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1 Exercise Sheet Number Six

1.1 Question 1

AFa——1 ? . .
e Cannot do Hm% = % —lim+v1+a, —1=1lm %“

1.2 Question 2

e Let (a,),cy converge to a.
o Define s, := >, aj for all n € N.

e Claim: (sp), oy converges to a.
Proof:

— Let g9 > 0 be given.
— (a@n), ey — @ means that Ve > 03m () € N such that if n > m (¢) then |a —a,| <€ .

— Then assume that n € N is such that n > m (%‘J), for some € > 0. Then,
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1.3

1.4

1.5

e Let (X, d) be a metric space, let (z,)

m 0 . . .
— Sure, define m; (g¢) : =1+ 2 . Note that Zj:(12 ) (an — a)| is just some finite fixed number.

€0
— Then clearly if n > m; () then |s, —a| < &o.
|

For part (b) consider a,, = (—1)" which diverges.

Question 3
Merely Positive or merely monotone sequence is not enough in order for it to converge. Needs to be bounded as well.
Counter examples:

- {1,2,1,2,1,2, ...} is always positive but surely diverges.

—{1,2,3,4, ...} is monotone increasing but diverges.
If we have a monotone increasing sequence that is bounded above then it will converge.

If we have a monotone decreasing sequence that is bounded below (for example, always positive) then it will converge.

Question 4

0 m=n
Let p € P be given. Define d, : Z> — R by: d , = . The mini i
et p e given. Define d, y: dp ((m, n)) {min({pk6Q|keN/\pk(m—n) V) m#n e minimum is

¥ where k ranges over all natural numbers which satisfy p¥| (m — n).

taken over the set of all p~

Claim: dp (m, n) < dp (m, ) +d, (I, n) for all I € Z.

Proof
— Case 1: p=1.
% When p = 1, then every p¥ = 1 for all k. As a result, d; (m, n) = 1 for all m # n.
* Then we have d; (m, n) =1 and indeed 1 <1+4+0o0r 1 <0+ 1.
— Case 2: p> 1.
* Let k1 be the largest power of p inside of m —I: m — [ = ap® and d,, (m, )
* Let ko be the largest power of p inside of [ —n: | —n = Bp*? and d,, (I, n) = p~
* Define ko := min (k1, ko).
* Then
m-n = m-—Il+Il—n
= (m=-0+4+(—n)
= apf +pp*
— pho (apkl—ko +Bpk2—ko)
* As a result, p¥o| (m — n) and so p=% > d, (m, n) (by definition of d,).
* But becuase kg = min (ky, ks), ko = k1 or kg = ko, and of course p~*0 < p~*o 4 something.
% Hence p~%0 < p=F1 4 p=*2 necessarily.
* Hence our result follows.
|

Question 5

nen be asequence in X and let v € X.

e Part (a): Claim: If (2,,),,cy — @ then (2,), ., — @ for all A C N such that [A| = |N].

Proof:

Because (2n,),cy — @, then Ve > 03m (¢) € N such that if n € N is such that n > m (¢) then d (z,, ) < €.

To show that (z,,),c4 — 2, we need to show that Ve > 03m4 (¢) € A such that if n € A is such that n > ma (¢) then
d(zy, ) <e.

— So let € > 0 be given.
— If m (¢) happens to be such that m (¢) € A, define m4 () := m (g).



— Otherwise, because |A| = |N|, there must be some member of A, a such that a > m (g). So define my4 (¢) := a.
— Then we are done, because if n € A such that n > my4 (g), then

x* Dueto ACN, neN.

* Due to my (e) > m(g), n > m(e).

* Thus due to (), .y — = we have that d (z,, z) <e.

e Part (b): Claim: If for every A C N such that [A| = |N|, 3B C A such that |B| = |N| such that (z,,), .5 — z, then (2,,),cy — .
Proof

— Assume the contrary, that is, assume that (x,) does not converge to x.

neN
— That means that e¢ > 0 such that Vm € N, 3ng (m) € N such that ng (m) > m yet d (@,,(m), T) = 0.
— Define a subset A C N such that |A| = |N| by the following rule:
* Define a1 := ng (1).
* Define as := ng (2).
* etc.
* Then A:={a;|jeN}
— But then we have a contradiction with the fact that any subsequence B of A converges, because we can simply take B = A,

and clearly, that subsequence (x),,. , does not converge.

1.6 Question 6

e If (an),cy — O then it doesn’t necessarily mean that (3 a,) converges!

e You may not manipualte limits as if they were numbers before you know that they actually converge!

2 Exercise Sheet Number Eight

2.1 Continuity of Complex Functions

e Claim: f:C\{0} — C defined by z EN % is continuous.
Proof:
— Claim: If f: X — Y is continuous and g : Y — Z is continuous then sois go f: X — Z.
Proof:
* Let € > 0 be given, and pick some zo € X. Then f (zg) € Y.
*x Because ¢ is continuous (in particular, continuous at f(xg)), Iy (g, f (o)) > 0 such that for all y € Y with
dy (y, f (z0)) < dy (&, f (zg)) we have dz (g (y), go f (o)) < e.
* Because f is continuous (in particular, continuous at xg) Jdx (¢, £g) > 0 such that for all x € X with dx (z, x¢) <
0x (g, xo) we have dy (f (z), f(x0)) <e.
* Apply continuity of f on the radius dy (g, f (zg)) at zo: there exists some dx (dy (¢, f (zo)), xo) > 0 such that:
- If z € X is such that dx (z, xg) < dx (0y (g, f (x0)), xo) then dy (f (z), [ (x0)) < Iy (g, f (x0)).
* But f(z) € Y such that dy (f (z), f (z0)) < dy (&, f (x0)) implies that dz (g (f (z)), go f (z0)) < e.
|
— Claim: Let g : C — C\ {0} be continuous. Then the map h : C — C defined by ¢ (z) := ﬁ for all z € C is continuous.
Proof:
x Let g9 > 0 be given and take some zy € C.
x Compute

‘ 1 1
g(z0) g(2)
_ ‘g@)g(z@)

9(20) g (2

lq(20) —q(2)]

Because g is continuous at g (zo) then Ve > 0 36 (e, zp) > 0 such that if |z — 29| < d (e, 20) then |g(2) — g (20)] < e.
Using this last inequality we can also infer that |g (20)| — |g (2)| < € and so |g (2)]| > |g (20)] — €.
Assume |g (z0)| # € (otherwise pick e slightly smaller for the same zp).

1 1
Then we have -7 < -==5—-

* Ok X ¥



* As a result we find that

€
lg (z0) — ¢ (2)|
l9 (20)] [lg (20)] — €]
x So take § (%, Zo).
* Then
g(zo)|e0_
lq(20) —q(2)] < 1+|9(20)\50‘ —

19 (zo)l [lg (20| — slefzedlee

lo(z0)%e0

1+lg(z0)le0

_lazo)|®

1+|g(Z0)‘€0

— Claim: If f:C — C and g : C — C are continuous then h : C — C defined as h (z) := f (z) g (z) for all z € C is continuous.
Proof:
x Let g > 0 be given and let zg € C be given.
* f is continuous so 39y (e, z9) > 0 such that |z — 29| < &¢ (¢, 20) leads to |f — f (20)] < e.
% Same for g, denoted by d, (¢, 2o).

* Then
h(2) =h(z0)l = [f(2)g(2) = f(20)9(20)]
= |f(2)g(2) —g(20) f (20) + g (20) f (20) — [f (20) g (20)]
= [f(2)g(z) =g (z0)]+9(20) [f (z) = [ (20)]]
< [f g (2) =g (20)l +1g (z0)l[f (2) = £ (20)]
* Using the fact that f is continuous, we have |f (z)| < e+ |f (20)| so some suitable selection of z.

As a result we find that

|7 (2) = B (20)]

*

[e +[f (20)] g (2) — g (20)| + [g (z0)| | f (2) = f (20)]
[e +[f (20)|]e + |9 (20)| €
e +[|f (20) + g (20)]] €

IN A

So take

*

— (3 (1 Gol + b o)l + 1 Goll + by o) F 420 0
€0, 20) := min
o 5y (5 (=07 o)l + 1o o)+ /17 o)l + g G+ 40 ) 20,20

* Then we have |h (z) — h (20)] < 0.
|
— Then clearly z + 22 which is just the multiplication of two identity maps is continuous.

— Claim: || : C — R defined by z — |z| is continuous.
Proof:

x Let € > 0 be given and let zy € C be given.
* Then we need

Izl = l=2ll < |2 = 2

* So take 0 (e, zp) 1= €.
« Then if |z — 29| < 0 (e, 20) then ||z| — |20]| < € and we’re done.
|
— Putting everything together, we have the following maps:
% f1 : C — C defined by z + 22. This map is continuous.
* fy: C — C defined by 2z +— |z|. This map is continuous.
% f3: C\ {0} — C defined by z + 1. This map is continuous.
* Then f = f1-(f3 0 f2). Since all the operations were proven to be continuous we have proven that our map is continuous.



2.2 Continuos Extensions

e Claim: f:R\{0} — R defined by x ER smgﬂﬁ is continuous.
Proof:

— Even though the trigonometric functions have not officially been defined yet, we can think of them as being defined as a
power series.

— For example, define exp : C — C as:

o0 Zn
exp (z) = Z gy
n=0
Using the ratio test, we have that
n+1
]|
(27) n+1
]
and so limsup,,_, ((%1; = limsup,,_, n%rl‘ =|z|-0<1.

— As a result, exp (z) converges and so is well-defined.

— It is continuous on any bounded subset of C because using the Weierstrass M-test with }Z—? (where R is the radius of the

. n ., . . .
bounded set), we have uniform convergence. As each element f, (2) = %y is continuous, exp (2) is continuous as well (there’s
a more rigorous way to show continuity).

— It may seem crazy but sin (z) = 5 [exp (iz) — exp (—iz)]. Due to the continuity of exp and the theorems above we have that
sin is also continuous. One can show that if z € R then sin (z) € R as well and so our initial function is well defined.

— Of course z — z is also continuous.
[ |
e Of course, f is not defined at 0.

e Here’s a picture of f none the less:

N

sin(z) _ 1.

e Claim: lim,_,q
Proof:

— Claim: We can use the fact that cos () < Sinm(x) <1.
Proof: (proof using trigonometry).

x Consider the following radius-1 circle:

*

Let the angle HOK be denoted by z.

The area of the triangle AKOA is equal to %

* The area of the sector KOA is given by 5757 (1)% = 5
The area of the triangle ALOA is: é—‘g = tan (z) so that LA = tan (z). Then the area is LA = 1 tan ().

* But due to the different areas containing each other we have 1sin (z) < 1z < 1tan ().

*

*



% Thus 1 < =2~ < —L— and so cos (z) < sin@) <,

sin(z) — cos(x) T
— Now use the the fact that if a,, < b, then limsup a,, < limsupb,, and same for lim inf, and the fact that cos (0) = 1 and that
cos is continuous at 0.

|
e As a result it makes sense to define f at 0 to be 1.

e We have just shown that by employing this definition we make sin continuous at 0.

2.3 Concrete Tips for Questions
e Question 2:
— Show uniform convergence of the series of functions f, (2) = 2%-.
— You will not be able to show this for all C\Z. Show it only for some bounded area of C.

— Use the Weierstrass M-test we discussed in the last colloquium with a series built on top of the zeta-function.

_ NP 2 _ 1 1
For periodicity use =5 = =t 7=

e Question 3:
— For (a):
x Again the M-test with M, = s,.
— For (b):
* Show that f (an +) - f (an) = Sp = f (an) - f (an 7)'
e Question 4:
— Define h(z) = f (z) — f (x+ %). See what you get.
e Question 5:
— For part (a):
* One direction of the proof is trivial. Which is it?

* The other direction:

- Use the fact that a finite union of closed sets is again closed.
e Question 6:

— We have done this in the colloquium on the Cantor set (except for the continuity property, which you can find in the
corresponding exercise in Koenigsberger).



