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1.1 Question 1

1.2 Question 2

• Be aware of the fact that <
(
a+ib
c+id

)
6= a

c ! In fact,

<

(
a+ ib

c+ id

)
= <

(
(a+ ib) (c− id)

c2 + d2

)
= <

(
ac+ bd+ i (bc− ad)

c2 + d2

)
=

ac+ bd

c2 + d2

6= a

c

and simiarly for =
(
a+ib
c+id

)
.

• So that we have

n∑
j=0

cos (jx) =

n∑
j=0

<
(
eijx

)

= <

 n∑
j=0

eijx


= <

 n∑
j=0

(
eix
)j

= <

(
1−

(
eix
)n+1

1− eix

)

= <

(
1−

(
eix
)n+1

1− eix
1− e−ix

1− e−ix

)

= <

(
1− ei(n+1)x − e−ix + einx

2− eix − e−ix

)

=
<
(
1− ei(n+1)x − e−ix + einx

)
2 (1− cos (x))

=
1− cos ((n+ 1) x) − cos (x) + cos (nx)

2 (1− cos (x))

1.3 Question 3

• Why can we exchange limit with series when proving limx→0
sin(x)

x = 1? Because the series of sin (x) =
∑∞

n=0 (−1)n x2n+1

(2n+1)!
converges uniformly. See theorem 7.11 in Rudin.
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1.4 Question 4

• Part (b):

• Assume K is compact.

• Assume f : K− > Y is not uniformly continuous.

• Claim: f is not continuous.
Proof :

– Using (a) define two new sequences an and bn such that dX(an,bn) < 1/n yet dY(f(an), f(bn)) >= ε0, for some ε0 and for
all n.

– Because K is compact, there is a subsequence A of an converging to a and there is a subsequence B of bn converging to b.

– Claim: a = b.
Proof :

∗ Follows from the fact that dX (an, bn) < 1
n .

– Assume f is continuous.

– Then f(an) → f(a) and f(bn) → f(a) in the correspodning subsequences.

– Thus, dY(f(an), f(bn)) 6 dY(f(an), f(a))+dY(f(a), f(bn)) can be made arbitrarily small, yet we know that dY(f(an), f(bn)) >
ε0, hence, a contradiction.

�

1.5 Question 5

• No balls or sequences necessary! The basic necessary facts are that A ∈ Closed (X) iff (X\A) ∈ Open (X) and the “axioms” of
topology (for metric spaces they are theorems, or rather, it is a theorem that the metric induces a bona fide topology).

• Let (X, d) be a metric space.

• Claim: ∅ ∈ Closed (X).
Proof :

– ∅ = X\X and X ∈ Open (X), so ∅ is the complement of an open set and as such it is closed.

• Claim: X ∈ Closed (X).
Proof :

– X = X\∅ and ∅ ∈ Open (X).

• Claim: If Ai ∈ Closed (X) for all i ∈ {1, . . . , n} for some n ∈ N then
(⋃n

i=1Ai

)
∈ Closed (X).

Proof :

– X\Ai ∈ Open (X) because Ai ∈ Closed (X).

– Thus using the fact that a topology is closed under finite intersections, we have
(⋂n

i=1 (X\Ai)
)
∈ Open (X).

– But using de Morgan’s laws, we have that
⋂n

i=1 (X\Ai) =
(
X\
(⋃n

i=1Ai

))
, which implies

(
X\
(⋃n

i=1Ai

))
∈ Open (X) or(⋃n

i=1Ai

)
∈ Closed (X).

• Claim: If Ai ∈ Closed (X) for all i ∈ I where I is an arbitrary indexing set, then
(⋂

i∈IAi

)
∈ Closed (X).

Proof :

– (X\Ai) ∈ Open (X) for all i ∈ I, so that
(⋃

i∈I (X\Ai)
)
∈ Open (X) because a topology is closed under arbitrary unions.

– But using de Morgan’s laws, we have that
⋃

i∈I (X\Ai) = X\
(⋂

i∈IAi

)
.

– Thus,
(
X\
(⋂

i∈IAi

))
∈ Open (X) or rather

(⋂
i∈IAi

)
∈ Closed (X) as desired.

• Observe that the Cantor set is closed because it is the arbitrary intersection of closed intervals.
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1.6 Question 6

• The point of this exercise is that open sets (which we naturally think of as open intervals can be not so simple. Yet we can always
decompose them in a simple way. If you want an example of a not-so-simple open set, think of [0, 1] \Cantor.

• Let U ∈ Open (R).

• Part (a): Claim: ∀x ∈ U∃ (ax, bx) ∈ ({−∞ }∪ (R\U))× ({∞ }∪ (R) \U) such that x ∈ (ax, bx) ⊆ U.
Proof :

– Define

{
aX := sup ((−∞, x) \U)

bx := inf ((x, ∞) \U)
with the convention that sup (∅) ≡ −∞ and inf (∅) ≡ ∞.

– Claim: ax < x < bx.
Proof :

∗ U ∈ Open (R), so ∃ε > 0 such that Bε (x) ⊆ U, where Bε (x) ≡ (x− ε, x+ ε).
∗ From this it follows that ((−∞, x) \U) ⊆ (−∞, x− ε) and that ((−∞, x) \U) ⊆ (x+ ε, ∞).
∗ But if A ⊆ B then sup (A) 6 sup (B) and inf (A) > inf (B).
∗ Thus sup ((−∞, x) \U)︸ ︷︷ ︸

ax

6 sup ((−∞, x− ε))︸ ︷︷ ︸
x−ε<x

, and similarly, bx > x+ ε > x.

– Claim: (ax, bx) ⊆ U.
Proof :

∗ Assume otherwise. Thus, ∃t ∈ (ax, bx) \U.
∗ But x ∈ U, so that t 6= x, that is, x < t or t < x.
∗ Case 1: t ∈ (ax, x).

· Recall that ax ≡ sup ((−∞, x) \U), so that we have a contradiction, as t ∈ (−∞, x) \U and ax < t, contradicting ax

being the supremum of that set.
∗ Case 2: t ∈ (x, bx).

· This contradicts bx being the infimum of (−∞, x) \U, as t ∈ (−∞, x) \U yet t < bx.

– Claim: ax ∈ ({−∞ }∪ (R\U)).
Proof :

∗ If ax = −∞ we are done.
∗ Otherwise, assume ax ∈ U.
∗ But U ∈ Open (R), so that ∃ε > 0 such that Bε (ax) ⊆ U.
∗ However, (−∞, x) \U ⊆ (−∞, ax − ε) as Bε (ax) ⊆ U.
∗ Thus we have that ax ≡ sup ((−∞, x) \U) 6 sup ((−∞, ax − ε)) = ax − ε < ax.
∗ In particular, ax 6= ax, which is a contradiction.

– Claim: bx ∈ ({∞ }∪ (R\U)).
Proof :

∗ Analogously to the preceding proof.

�

• Define Ix := (ax, bx) where ax and bx are as defined above, ∀x ∈ U.

• Claim: ∀ (x, y) ∈ U2, either Ix = Iy or Ix ∩ Iy = ∅.
Proof :

– Let (x, y) ∈ U2 be given.

– Claim: If y ∈ Ix then Ix ⊆ Iy.
Proof :

∗ Assume y ∈ Ix.
∗ Claim: ay 6 ax.
∗ Proof :

· Case 1: ax = −∞.

1. Because

 ax︸︷︷︸
−∞ , bx

 ⊆ U, we cannot find any element to the left of U which is larger than −∞.

2. But ay /∈ U and has to be to the left of it, so that necessarily ay = −∞.
· Case 2: ax > −∞.

1. Recall that ay ≡ inf ((−∞, y) \U) and clearly from y ∈ (ax, bx) we have ax > y, but ax /∈ U, so that ax ∈
(−∞, y) \U. As a result, ay 6 ax.

3



∗ Thus in either case ay 6 ax. Very similarly we can prove that bx 6 by.
∗ Thus, Ix ⊆ Iy.

– However, in the proof, x and y’s roles were symmetric. So we can apply the very same proof exchanging x and y to obtain
in addition that if x ∈ Iy then Iy ⊆ Ix.

– If Ix ∩ Iy = ∅ we are done.

– Otherwise, ∃z ∈ Ix ∩ Iy.

– Because Ix ⊆ U, z ∈ U and so we may apply the previous proof to obtain that Ix ⊆ Iz and Iy ⊆ Iz.

– Then (x, y) ∈ Iz
2.

– Applying the previous proof again we obtain that Iz ⊆ Ix and Iz ⊆ Iy.

– As a result, Ix = Iy.

�

• Claim: ∃A ⊆ U such that U =
⋃

x∈A Ix and |Ix| = |N|, and Ix ∩ Iy = ∅ for all (x, y) ∈ A2 such that x 6= y.
Proof :

– Define I := { Ix | x ∈ U }.

– It is then clear that
⋃
I = U because each element Ix ∈ I stems from some x ∈ U, and so we cover the whole of U (or even

more).

– We will construct a map g : I → B such that B ⊆ Q and g is a bijection. This will prove our claim together with the fact that
using the preceding proof, all the (distinct) elements in I are disjoint.

– Define Î := { I∩ Q | I ∈ I }. The elements of Î are not empty as every interval contains rational numbers.

– Define a map f : Î → Q by picking one element out of I∩ Q (this is possible due to the axiom of choice).

– Now define a map g : I → Q by g (I) := f (I∩ Q).

– Because f was defined to be a point inside of I∩ Q, we then have that g (I) ∈ I∩ Q.

– Claim: g is injective.
Proof :

∗ Assume otherwise. Then ∃ (I, I ′) ∈ I2 such that I 6= I ′ and g (I) = g (I ′). But g (I) ∈ I by definition, and so g (I ′) ∈ I. As
a result of the preceding proof we have that either I∩ I ′ = ∅ or I = I ′. But g (I) ∈ I∩ I ′ and so I∩ I ′ 6= ∅. In particular,
I = I ′. This is then a contradiction.

– Using the preceding proof, we have that I = Ig(I).

– Thus, for every I ∈ I, we may find some q ∈ im (g) such that I = Iq.

– But im (g) ⊆ Q, |im (g)| 6 |N|.

– In addition, we clearly have U =
⋃

q∈im(g) Iq because g is surjective onto im (g).

�

2 Exercise Sheet Number 11

2.1 The Hospital’s Rule

• Let (a, b) be a given interval in R, where we allow for either a = −∞ or b = ∞.

• Let (f, g) ∈ RR be two differentiable functions (at least in (a, b)) and assume further that 0 /∈ g ′ ((a, b)) and that limx→a

(
f ′(x)
g ′(x)

)
exists.

• Claim: If limx→a f (x) = 0 and limx→a g (x) = 0 or if limx→a g (x) = ±∞ then

lim
x→a

(
f (x)

g (x)

)
= lim

x→a

(
f ′ (x)

g ′ (x)

)
• The same claim is true in x → b case.

• Example:

– To compute limx→0
sin(x)

x , we note that limx→0
cos(x)

1 exists (it is 1) and that both nominator and denominator go to zero as
x → 0.

– Don’t always use it: limx→0
sin
(
x3
)

sin3(x)
= limx→0

sin
(
x3
)

sin3(x)
x3

x3 = limx→0

(
sin
(
x3
)

x3

)(
x

sin(x)

)3
= 1 · 13 = 1.

– Cannot apply it on limx→∞ x+sin(x)
x+cos(x) = ∞∞ because limx→∞ 1+cos(x)

1−sin(x) does not exist.
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2.2 Smooth Functions (Glatte Funktionen)

• Define C0 to be the subset of RR where each element is continuous.

• Define C1 to be the subset of RR where each element is differentiable (and is thus continuous) and has a continuous derivative.
That is, whose derivative is in C0. This is called continuously differentiable.

• Inductively then, for each k ∈ N\ {0}, a Ck function is a differentiable function whose derivative is in Ck−1.

• Clearly we have Ck ⊆ Ck−1 for all k ∈ N. There are examples that show in fact that Ck ( Ck−1.

• Smooth maps are maps in C∞.

• Examples:

– f (x) =

{
x x > 0

0 otherwise
is in C0 but not in C1.

– f (x) = |x|k+1 where k ∈ 2Z is continuous and k-times differentiable. At x = 0 they are not (k+ 1)-differentiable, so they are
in Ck but not in Cj for all j > k.

– exp (x) is in C∞.

– f (x) =

{
e
− 1

1−x2 |x| < 1

0 otherwise
is in C∞.

2.3 Taylor Series

• The Taylor series of f around the point a is given by (Theorem 8.4 in Rudin):

f (x+ a) =

∞∑
n=0

1

n!

(
f(n) (a)

)
(x− a)n

= f (a) + f ′ (a) (x− a) +
1

2
f ′′ (a) (x− a)2 + . . .

• Not all functions have such a power series representation, but if they do, the representation is unique and allows very convenient
manipulations and approximations.

• If you go only up to mth order in x, then the truncated polynomial is called the m-th Taylor polynomial of f.

2.4 A Few Tips

2.4.1 Question 5

• Use the fact that f (x) = 1
1−x =

∑∞
n=0 x

n with convergence radius 1.

• Look at theorem 7.17 in Rudin. In particular, if we have uniform convergence, and if the derivatives of the partial sums converge
uniformly as well, then we may differentiate term by term.

• Compute xf ′ (x).

• Compute xf ′ (x) + x2f ′′ (x).

• Plug in x = 1
2 in the above.
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