): **Claim:** $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ has continuous extension on the whole of \mathbb{C} when $s < 1$.

Proof:

- In order to have an analytic extension, we need this new function $F : \mathbb{C} \to \mathbb{C}$ to obey the following two conditions:

 1. F has to be continuous on the whole of \mathbb{C}.
 2. F has to agree with f for the domain of f, $\mathbb{C} \setminus \{0\}$.

 1. Thus define $F : \mathbb{C} \to \mathbb{C}$ as $z \mapsto \begin{cases} f(z) & z \in \mathbb{C} \setminus \{0\} \\ w & z = 0 \end{cases}$.

 2. The only question that remains is what should this $w \in \mathbb{C}$ be, and the way to find out, is to demand that F is continuous at 0.

 3. For functions $\mathbb{C} \to \mathbb{C}$, continuity is equivalent to sequential continuity, so that we may just as well demand that $\lim_{z \to 0} F(z) = \lim_{z \to 0} f(z)$.

 4. But $\lim_{z \to 0} F(z) = \lim_{z \to 0} f(z)$ because F and f agree for all $z \neq 0$.
5. Thus we need to compute \(\lim_{z \to 0} f(z) \).

6. If this limit exists then it should not depend on how we approach zero (theorem 4.2 in Rudin). In particular, we may approach zero via the real axis:

\[
\lim_{z \to 0} f(z) = \lim_{R \to 0} \frac{R}{|R|} = \lim_{R \to 0} R^{1-s}
\]

\(s > 1 \) is continuous

\[
\left(\lim_{R \to 0} R \right)^{1-s} = 0^{1-s} = 0
\]

where \(R \in (0, \infty) \)

7. Hence the limit exists, and thus if we define \(w = 0 \) then \(F \) is indeed continuous at 0 and we are set.

\[\blacksquare \]

- This couldn’t have worked for \(s \geq 1 \) because then the limit \(\lim_{z \to 0} f(z) \) either diverges or does not exist.

1.2 Question 2

- **Claim:** \(f: \mathbb{C} \setminus \mathbb{Z} \to \mathbb{C} \) defined by \(z \mapsto \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2} \) is continuous and \(f(z) = f(z+1) \).

Note: There is an identity saying that \(\pi \cot (\pi z) = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2} \) but you are not supposed to know that.

Proof:

- Define the partial sums \(f_N(z) := \frac{1}{z} + \sum_{n=1}^{N} \frac{2z}{z^2 - n^2} \) for all \(N \in \mathbb{N} \).
- Define

\[
M_N := \sup \left\{ \left| f_N(z) - f(z) \right| \mid z \in \mathbb{C} \setminus \mathbb{Z} \right\}
\]

\[
= \sup \left\{ \left| \frac{1}{z} + \sum_{n=1}^{N} \frac{2z}{z^2 - n^2} - \pi \cot (\pi z) \right| \mid z \in \mathbb{C} \setminus \mathbb{Z} \right\}
\]

- We know that \(f_N \to f \) uniformly on \(\mathbb{C} \setminus \mathbb{Z} \) if and only if \(M_N \to 0 \) as \(N \to \infty \) (theorem 7.9 in Rudin).
- But \(M_N = \infty \) clearly, so that it does not converge to zero!
- Thus \(f_N \) cannot converge uniformly to \(f \), and we may not use uniform convergence to conclude continuity of \(f \).
- Instead, what you should have done is tried to prove uniform continuity on some subset of \(\mathbb{C} \setminus \mathbb{Z} \).
- Let \(z \in \mathbb{C} \setminus \mathbb{Z} \) be given, and pick some \(\varepsilon > 0 \) so that \(B_{\varepsilon}(z) = \{ \omega \in \mathbb{C} \mid |z - \omega| \leq \varepsilon \} \subseteq \mathbb{C} \setminus \mathbb{Z} \).
 - This is possible because \((\mathbb{C} \setminus \mathbb{Z}) \in \text{Open} (\mathbb{C}) \) (because \(\mathbb{Z} \in \text{Closed} (\mathbb{C}) \) (because a singleton \(\{ z_0 \} \in \text{Closed} (\mathbb{C}) \) for all \(z_0 \in \mathbb{C} \) and \(\mathbb{Z} \) is a union of closed such singletons)).

 - **Claim:** \(f_N|_{B_{\varepsilon}(z)} \to f|_{B_{\varepsilon}(z)} \) uniformly.

Proof:

- Choose \(N_1 \in \mathbb{N} \) so that \(2(|z| + \varepsilon) \leq N_1 \). Then for all \(N > N_1 \) we have

\[
M_N := \sup \left\{ \left| f_N|_{B_{\varepsilon}(z)}(w) - f|_{B_{\varepsilon}(z)}(w) \right| \mid w \in B_{\varepsilon}(z) \right\}
\]

\[
= \sup \left\{ \left| \sum_{n=N+1}^{\infty} \frac{2w}{w^2 - n^2} \right| \mid w \in B_{\varepsilon}(z) \right\}
\]

\[
\leq \sup \left\{ \left| \sum_{n=N+1}^{\infty} \frac{2w}{w^2 - n^2} \right| \mid w \in B_{\varepsilon}(z) \right\}
\]

\[
= \sup \left\{ \left| 2 \frac{|z| + \varepsilon}{n^2} \sum_{n=N+1}^{\infty} \frac{1}{n^2} \right| \mid w \in B_{\varepsilon}(z) \right\}
\]

\[
\leq \sup \left\{ \left| 2 \frac{|z| + \varepsilon}{n^2} \sum_{n=N+1}^{\infty} \frac{1}{n^2} \right| \mid w \in B_{\varepsilon}(z) \right\}
\]

\[
\to 0
\]
1.3 Question 3

- Let A be some countable subset of \mathbb{R}, and let $\sum_{n=1}^{\infty} s_n$ be an absolutely convergent series of real numbers.

- Define $f(x) := \sum_{n=1}^{\infty} s_n \text{sign} (x - a_n)$ where

\[
\text{sign}(x) \equiv \begin{cases}
1 & x > 0 \\
0 & x = 0 \\
-1 & x < 0
\end{cases}
\]

- **Claim:** The partial sums $f_N = \sum_{n=1}^{N} s_n \text{sign} (x - a_n)$ converge uniformly to f.

 Proof:

 - Use the Weierstrass M test with $M_n \equiv s_n$.

- **Claim:** f is continuous on $\mathbb{R} \setminus A$.

 Proof:

 - Follows from uniform convergence.

- **Claim:** $\lim_{\varepsilon \to 0} f (a_n + \varepsilon) - \lim_{\varepsilon \to 0} f (a_n - \varepsilon) = 2s_n$.

 Proof:

 - Make the calculation

\[
\lim_{\varepsilon \to 0} f (a_n + \varepsilon) = \lim_{\varepsilon \to 0} \lim_{N \to \infty} f_N (a_n + \varepsilon) = \lim_{\varepsilon \to 0} \lim_{N \to \infty} \sum_{j=1}^{N} s_j \text{sign} (a_n + \varepsilon - a_j) = \lim_{\varepsilon \to 0} \lim_{N \to \infty} \left(s_n \text{sign} (\varepsilon) + \sum_{j=1}^{N} s_j \text{sign} (a_n + \varepsilon - a_j) \right) = s_n + \lim_{\varepsilon \to 0} \lim_{N \to \infty} \sum_{j=1}^{N} s_j \text{sign} (a_n + \varepsilon - a_j)
\]

 - In a very similar fashion we can calculate that $\lim_{\varepsilon \to 0} f (a_n - \varepsilon) = -s_n + P$.

 - Still need to show that P exists to make this rigorous. Have a look in the official solutions for details.

- **Claim:** If $s_n > 0$ for all $n \in \mathbb{N}$ then f is monotonically increasing.

 Proof:

 - The function $x \mapsto s_n \text{sign} (x - a_n)$ is monotonically increasing for any n (homework).

 - The sum of monotone increasing functions is monotone increasing.

 - Due to $a_n \leq b_n \implies \lim a_n \leq \lim b_n$ we have that f is monotonically increasing.

1.4 Question 4

- Almost everyone did it well. Just remember that you must define the domain of a function whenever you are defining a function.

1.5 Question 5

- Let X and Y be metric spaces, and let $(A_j)_{j=0}^{n-1} \subseteq \text{Closed} (X)$ for some $n \in \mathbb{N}$. Define $A := \bigcup_{j=0}^{n-1} A_j$.

- Part (a) **Claim:** $f : A \to Y$ is continuous if and only if $f|_{A_i} : A_i \to Y$ is continuous for all $i \in \mathbb{Z}_n$.

 Proof:

\[
\implies
\]

* Let $i \in \mathbb{Z}_n$.
* We know that \(f : A \to Y \) is continuous. Thus, \(\forall x \in A, \forall \varepsilon > 0 \exists \delta f (\varepsilon, x) > 0 \) such that if \(\tilde{x} \in B_{\delta f (\varepsilon, x)} (x) \) then \(f (\tilde{x}) \in B_{\varepsilon} (f (x)) \).

* Let \(\varepsilon > 0 \) be given, and let \(x \in A_i \) be given.

 * Take \(\delta f \lvert_{A_i} (x, \varepsilon) := \delta f (x, \varepsilon) \).

 * Then if \(\tilde{x} \in B_{\delta f \lvert_{A_i} (x, \varepsilon)} (x) \cap A_i \) then \(f (\tilde{x}) \in B_{\varepsilon} (f (x)) \) which implies \(f \lvert_{A_i} (\tilde{x}) \in B_{\varepsilon} (f \lvert_{A_i} (x)) \) because both \(x \) and \(\tilde{x} \) lie in \(A_i \).

\[\begin{align*}
\text{Let } x & \in A \text{ and some } \varepsilon > 0 \text{ be given.} \\
\text{Define } I & := \{ i \in \mathbb{Z}_n \mid x \in A_i \}. \\
\text{Define } f \lvert_{A_i} & \text{ is continuous at } x \text{ for all } i \in I. \\
\text{Then if } \tilde{x} & \in B_{\delta f \lvert_{A_i} (x, \varepsilon)} (x) \cap A_i \text{ then } f \lvert_{A_i} (\tilde{x}) \in B_{\varepsilon} (f \lvert_{A_i} (x)) \text{ for all } i \in I \text{ (there exist such } \delta f \lvert_{A_i} (x, \varepsilon)). \\
\text{From this it follows that if } \tilde{x} & \in B_{\delta f \lvert_{A_i} (x, \varepsilon)} (x) \cap A_i \text{ then } f (\tilde{x}) \in B_{\varepsilon} (f (x)) \text{ for all } i \in I \text{ (there exist such } \delta f \lvert_{A_i} (x, \varepsilon)).
\end{align*} \]

* Define \(\tilde{\delta} (x, \varepsilon) := \min \left(\left\{ \delta f \lvert_{A_i} (x, \varepsilon) \mid i \in I \right\} \right) \).

* Then if \(\tilde{x} \in B_{\tilde{\delta} (x, \varepsilon)} (x) \cap (\bigcup_{i \in I} A_i) \) then \(f (\tilde{x}) \in B_{\varepsilon} (f (x)) \).

* Define \(J := \mathbb{Z}_n \setminus I \).

* Define \(C := \bigcup_{i \in J} A_i \).

* Claim: \(C \in \text{Closed} (X) \).

 * \(C \) is a finite union of closed subsets of \(X \). The property of being closed is “closed” under finite unions.

* Claim: \(x \notin C \).

 * \text{Proof:}

 * Thus \((X \setminus C) \in \text{Open} (X) \) such that \(x \in (X \setminus C) \).

 * Thus, \(\exists \tilde{\delta} (x, \varepsilon) > 0 \) such that \(B_{\tilde{\delta} (x, \varepsilon)} (x) \subseteq (X \setminus C) \).

 * Thus, \(B_{\tilde{\delta} (x, \varepsilon)} (x) \cap C = \emptyset \).

 * Define \(\delta (x, \varepsilon) := \min \left(\left\{ \tilde{\delta} (x, \varepsilon), \tilde{\delta} (x, \varepsilon) \right\} \right) \).

 * Thus if \(\tilde{x} \in B_{\delta (x, \varepsilon)} (x) \), then \(\tilde{x} \notin C \) and so \(\tilde{x} \in \bigcup_{i \in I} A_i \), and \(x \in B_{\delta (x, \varepsilon)} (x) \) so that we may conclude \(f (\tilde{x}) \in B_{\varepsilon} (f (x)) \).

 * For part (b):

 - Define \(A_0 = [0, \infty) \) and \(A_1 = (-\infty, 0) \), and define \(f \lvert_{A_0} := (x \mapsto 1) \) and \(f \lvert_{A_1} := (x \mapsto 0) \). Then define \(f : \mathbb{R} \to \mathbb{R} \) as in (a), where \(A_0 \cup A_1 = \mathbb{R} \).

 - Because the restrictions \(f \lvert_{A_0} \) and \(f \lvert_{A_1} \) are constant they are continuous, yet, \(f \) is not continuous at 0.4

1.6 Question 6

* This was largely covered in the colloquium on the Cantor set. You may read the summary of that colloquium and also the official solutions to the exercises.

2 Exercise Sheet Number 10

2.1 Differentiation

Let \(f : [a, b] \to \mathbb{R} \) be a function. Then for any \(x \in [a, b] \) define

\[
 f' (x) \equiv \lim_{{t \to x}} \frac{{f(t) - f(x)}}{{t - x}}
\]

if the limit exists.

* If the limit exists, we say that \(f \) is differentiable at \(x \), and that \(f' \) is its derivative at \(x \).

* Claim: If \(f \) is differentiable at \(x \in [a, b] \) then \(f \) is continuous at \(x \).

 * \text{Proof:}

limit characterization of continuity:
\[
\lim_{t \to x} f(t) = \lim_{t \to x} [f(t) - f(x) + f(x)] \\
= \lim_{t \to x} \left[\frac{f(t) - f(x)}{t - x} (t - x) + f(x) \right] \\
= \lim_{t \to x} \left[\frac{f(t) - f(x)}{t - x} (t - x) \right] + f(x) \\
= \left[\lim_{t \to x} \frac{f(t) - f(x)}{t - x} \right] \left[\lim_{t \to x} (t - x) \right] + f(x) \\
= f'(x) \cdot 0 + f(x) \\
= f(x)
\]

- The converse of this theorem is false! (Think about \(x \to |x| \) at 0).
- Example: Define \(f: \mathbb{R} \to \mathbb{R} \) by \(x \mapsto x^2 \). Then

\[
f'(x) = \lim_{t \to x} \frac{t^2 - x^2}{t - x} \\
= \lim_{t \to x} (t + x) \\
= 2x
\]

2.2 Concrete Tips for the Homework Exercises

2.2.1 Question 1
- for part (a) use the binomial formula on \([\cos(x)]^n = \left[e^{ix} + e^{-ix} \right]^n\)
- For part (b) use
 1. induction
 2. the identity \(\cos((n+1)x) = 2\cos(nx)\cos(x) + \cos((n-1)x) \) (which you can verify easily).

2.2.2 Question 2
- Calculate \(\lim_{x \to \pm \pi/2} \tan(x) \) (from above or from below, depending on whether the plus or minus signs are chosen).
- Use the intermediate value theorem.

2.2.3 Question 3
- Use induction together with:
 1. the “ordinary” Leibniz rule.
 2. the fact that \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \)

2.2.4 Question 4
- May not use the intermediate value theorem, because \(f' \) is not necessarily continuous!

2.2.5 Question 5
- Define \(\forall k \in \mathbb{Z}_n \equiv \{ 0, \ldots, n-1 \} \ f_k(x) := \left[(1 - x^2)^n \right]^{(k)}. \)
- Then \(P_n(x) = \frac{1}{2^m} f_n(x). \)
- Show that \(f_k(-1) = 0 = f_k(1). \)
- For part (b):
 - Define \(f(x) := (x^2 - 1) p'(x) \) where \(p(x) := (x^2 - 1)^n. \)
 - Compute \(f^{(n+1)}(x) \) once with \(f(x) = (x^2 - 1) p'(x) \) and once with \(f(x) = 2nx p(x) \), and subtract the two equations you get.
 - Multiply by ... to get the desired equation.
 - Use question 3 (a).
2.2.6 Question 6

- Compute \(\lim_{x \to \pm \infty} f(x) \).
- Show that \(f'(x) > 0 \) for all \(x \).
- Compute \(f''(x) \) and conclude where \(f \) is concave and where it is convex.

2.2.7 Question 7

- For \(t = 0 \) you must compute the derivative by the actual definition.
- Show \(f' \) is not continuous at 0.
- Define \(t_k := \frac{1}{(2k+1)\pi} \) and show that \(\lim_{k \to \infty} t_k = 0 \) and \(f'(t_k) = 3 \) for all \(k \in \mathbb{N} \).