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1 Exercise Sheet Number 12
1.1 Question1
e Forall (f, g) € ([a, b]IR)Z define (f, g) = [°£(x) g (x) dx.

e Claim: C°([a, b], R) together with (-, -) defined above gives rise to a (real) inner product space.
Proof -

— Claim: C° ([a, b], R) is a (real) vector space.
Proof:

* Define ‘addition’ as amap (C° ([a, b], R))” — C°([a, b], R) by: V (f, g) € [C° ([a, b], IR)]Z, f+g=(x—f(x)+g(x)Vxela
This map is well defined because of the theorem that says that the sum of two continuous maps is again continuous.

* We must establish that this ‘addition’ operation endows C% ([a, b], R) with the structure of a commutative group:

- The identity element of the group is given by (x — 0Vx € [a, b]) € C° ([a, b], R) because constant maps are contin-
uous.

- The inverse element of f € C°([a, b], R) is (x — —f (x)¥x € [a, b]) € C° ([a, b], R) because multiplication of a map
by —1 leaves a continuous map continuous.

- Addition is associative due to associativity of addition in IR.

- Addition is commutative due to commutativity of addition in IR.

* Define ‘scalar multiplication’ as a map R x C°([a, b], R) — C°([a, b], R) by V (e, f) € R x C%([q, b], R), of :=
(x = af (x) Vx € [a, b]). This map is well defined because multiplication of a continuous map by a constant is again
continuous.

* We must to establish three properties of the two ’scalar multiplication” and "addition” maps:

1. (e, f, g) € R x [CO([a, b], IR)]Z, o (f+g) = of + ag indeed:
- Wx € [a, bl (f (x) +g(x)) = of (x) + g (x) because of distributivity in R.

2. ¥(a, B, f) e RZ2 x CO([a, b], R), (x+ B) f = af + Bf and («xB) f = ot (BF).
- Wx € [a, b] (e + B) f(x) = of (x) + BT (x), thanks to distributivity in IR.
- Vx € [a, b] () f(x) = a (Bf (x)) due to associtivity of multplication in R.

3. vf€ C%([a, b], R), 1f =f
- Indeed, as Vx € [a, b] 1f (x) = f (x).

- Now we need to establish that (-, -) is indeed an inner product. It is a map from [C° ([a, b], R)] ? _ R because the integral
produces a real number. It obeys the properties of the inner product. V (f, g) € C%(la, b], R),
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1. Symmetric:

(f, 9)

b
/ f(x) g (x) dx

ab
= /Q(X)f(X)dx
= (g, f)

2. Positive:




3. Zero iff zero vector:

0,0) = /b 0dx

= ()(1
and if (f, f) =0 then ff [f (x)]% dx = 0. Now suppose f2 is not identically zero. Then 3x, € [a, b] such that [f (xo)]* > 0.
Because f is continuous, 2 is also continuous. So Ve > 035 (¢) > 0 such that if |x — xo| < & (¢) then |[f (x)]? —[f (xo)}2 <e
for all x € [a, bl. Pick ¢ = J [f (xo)* > 0. Then [f (x))* > L [f (xo))* forall x € [xo — & (3 [f (xo)1?) , xo +5 (3 f (xo)1?) |.
Then a lower sum on a partition that contains the interval [xo ) (% [f (xo)]2> , X0+ (% [f (xo)}z)} is larger than or
equal to [f (xo)]2 ) (17 [f (xo)]z) > 0. But the lower sums become only larger as the partitions become finer (Theorem 6.4

in Rudin). As a result, f f [f (x)]2 dx > 0, which is a contradiction to the initial hypotheis that f f [f (x)]2 dx = 0.
4. Linearity in first slot:
Let («, B, h) € R? x [CO([a, b], ]R)]2 be given. Then we want to show that

(of +Bg, h) = o (f, h) + B (g, h)

which follows easily from Rudin’s Theorem 6.12:
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2 Holiday Exercise Sheet (Number 13)

2.1 Convex Functions
(question 5.23 in Rudin)
e Letfe (aq, b)IR be given.

e fis called convex iff

f(Ax+(1=A)y) <A (x)+(1-A)f(y)

forall (x, y, A) € (a, b)? x (0, 1).

o Claim: If f is convex then f is continuous.
Proof

1. Claim: ¥V (y, xo, x) € (q, b)? such that a < Yy < xo < x < b the following relation holds

Fixo) = f(y) _ T —f(y) _ F0)—f(xo)
X0o—Yy  X—y X=X

Proof:
— Define A := ’;0:1}'. Note that A € (0, 1) by definition.
— — — + p—
— Then1—A=1-— ’;"7;’ =X yX:;o Y — ’;:;0 and so
(1=A)(x—y) = x—x0
x—y—Alx—y) = x—Xo
—y—Alx—y) = —xo

xo = Mx+(1-A)y



— Thus we have

f(x0) = f(Ax+(1—=A)y)
convexivity
< Af(x) +(1—=2A)f(y)
_ Mf(x)+m”y}
X—y XxX—y
and so
(x=y)flxo) < (xo—y)f(x)+(x—x0)f(y)
(x—y)f(xo) —(x—y)fly) < (xo—y)fx)+(x—x0)fly)—(x—y)f(y)
(x—y)[f(xo) =f(y)l < (xo—y)I[f(x)—~(y)l
f(xo) —f(y) < f(x)—f(y)
X0~y h XxX—y
We also have
(x=y)flxo) < (xo—y)f(x)+(x—x0)f(y)
—(x=y)f(xo) = —(xo—y)f(x)—(x—x0)f(y)
(x—y)f(x)—(x—y)flxo) = x—y)f(x)—(xo—y)f(x)—(x—x0)f(y)
(x=y)[f(x) =f(x0)] = (x—x0)[f(x)—T(y)]
f(x)—1(y) < f(x) —f(xo)
X —y = X — X0

. Let (y, o, x0, B, x) € (a, b)° be given such thaty < « < xp < < x. Then by the preceding claim, we have that

flxo) =fly) _ flxo) =fla) _ F(B)—Flxo) _ F(x)—f(xo)
Xo—y  Xo—«  P—xo X=X

— fxo)—fly)
. Define {m )
M = X—X0
. Thus we have
< fxo) —fla) f(B)—T(xo) <M
X0 — & B—xo
or
fxo)—f(et)
{m< f(rsxo)"_f(fc ) =
> f(xo
m < B=xo <M

. For the first inequality, m < w <M, or

m(xo — «) < [f(xo) = f ()] <M (xp — o)

If m > 0and M > 0, define 5 := 5.

* Thenif 0 < xg — o < & then [f (xg) — f ()] < e.
* Because (xo — o) m >0, (xg — &) m > —e so that f (xg) — f () > —¢, so that |f (xg) — f ()] < €.
x Thus

Lm f(o) =f(x0)

(X‘)XO

If m <0and M > 0, define 6 := ¢ min ({ |1W|’ 1ﬂ })
* Then the right hand side is fulfilled.
x The left hand side has:
- xg—a < dthenm(xg—«) > —¢
- thus f (xo) — f(x) > —¢
* Thus |f (xo) — ()] < e.
If m < 0and M < 0, define & := eﬁ.

x Then f (xp) —f(x) <0< eand f(xg) —f(ax) > (xg —x) M > —¢

If m = 0and so M > 0, define & := 5 (unless M = 0, in which case any & will do).

If M =0and som <0, define 6 := ﬁ unless m = 0 and then any & will do.
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6. Final conclusion:
Im f(o) =f(x0)

X=Xy
7. In a similar analysis we can conclude also that
lim f(B) = f(xo)
ﬁ—)x:{
8. That means that limy_,, f (x) = f (xp). Thus according to Rudin’s Theorem 4.6 f is continuous at xo.
9. As x was arbitrary, f is continuous.

e Claim: Every increasing convex function of a convex function is convex.
Proof:

2
1. Let (f, g) € [(a, b)]R} be given such that f is convex and g is convex and increasing.

. Defineh € (a, bR by h:=gof.
. The statement of the claim is then that h is convex itself, as well.
. That means that h should obey

= W N

h(MAx+(1T—=A)y) <Ah(x)+(1—=A)h(y)

for all (x, y, A) € (a, b)? x (0, 1).
5. h(Ax+ (1 =A)y) = g (f (A + (1 —A)y)) by definition.
6. Use the fact that f is convex, so that f (Ax + (1 —A)y) < Af(x)+ (1 —A) f (y).

7. Use the fact that g is increasing, so if « < f then g(«) < g(B). In our case, that means that g (f (Ax+ (1 —A)y))
g (Af (%) + (1 —=A) f (y)).

8. Use the fact that g is convex so that g (Af (x) + (1 —2A) f(y)) <Ag(f(x))+ (1—A) g (f(y)).
|
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