Analysis 1 - Recitation of Week 2

Jacob Shapiro
September 26, 2014

1 Tips for Exercise Sheet Number 2
1.1 Subsets of R

e Up until now we did not restrict the kind of elements in our sets. However,
in this exercise we will mainly be concerned with subsets of R, that is, sets
whose elements are real numbers. These sets can be finite: {1, 2, 7 } or
they can be infinite: {z € R |z >0} or {z € R|2? < 2}.

e These sets have order on them, which they inherit from R. To have an
order, means, in general:

1.Vx e AAVy € A: v <yYa =yYy <z (Observe new notation for
XOR operation: Y means either option one or option two, but NOT
the both together).

2. Ve e AVye AVze A, if x <y and y < z then z < z.

1.2 Bounded Sets
Let two sets, A; and As be given, such that A; C Ay and A, is an ordered set.

e Definition: A; is called “bounded from above” iff IM € A, such that
Ve € Ay, x < M. In this case, M is called “an upper bound on A;”.

e Definition: A; is called “bounded from below” iff I3m € As such that
Vr € Ay, x > m. In this case, m is called “a lower bound on A;”.

e Example of sets bounded from above:

—{1,2,3} C _R is bounded above with upper bounds: 3, 3.1, 4, 5,
—_— =

A Az
100 and so on (infinitely man)
— {2z eR|2”> <2} C R isbounded above with upper bounds: v/2 ~
As

A
1.41421, 1.5, 2, etc.
Note how the an upper bound is of course not required to belong to
the given set.



e Examples of sets not bounded from above:

— R C R is not bounded from above: there is no element of R that we

can find which will be larger than any imaginable real number.

— N C R is not bounded from above for the same reason (but it is

bounded from below, by 0 and everything less than that).

— 2N =10, 2, 4, ...} is also not bounded from above (but from below

it is).

e Examples of sets not bounded from above or below:

- RCR
— Z C R (note that N is bounded from below)

1.3 Supremum and Infimum

Let two sets, A; and Ay be given, such that A; C As and A, is an ordered set.

e Definition: A “supremum” on a set A; which is bounded above is defined
(if it exists) as an upper bound on A; which is also the smallest possible
upper bound.

Note there are cases when this doesn’t exist, as we shall see (just as
there are sets with no smallest number).

Also called “least upper bound”.
In symbols, sup (A1)

For a supremum to exist we have (now in symbols) these two condi-
tions:

x Vo € Ay : x <sup (A1) (sup (A;) is an upper bound)
* flo € Ay : a < sup(A;) and such that Vo € A}, = < «a (no

smaller upper bound).

Examples:

% The most stupid examples are when our set has a maximum,

and then the supremum is just this maximum: sup ({1, 2, 3 }) =
max ({ 1, 2, 3}) = 3 (there is always a maximum for finite sets)
or sup ([0, 5]) = max ([0, 5]) = 5.

Ay ={-1 ‘ neN\{o}}={-1,-3, -1, -1, ...} CRisa
given set. It is clearly bounded above (by any positive number as
well as by zero). Claim: sup (A;) = 0. To prove this statement
we must show that the two conditions hold. The first, which
is, that 0 is an upper bound on A; is clearly true: since all
the numbers in our set our negative, any non-negative number,
includign zero, will do the job. The second condition means
there is no smaller lower bound. Intuitively, this has to do with



the fact that our elements in the set are getting closer and closer
towards 0 (though never reaching it). To be more precise, assume
otherwise that there is a smaller upper bound, o, on A;. That
means, by assumption, that o < 0. But for any negative number,
however close to zero, we can always find a large enough n € N
so that —% > a and so « is no longer an upper bound on A;!

* {x S0) ’ 2 < 2} C R . This set is clearly bounded above
~—
Az

Ay
by V2 (as well as anything above that). Our claim is that
sup (A1) = /2 (even though, since v/2 ¢ Q, sup(4;) ¢ A;.
To verify the second condition, assume we have found a smaller
upper bound «. This means that o < v/2. Thus, a + 8 = /2,
for some B € R. So between o and o + %5 (two arbitrary real
numbers) we can always find a rational (this is because the ra-
tionals are dense in the reals, a fact we will see later) in between
them, call it ¢: o < g < a—&—%ﬁ < /2. Sothat ¢ € Ay and ¢ > «
(that is, « is not an upper bound on Ay ).

— Approximation property: We can convert the second property of the
supremum definition into an “approximation property” of sorts:

 fla € Ay : a < sup(A;) and such that Vo € Ay, ¢ < « is
equivalent to

* Va € Ay o < sup (Aq), Iz, € A; such that z, > a.

* But to pick such an « is not hard at all: all it has to obey is that
it’s smaller than the supremum. So we can start with sup (4;)
and push it down just a tiny bit. How much, by some small
positive number £ > 0. So « :=sup (4;) — ¢.

* Thus Ve > 0 3z, € A; such that 2. > sup (A1) —e. But sup (A4;)
is also the upper bound, so we can combine these two facts to-
gethre to say that:

% | Ve > 0 3z, € Ay such that sup (A1) —e < z. <sup(A41).

* This “approximation property” is extremely important in proofs,
especially when the supremum is taken over some crazy set and
we have no hope to actually calculate what the supremum is. So
remember it!

e Definition: An “infimum” on a set E; which is bounded below is defined
(if it exists) as a lower bound on A; which is also the largest possible lower
bound.

— Again, this might not exist.
— Also called “greatest lower bound”.

— If minimum exists, then it is just the minimum (always for finite
sets).
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— Examples:

* Ay = { % | neN\{0}}={1, 1, %, 1, ...} C Risagiven set.
As before, inf (4;) = 0.

* Note that this exhibits a general phenomenon (part of the home-
work): for a given set A; which is bounded above and has
sup (A1), —A is bounded below and has inf (—A;) which is equal
to inf (—A;) = —sup (A1). By the way, —A={—-a|ac A}.

* To solve question 1 on the homework, “follow your nose™ prove
that —sup (A) is a lower bound on — A and then go on to prove it
is the largest lower bound (to do this, assume otherwise, that is,
that there is a larger lower bound, then somehow try to “transfer”
this larger lower bound on —A into a lower upper bound on A
and reach a contradiction). You will need to use the fact that if
a < B then —a > —f and vice versa, as well as o < 3 implies
—a > —f. For the second part you can follow a very similar
procedure, only note that x < M implies ﬁ < %

Injectivity, Surjectivity and Bijectivity

1.4.1 Injectivity

Definition: given two sets A and B and a function between them f: A —
B, f is called “an injective function” or “an injection” iff Va; € A,Vas € A,
f(a1) = f (az) implies a1 = as.

In words: two different elements in the source set cannot go to the SAME
element in the destination set: Va; € A, Yas € A, a1 # ag implies f (a1) #

[ (a2).

Do not confuse with the general condition on a rule between two sets to
be a mathematical function: two different elements in the destination set
cannot have come from the SAME element in the source set: f(a) has
only one value for each a € A.

Which on of the conditions to use depends on the problem at hand.

Example: f: R — R given by x +— 22 is not injective because 2 and —2
(two different elements) go to the same element in the destination, namely,
4.

Example: f : [0, 0o) — R given by x + 22 is injective, because now we
have exluded the negative numbers in the source set, and as a result, we
recover the condition for injectivity.

Example: f:R — R given by x — 2?3 is injective.

Question: is it possible to have an injective function if the source set is
“larger” (for finite sets) than the destination set? (pigeon hole principle).



Define inverse image as f~1(E) := {a€ A| f(a) € E} for all E C B
(draw picture).

Another characterization: f is injective iff | f~ ({z})| = 1Va € B.

Note: if f is injective then we can unambiguously “return” from B back
to A and so we can define an inverse function f~!.

1.4.2 Surjectivity

Definition: given two sets A and B and a function between them f: A —
B, f is called “an surjective function” or “a surjection” iff Vb € Bda € A
such that f (a) = b.

Note that in this definition a is absolutely not required to be unique!
Question: when will it be unique? (when f is injective).

Surjectivity means we “cover” the whole of B with f and there is no
element of B left unreferenced by f.

Example: f : R — R given by x — 22 is not surjective: we will never
produce a negative number with this map. As we have seen it is not
injective.

Example: f: [0, 00) — [0, o0) given by x + 22 is surjective (it covers the
whole of its destination) and as we’ve seen it’s also injective.

Question: how to get a surjective function out of a non-surjective func-
tion? (redefine the destination set to include only those points which are
“referenced” by f)

Example: f:R — R given by x — x is surjective. Is it injective?

Example (less trivial): f : [0, 2] — [0, 1] given by = + z if z < 1 and
x — x — 1 otherwise. This function is surjective, but not injective!

Question: Is it possible to have a surjection if the source set is “smaller”
than the destination set?

1.4.3 Bijections

A bijective function, or a bijection, is a function that is both injective
AND surjective. It allows us to go back and forth between the source and
destination sets and always reach the same result.

Example: f: {Students} — {Legi#} is a bijection (has to be!)

Example: When we have two sets of the same (finite) size, we can always
find a bijection between them. (Just draw arrows until all elements have
an arrow next to them)



1.5

Example: f: R — R given by x — z is a bijection. This will always be
true: the identity function (the function that does nothing) is always a
bijection.

Example: f:R — R given by « — 22 + 1 is a bijection.

Cardinality (Maéchtigkeit)

The cardinality of a set is a measure of the "number of elements of the
set".

Note that in order to measure something (like length or time) we always
need a reference object to compare our measure to. For example, the
meter (a metal rod kept in Paris) or the time it takes an atom to perfrom
5000 oscillations is one second. The same is true when we want to measure
sizes of sets: we need some reference sets to tell us what are the standard
“units” of size for sets.

The actual measuring of the size is performed by putting our object next
to the meter rod and seeing if it’s bigger, smaller, or equal.

With sets, we define two sets to have equal “size” if there is a bijection
between them. This makes intuitive sense because a bijection between the
two sets is a one-to-one correspondence between the two sets.

For sets of finite size this is very easy: we can always find a bijection
between two finite sets if they have the same number of elements.

For infinite sets we really need to hold on very carefully to the existence
of bijections. The pioneer in this field was Georg Cantor who decided
that two (infinite) sets have the same cardinality (size) iff there exists a
bijection between them. He then went on to identify the “standard units
of cardinality” for sets: finite sets, N, R and so on.

A set with the same cardinality as N (a set that has a bijection with N)
is called “countable” (abzdhlbar).

A set with the same cardinality as R (a set that has a bijection with R)
is called “uncountable” (unzéhlbar).

Example: 2N := {0, 2, 4, 6, ...} is countable. To show this, we need
to find a bijection with N = {0, 1, 2, 3, ... }. This sound crazy, because
intuitively, we see that there are twice as many elements in N. But indeed,
it is the infinite nature of the sets that defies our intutition. The bijection
that exists between the sets is f : 2N — N given by n — %n It is left as
homework to verify that this is indeed surjective and injective.

Other examples: Z and Q are also countable. The proof for QQ is not so
simple.



e Example: (—1, 1) has the same cardinality as R: Define f : (=1, 1) = R
11 ifz>0
by x — <0 ifx=0
141 ifz<o

(clearly surjective and injective from the graph)

e Using the above example we can find that any open interval in R has the
same cardinality as R (how?), Thus, for example, (0.1, 0.9) has the same
cardinality of R.

e What about (0.1, 0.9) UN? Very similar to the homework. We know
(0.1, 0.9) has the cardinality of R, so there is a map f : (0.1, 0.9) - R
which is bijective. So define a map ¢ : (0.1, 0.9)UN — R by the following:

2¢+1 ifzeN
g(z) ==<2f(xr) ifzé¢Nand f(r) €N . Think at home why this
f(r) ifz¢Nand f(x) e R\N

works.

1.6 Induction with Two Steps

e Sometimes it will be useful to assume two steps below the induction instead
of just one. This is usually the case when trying to prove some recursion
relation which involves two steps, as in question 4 on the homework.

e Let us construct this new variant of induction based on the old one:

e Suppose we are given a statement P (k) for each k € N and we want to
prove that this statement holds for all £ € N.

e Define a new statement, @ (k) := P (k) AP (k+1).



The principle of mathematical induction (now on @ (k)) tells us that
(QO)ANNVkeN(Q (k) = Q(k+1))) = Q(k)Vk e N.

Translating this to conditions on P (k) we get:

- Q(0) <= P((0)AP(1)
- Q(k)<= P(k)AP(k+1)
-Qk+1)—= Pk+1)AP(k+2)

So to make the induction variation we need:
(POAPOA)ANVEEN(P(K)AP(E+1) = (P(k+1)AP(k+2))))) =
(P(k)AP(k+1))VkeN

Or in a less redundant form:
(POAPOA)ANVEEN(Pk)AP(E+1) = (P(k+2))))) = P(k)Vk €
N.

Question Specific Tips

For question 4 (b), try to isolate in “** a factor of ¢ and something

else. This something else will be a complicated expression. To simplify it,
— 15

1-V5
= ¢ X something that depends on a and n.

define « : and get an expression of the form
An+1

an

Then

a;% - qﬁ’ = ¢ |something — 1].

Try to estimate |something — 1| by something slightly larger, using the
fact that —1— < —+— for our z < —1.

[z —1] — |z|"—1

Then pick some n large enough so that WL—l < ¢ for some initially
selected small e.

For question 5:

— (a): I sent last week.

— (b): Just plugin the formula recursively (not using (a)).

— (c¢): Look at the pattern you found in (b), make an intuitive guess,
and prove it using induction and (a).

For question 6:

— (a): Don’t use induction, rather, find some m € N so that 2™ > n,
and try to build an inequality that will eventually lead to a geometric
series which will be equal to 2.

— (b): Write two things that Y, >")" (ara; is equal to.

— (¢): If two polynomials are the same, then the coefficients are the
same order by order. Compare the coefficients of z".



