ANALYSIS 2 RECITATION SESSION OF WEEK 10

JACOB SHAPIRO

1. INTERIOR, CLOSURE AND BOUNDARY

Let X be a general topological space, and $A \subseteq X$.

1.1. **Example.** $\partial \partial A \neq \partial A$.

Proof. Recall the example where $A = \mathbb{Q}$ and $X = \mathbb{R}$. Then $\partial A = \mathbb{R}$, and so $\partial \partial A = \partial \mathbb{R} = \emptyset$. So we have $\emptyset \neq \mathbb{R}$.

1.2. **Example.** $\partial(\overline{A}) \neq \partial A$.

Proof. Again with the example where $A = \mathbb{Q}$ and $X = \mathbb{R}$, we have $\overline{A} = \mathbb{R}$ and so $\partial(\overline{A}) = \emptyset$ yet $\partial A = \mathbb{R}$!

- 1.3. **Example.** $A = \{x \in \mathbb{R}^2 \mid (x)_2 = 0\}$ and $X = \mathbb{R}^2$. Note that $A \in Closed(X)$ (see this by drawing open balls in the complement). Thus $\overline{A} = A$. Also note that $A^\circ = \emptyset$ (see this by drawing open balls). As a result, $\partial A = A$.
- 1.4. **Example.** $A = \{x \in \mathbb{R}^2 \mid (x)_2 > 0\}$ and $X = \mathbb{R}^2$. Then $A \in Open(X)$ (draw open balls) so that $A^\circ = A$. $\overline{A} = \{x \in \mathbb{R}^2 \mid (x)_2 \ge 0\}$ ($\overline{A} \supseteq A$ and every point on the line $(x)_2 = 0$ also belongs to the closure because every open ball around any point in it intersects A). Thus $\partial A = \{x \in \mathbb{R}^2 \mid (x)_2 = 0\}$.
- 1.5. **Example.** $(A, B) \in [\operatorname{Open}(X)]^2$ such that $A \cap B = \emptyset$. Then $\overline{A} \cap \overline{B} \neq \emptyset$.

Proof. Take
$$X = \mathbb{R}$$
 and $A = (0, \frac{1}{2})$ and $B = (\frac{1}{2}, 1)$. Then $A \cap B = \emptyset$ yet $\overline{A} \cap \overline{B} = \{\frac{1}{2}\}$.

1.6. Example. $\overline{(A^{\circ})} \neq A$.

Proof. Take $A = (0, 1) \cup \{2\}$ and $X = \mathbb{R}$. Then $A^{\circ} = (0, 1)$ (to see this, try to find an open interval around 2 which is contained in A), and so $\overline{(A^{\circ})} = [0, 1]$.

2. Integrals

- 2.1. **Multi-Dimensional Integrals.** We follow [1] Chapter 10. This allows a somewhat shorter and more compact presentation of a multi-dimensional integral than with the Jordan measure, which is anyway obsoleted by the Lebesgue measure.
 - $\bullet \ \ \text{Let} \ I^k \ \text{be the closed k-cell in \mathbb{R}^k}. \ \text{That means } I^k = \prod_{j \in J_k} \left[\alpha_j, \, b_j\right] \ \text{where} \ (\alpha, \, b) \in \left[\mathbb{R}^k\right]^2 \ \text{such that} \ \alpha_j \leqslant b_j \ \text{for all} \ j \in J_k.$
 - For every $j \in J_k$, define I^j to be the j-cell in \mathbb{R}^j defined by $\prod_{l \in I_i} [a_l, b_l]$.
 - Let $f \in C^0$ (I^k , \mathbb{R}).
 - Define $f_k := f$ and $f_{k-1} : I^{k-1} \to \mathbb{R}$ by

$$f_{k-1}(x) := \int_{a_k}^{b_k} f_k(x, y) dy \quad \forall x \in I^{k-1}$$

where the integral is the orindary one-dimensional Riemann integral encountered in the last semester.

2.1. Claim. f_{k-1} is continuous on I^{k-1} .

Proof. Observe that f_k is *uniformly* continuous on I^k because I^k is compact (being closed and bounded). Let $x \in I^{k-1}$ be given, and let $\epsilon > 0$ be given. By uniform continuity, $\exists \delta > 0$ such that if $z \in I^{k-1}$ is such that $\|(x,y) - (z,y)\| < \delta$ then $|f_k(x,y) - f_k(z,y)| < \frac{\epsilon}{b_k - a_k}$.

Date: 26/04/2015.

2

Then for such $z \in I^{k-1}$ we have

$$\begin{aligned} |f_{k-1}(x) - f_{k-1}(z)| &= \left| \int_{a_k}^{b_k} f_k(x, y) \, dy - \int_{a_k}^{b_k} f_k(z, y) \, dy \right| \\ &= \left| \int_{a_k}^{b_k} [f_k(x, y) - f_k(z, y)] \, dy \right| \\ &\leqslant \int_{a_k}^{b_k} |f_k(x, y) - f_k(z, y)| \, dy \\ &\leqslant \frac{\varepsilon}{b_k - a_k} \int_{a_k}^{b_k} dy \\ &= \varepsilon \end{aligned}$$

but

$$\|(x, y) - (z, y)\|$$
 = $\sqrt{\sum_{j \in J_{k-1}} (x_j - z_j)^2}$
 = $\|x - z\|$

• As a result, we may repeat this process again and again, to obtain functions $f_j \in C^0(I^j, \mathbb{R})$ for all $j \in J_k$ and such that f_{j-1} is the integral of f_j with respect to x_j over $|a_j, b_j|$.

• After k steps we arrive at a number f₀ which we *define* as the integral of f over I^k:

$$\int_{I^{k}} f(x) dx := \int_{a_{k}}^{b_{k}} \left(\int_{a_{k-1}}^{b_{k-1}} \left(\dots \left(\int_{a_{1}}^{b_{1}} f(x) dx_{1} \right) \dots \right) dx_{k-1} \right) dx_{k}$$
 (1)

2.2. Claim. The left hand side of (1) is independent of the order in which the integrations are made. (Theorem 10.2).

2.3. **Definition.** The support of a function $f : \mathbb{R}^k \to \mathbb{R}$ is

$$supp (f) := \overline{f^{-1} (\mathbb{R} \setminus \{0\})}$$
$$= \overline{\left\{ x \in \mathbb{R}^k \mid f(x) \neq 0 \right\}}$$

2.4. **Example.** Let $f : \mathbb{R} \to \mathbb{R}$ be given by f(x) = 1. Then supp $(f) = \overline{\mathbb{R}} = \mathbb{R}$.

2.5. **Example.** Let $f: \mathbb{R} \to \mathbb{R}$ be given by $\chi_{\mathbb{Q}}(x) \equiv \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$. Then $\operatorname{supp}(f) = \overline{\mathbb{Q}} = \mathbb{R}$.

2.6. **Example.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by $\chi_{B_1(0)}(x) \equiv \begin{cases} 1 & \|x\| < 1 \\ 0 & \|x\| \geqslant 1 \end{cases}$. Then $\operatorname{supp}(f) = \overline{B_1(0)} = \left\{ x \in \mathbb{R}^2 \mid \|x\| \leqslant 1 \right\}$.

2.7. Remark. Observe that for the support of a function to be compact, all that is necessary is that it is bounded, due to the fact that it is always closed by definition.

2.8. **Definition.** If $f \in C^1(\mathbb{R}^k, \mathbb{R})$ is such that supp (f) is compact, then

$$\int_{\mathbb{R}^k} f := \int_{\mathbb{T}^k} f(x) \, \mathrm{d}x \tag{2}$$

where I^k is any k-cell such that $I^k \supseteq \text{supp }(f)$.

2.9. Remark. The defintion in (2) is well defined, that is, it is independent of I^k . This is due to the fact that if $I^k \supseteq \text{supp }(f)$, then of course outside of supp (f), f = 0 and so it does not matter which I^k is picked.

2.10. **Example.** Going back to example 2.6, we have supp (f) compact, and so for example, $I^2 := [-1, 1]^2 \supseteq \overline{B_1(0)}$. Thus we have

$$\int_{\mathbb{R}^{2}} f = \int_{[-1, 1]^{2}} f(x) dx$$

$$= \int_{-1}^{1} \int_{-1}^{1} \chi_{B_{1}(0)}(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \int_{-1}^{1} \int_{-\sqrt{1 - x_{2}^{2}}}^{\sqrt{1 - x_{2}^{2}}} dx_{1} dx_{2}$$

$$= \int_{-1}^{1} 2\sqrt{1 - x_{2}^{2}} dx_{2}$$

$$= \pi$$

• For all $i \in \mathbb{N}$, assume that $\phi_i \in C^0(\mathbb{R}, \mathbb{R})$ such that $\operatorname{supp}(\phi_i) \subseteq \left(2^{-i}, 2^{-(i-1)}\right)$ and $\int_{\mathbb{R}} \phi_i = 1$.

 $\begin{array}{l} \circ \ \, \text{Then supp } (\phi_1) \subseteq \left(\frac{1}{2},\,1\right), \, \text{supp } (\phi_2) \subseteq \left(\frac{1}{4},\,\frac{1}{2}\right), \, \text{supp } (\phi_3) \subseteq \left(\frac{1}{8},\,\frac{1}{4}\right) \, \text{and so on.} \\ \circ \ \, \text{Define } f: \mathbb{R}^2 \to \mathbb{R} \, \text{by } f(x,\,y) := \sum_{i \in \mathbb{N}} \left[\phi_i\left(x\right) - \phi_{i+1}\left(x\right)\right] \phi_i\left(y\right). \end{array}$

2.11. Claim. supp (f) is compact in \mathbb{R}^2 , f is continuous except at (0,0), and $\int dy \int f(x, y) dx = 0$ yet $\int dx \int f(x, y) dy = 1$. Note that f is unbounded in every neighborhoud of (0, 0).

Proof. We first try

$$\int f(x, y) dx = \int \sum_{i \in \mathbb{N}} [\varphi_i(x) - \varphi_{i+1}(x)] \varphi_i(y) dx$$
$$= \sum_{i \in \mathbb{N}} [1 - 1] \varphi_i(y)$$
$$= 0$$

Observe that this integration is valid because for each fixed y, $\sum_{i \in \mathbb{N}} \left[\phi_i \left(x \right) - \phi_{i+1} \left(x \right) \right] \phi_i \left(y \right)$ is a finite sum: $\phi_i \left(y \right) = 0$ if $2^{-i} > y$ or if $i > -\log_2 \left(y \right)$ (where y > 0). On the other side,

$$\begin{split} \int f\left(x,\,y\right) dy &= \int \sum_{i \in \mathbb{N}} \left[\phi_{i}\left(x\right) - \phi_{i+1}\left(x\right)\right] \phi_{i}\left(y\right) dy \\ &= \sum_{i \in \mathbb{N}} \left[\phi_{i}\left(x\right) - \phi_{i+1}\left(x\right)\right] \\ &= \phi_{1}\left(x\right) \end{split}$$

amd again the sum is finite for fixed x for the same reason. Because $\int_{\mathbb{R}} \varphi_i(x) dx = 1$ for each $i \in \mathbb{N}$ yet the length of supp (φ_i) is 2^{-i} so that φ_i must get bigger and bigger to maintain the integral condition. As a result, f cannot be bounded near the origin.

2.2. Fubini's Theorem. According to Fubini's theorem,

$$\int_{X \times Y} f(x, y) d(x, y) = \int_{X} \left(\int_{Y} f(x, y) dy \right) dx$$
$$= \int_{Y} \left(\int_{X} f(x, y) dx \right) dy$$

if $f|_y$ is Riemann integrable as a function of x alone and $f|_x$ as a function of y alone, and f is Riemann integrable. Using this theorem we may reduce many double and triple integrals to eventually ordinary one dimensional integrals.

2.12. **Exercise.** Define $C = \{x \in \mathbb{R}^3 \mid (x_1)^2 + (x_2)^2 \le 1 \land x_3 \in [0, 1] \}$. We are interested in the volume of C, which we claim is given by π .

Proof. We start by computing

$$vol(C) = \int_{C} 1 dx dy dz$$
$$= \int_{0}^{1} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 dy dx dz$$

Now we may use Fubini's theorem to write

$$vol(C) = \int_{0}^{1} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 \, dy \, dx \, dz$$

$$= \int_{0}^{1} \left(\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 \, dy \, dx \right) \, dz$$

$$= \left(\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} 1 \, dy \, dx \right) \left(z |_{0}^{1} \right)$$

$$= \int_{-1}^{1} \left(y |_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \right) \, dx$$

$$= \int_{-1}^{1} \left(2\sqrt{1-x^{2}} \right) \, dx$$

and now we have an ordinary one dimensional integral (equal to π).

2.13. **Exercise.** Evaluate $\int_0^3 \int_0^{x^3} x^2 y dy dx$.

Proof. We proceed by

$$\int_{0}^{3} \int_{0}^{x^{3}} x^{2}y dy dx = \int_{x=0}^{x=3} \int_{y=0}^{y=x^{3}} x^{2}y dy dx$$

$$= \int_{x=0}^{x=3} \left(\int_{y=0}^{y=x^{3}} x^{2}y dy \right) dx$$

$$= \int_{x=0}^{x=3} \left(x^{2} \int_{y=0}^{y=x^{3}} y dy \right) dx$$

$$= \int_{x=0}^{x=3} \left(x^{2} \frac{1}{2} y^{2} \Big|_{0}^{x^{3}} \right) dx$$

$$= \int_{x=0}^{x=3} \left(x^{2} \frac{1}{2} y^{2} \Big|_{0}^{x^{3}} \right) dx$$

$$= \frac{1}{2} \int_{x=0}^{x=3} x^{8} dx$$

$$= \frac{1}{2} \frac{1}{9} x^{9} \Big|_{0}^{3}$$

$$= \frac{1}{18} 3^{9}$$

$$= \frac{2187}{2}$$

2.14. **Exercise.** Evaluate $\int_{[0,\pi]^3} \exp(x+y+z) dxdydz$.

$$\int_{[0,\pi]^3} \exp(x + y + z) \, dx dy dz = \int_0^{\pi} \int_0^{\pi} \int_0^{\pi} \exp(x + y + z) \, dx dy dz$$

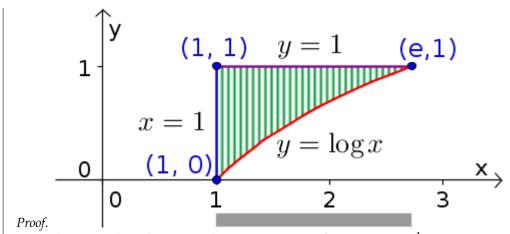
$$= \int_0^{\pi} \int_0^{\pi} \exp(y + z) (e^{\pi} - 1) \, dy dz$$

$$= \int_0^{\pi} \exp(z) (e^{\pi} - 1)^2 \, dz$$

$$= (e^{\pi} - 1)^3$$

2.3. Changing the Limits of Integration.

2.15. **Example.** Change the order of $\int_{y=0}^{1} \int_{x=1}^{e^y} f(x,y) dxdy$ to $\int_{x=1}^{e} \int_{y=\log(x)}^{1} f(x,y) dydx$.



As the max value of y is 1, we have to integrate x from 1 to $e^y = e^1 = e$. But now y goes from $\log(x)$ to 1.

2.16. **Example.** Reverse the order of integration from $\int_{\pi/2}^{5\pi/2} \int_{\sin(x)}^{1} f(x, y) \, dy dx$ to $\int_{-1}^{1} \int_{\pi-\arcsin(y)}^{\arcsin(y)+2\pi} f(x, y) \, dx dy$.

5

Now we must be careful about the lower line, because writing simply $x = \arcsin(y)$ will not work as $\arcsin(y)$ has range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and is always increasing. Thus we must separate the lower curve $y = \sin(x)$ into the two curves $x = \sin(x)$ π – arcsin (y) (on the left) and $x = \arcsin(y) + 2\pi$.

3. Homework Number 8

3.1. **Question 1.**

- Let $U \in Open(\mathbb{R}^n)$
- Let $f: U \to \mathbb{R}^n$ be a continuously differentiable vector field on U.
- Let $I(x) \subseteq \mathbb{R}$ be the maximal interval at $x \in \mathbb{R}^n$ for which a solution for the differential equation equation

$$\begin{cases} \gamma_{x}'(t) &= f(\gamma_{x}(t)) \\ \gamma_{x}(0) &= x \end{cases} \gamma_{x} \in C^{1}(\mathbb{R}, \mathbb{R}^{n})$$
(3)

exists uniquely.

- Define $\Omega := \{ (t, x) \in \mathbb{R} \times U \mid t \in I(x_0) \}.$
- Define $\phi: \Omega \to \mathbb{R}^n$ as the flow of the vector field, that means,

$$\phi\left(t,\,x\right)\ :=\ \gamma_{x}\left(t\right)$$

where γ_x is the solution to (3), for all $(t, x) \in I(x) \times U$. That is, we know that

$$\begin{cases} (\partial_{t} \varphi)(t, x) &= f(\varphi(t, x)) \\ \varphi(0, x) &= x \end{cases} \forall x \in \mathbb{R}^{n}, \forall t \in \mathbb{R}$$

- Assume ϕ is continuously differentiable.
- Let $\xi_0 \in \mathbb{R}^n$ and $x_0 \in \mathbb{R}^n$ be given.
- Define $\xi: I(x_0) \to \mathbb{R}^n$ by

$$\xi(t): = ((\partial_x \phi)(t, x_0))(\xi_0) \tag{4}$$

$$= \sum_{i \in I_n} \left(\left(\left(\partial_x \phi \right) (t, x_0) \right) (\xi_0) \right)_i \hat{e}_i \tag{5}$$

$$= ((\partial_{x} \Phi)(t, x_{0}))(\xi_{0})$$

$$= \sum_{i \in J_{n}} (((\partial_{x} \Phi)(t, x_{0}))(\xi_{0}))_{i} \hat{e}_{i}$$

$$= \sum_{i \in J_{n}} \sum_{j \in J_{n}} (((\partial_{x} \Phi)(t, x_{0})))_{ij}(\xi_{0})_{j} \hat{e}_{i}$$
(6)

$$= \sum_{(i,j)\in J_n^2} \left(\left(\partial_{x_j} \phi_i \right) (t, x_0) \right) (\xi_0)_j \, \hat{e}_i \tag{7}$$

3.1. Claim. ξ fulfills the differential equation equation $\begin{cases} \xi'(t) &= f'(\varphi(t, x_0)) \\ \xi(0) &= \xi_0 \end{cases}$.

Proof. Plug in 0 into (4) to obtain

$$\xi(0) = ((\partial_x \phi)(0, x_0))(\xi_0)$$

but observe that

$$\begin{split} \left(\left(\partial_{x} \varphi \right) \left(0, x_{0} \right) \right) &= \sum_{(i,j) \in J_{n}^{2}} \left(\left(\partial_{x_{i}} \varphi_{j} \right) \left(0, x_{0} \right) \right) \hat{E_{ji}} \\ &\equiv \sum_{(i,j) \in J_{n}^{2}} \hat{E_{ji}} \lim_{t \to 0} \frac{\varphi_{j} \left(0, x_{0} + t \hat{e}_{i} \right) - \varphi_{j} \left(0, x_{0} \right)}{t} \\ &= \sum_{(i,j) \in J_{n}^{2}} \hat{E_{ji}} \lim_{t \to 0} \frac{\left(x_{0} + t \hat{e}_{i} \right)_{j} - \left(x_{0} \right)_{j}}{t} \\ &= \sum_{(i,j) \in J_{n}^{2}} \hat{E_{ji}} \delta_{ij} \\ &= \sum_{i \in J_{n}} \hat{E}_{ii} \\ &= \mathbb{1} \end{split}$$

where $\hat{E_{ii}}$ is the unit vector of the matrix with 1 on the jth row and ith column, and zero otherwise.

- Thus, indeed $\xi(0) = \xi_0$.
- Next,

$$\begin{split} \xi'(t) & \equiv \sum_{i \in J_n} \hat{e}_i \left[\left(\partial_t \xi_i \right)(t) \right] \\ & = \sum_{i \in J_n} \hat{e}_i \left[\left(\partial_t \sum_{j \in J_n} \left(\left(\partial_{x_j} \varphi_i \right)(t, x_0) \right) (\xi_0)_j \right) \right] \\ & = \sum_{(i,j) \in J_n^2} \hat{e}_i \left(\partial_t \partial_{x_j} \varphi_i (t, x_0) \right) (\xi_0)_j \\ & \stackrel{*}{=} \sum_{(i,j) \in J_n^2} \hat{e}_i \left(\partial_{x_j} \partial_t \varphi_i (t, x_0) \right) (\xi_0)_j \\ & = \sum_{(i,j) \in J_n^2} \hat{e}_i \left(\left(\partial_{x_j} f_i \circ \varphi \right) (t, x_0) \right) (\xi_0)_j \\ & = \sum_{(i,j) \in J_n^2} \hat{e}_i \left(\sum_{l \in J_n} \left(\left(\partial_{x_l} f_i \right) \circ \varphi \right) \left(\partial_{x_j} \varphi_l \right) \right) (t, x_0) (\xi_0)_j \\ & = \sum_{(i,j,l) \in J_n^3} \hat{e}_i \underbrace{\left(\left(\partial_{x_l} f_i \right) \circ \varphi \right) (t, x_0)}_{(f'(\varphi(t, x_0)))_{il}} \underbrace{\left(\partial_{x_j} \varphi_l \right) (t, x_0) (\xi_0)_j}_{\xi_l(t)} \end{split}$$

where in * we have used theorem 9.40 in [1] which states that if $\partial_t \varphi$, $\partial_{x_j} \varphi$ and $\partial_{x_j} \partial_t \varphi$ exist on all point of Ω and $\partial_{x_j} \partial_t \varphi$ is continuous at some $(t_0, x_0) \in \Omega$. Then there exists $\left(\partial_t \partial_{x_j} \varphi\right)(t_0, x_0)$ which is equal to:

$$\left(\partial_{t}\partial_{x_{j}}\varphi\right)\left(t_{0},x_{0}\right)=\left(\partial_{x_{j}}\partial_{t}\varphi\right)\left(t_{0},x_{0}\right)$$

• Now, As ϕ is assumed to be continuously differentiable, $\partial_t \varphi$ and $\partial_{x_j} \varphi$ exist. By definition, $(\partial_t \varphi)(t, x) \equiv f(\varphi(t, x))$ so that

$$\begin{split} \left(\partial_{x_{j}} \partial_{t} \varphi \right) (t, x) &= \partial_{x_{j}} f \left(\varphi \left(t, x \right) \right) \\ &= \sum_{l \in J_{n}} \left(\partial_{x_{l}} f \right) \left(\varphi \left(t, x \right) \right) \left(\partial_{x_{j}} \varphi_{l} \left(t, x \right) \right) \end{split}$$

because ϕ is continuously differentiable, f is continuously differentiable, then $\left(\partial_{x_j}\partial_t\phi\right)(t,x)$ exists and is continuous.

3.2. Question 3.

- Observe it is not necessary to write down what the solution for x would be. Don't make life harder than what it has to be.
- Need to prove $[\exp(A)]^T = \exp(A^T)$, and $[A, A^T] = 0$. Both are easy.

• Observe that if $A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ then the eigenvalues are $1 \pm i$ and the eigenvectors are $\begin{bmatrix} i \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -i \\ 1 \end{bmatrix}$ so that

$$\begin{split} \exp{(\mathsf{At})} &= \exp{\left(\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} t\right)} \\ &= \exp{\left(\begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1+i & 0 \\ 0 & 1-i \end{bmatrix} t \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix}^{-1} \right)} \\ &= \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix} \exp{\left(\begin{bmatrix} 1+i & 0 \\ 0 & 1-i \end{bmatrix} t\right)} \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix}^{-1} \\ &= \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \exp{((1+i)t)} & 0 \\ 0 & \exp{((1-i)t)} \end{bmatrix} \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix}^{-1} \\ &= -\frac{1}{2} e^t \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \exp{(it)} & 0 \\ 0 & \exp{(-it)} \end{bmatrix} \begin{bmatrix} i & -1 \\ i & 1 \end{bmatrix} \\ &= -\frac{1}{2} e^t \begin{bmatrix} i & i \\ 1 & -1 \end{bmatrix} \begin{bmatrix} i \exp{(it)} & -\exp{(it)} \\ i \exp{(-it)} & \exp{(-it)} \end{bmatrix} \\ &= -\frac{1}{2} e^t \begin{bmatrix} -\exp{(it)} - \exp{(it)} & -i\exp{(it)} + i\exp{(-it)} \\ i\exp{(it)} - i\exp{(-it)} & -\exp{(it)} - \exp{(-it)} \end{bmatrix} \\ &= e^t \begin{bmatrix} \cos{(t)} & -\sin{(t)} \\ \sin{(t)} & \cos{(t)} \end{bmatrix} \end{split}$$

This is a rotation by t radians counter-clockwise and a dilation by e^t.

REFERENCES

[1] Walter Rudin. Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill Science/Engineering/Math, 1976.