ANALYSIS 2
RECITATION SESSION OF WEEK 10

JACOB SHAPIRO

1. INTERIOR, CLOSURE AND BOUNDARY
Let X be a general topological space, and A C X.
1.1. Example. 00A # 0A.
’ Proof. Recall the example where A = Q and X = R. Then dA = IR, and so 00A = 3R = @. So we have & # R. O

1.2. Example. 0 (A) # 0A.

’ Proof. Again with the example where A =Q and X = R, we have A = R and s0 9 (A) = @ yet 0A = R! a

1.3. Example. A = {x€R?|(x), =0} and X = R?. Note that A € Closed (X) (see this by drawing open balls in the
complement). Thus A = A. Also note that A° = & (see this by drawing open balls). As a result, 9A = A.

14. Example. A = {x€R?|(x), >0} and X = R%. Then A € Open(X) (draw open balls) so that A° = A. A =
{xeR?|(x); 20} (A 2 A and every point on the line (x), = 0 also belongs to the closure because every open ball
around any point in it intersects A). Thus dA = { x € R? | (x), =0 }.

1.5. Example. (A, B) € [Open (X)]? such that ANB = @. Then ANB # .
’ Proof. Take X =R and A = (0, %) and B = (%, 1). ThenANB =2 yetANB = { % }. O

1.6. Example. (A°) # A.

Proof. Take A = (0, 1)U{2} and X = IR. Then A° = (0, 1) (to see this, try to find an open interval around 2 which is
contained in A), and so (A°) = [0, 1]. O

2. INTEGRALS

2.1. Multi-Dimensional Integrals. We follow [1] Chapter 10. This allows a somewhat shorter and more compact presen-
tation of a multi-dimensional integral than with the Jordan measure, which is anyway obsoleted by the Lebesgue measure.
e Let I¥ be the closed k-cell in R¥. That means I* = [Ties, [aj, bj] where (a, b) € [le}z such that a; < bj forallj € Ji.
e For every j € Ji, define I to be the j-cell in IR) defined by Hlelj la, byl
o Letf e CO (1%, R).
e Define fy :=fand fi,_; : 1! — Rby

bk
fr_1 (x) == J fr(x, y)dy Vvxe k1

ag

where the integral is the orindary one-dimensional Riemann integral encountered in the last semester.

2.1. Claim. fy_; is continuous on I¥~ 1.

Proof. Observe that f} is uniformly continuous on I¥ because I* is compact (being closed and bounded). Let x € I*~! be
given, and let ¢ > 0 be given. By uniform continuity, 35 > 0 such that if z € 1*~1 is such that ||(x, y) — (z, y)|| < & then
‘fk (X/ U) —fx (Z’/ U)| < ﬁ
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Then for such z € I¥~! we have

by by
J fi (x, y) dy —J fx (z, y) dy

ag ak

i1 (x) = fi1 (2)] =

by
J [fie (x, y) — fic (z, y)] dy

Ak

by
< J |fk(X/U)*fk(7~/U)|dy
ax
by
13
< d
by —ax Lk Y
= ¢
but
2
W=yl = [ > (5-3)
J€Jk—1
= [x—z]

O

o As a result, we may repeat this process again and again, to obtain functions f; € C° (I, R) for all j € Ji and such
that fj_; is the integral of f; with respect to x; over [a;, bj].
e After k steps we arrive at a number fo which we define as the integral of f over I*:

Lk f(x)dx := J:: (J:j: ( (J: f(x) dx1> ) dxk1> dxy @)

2.2. Claim. The left hand side of (1) is independent of the order in which the integrations are made. (Theorem 10.2).
2.3. Definition. The support of a function f : R* — R is
supp (f) = f T(R\{0})
= {xeRK|f(x)#0}
2.4. Example. Let f : R — R be given by f (x) = 1. Then supp (f) = R=R.

xeQ Then supp (f) =Q = R.

1
25.E le. Letf: R — R be given b = .
xample. Le — R be given by xq (x) {O £ ¢ 0

T x| <1

. Then supp (f) = B7 (0) = { x € R? <1
0 [x[[>1 supp (f) 100)={x | x|l }

2.6. Example. Let f: R? — R be given by xg, (o) (x) = {

2.7. Remark. Observe that for the support of a function to be compact, all that is necessary is that it is bounded, due to the
fact that it is always closed by definition.

2.8. Definition. If f € C' (R¥, R) is such that supp (f) is compact, then

J]Rk fi:= Lk f(x) dx )

where I¥ is any k-cell such that I* O supp (f).

2.9. Remark. The defintion in (2) is well defined, that is, it is independent of I*. This is due to the fact that if I* D supp (f),
then of course outside of supp (f), f = 0 and so it does not matter which I¥ is picked.

2.10. Example. Going back to example 2.6, we have supp (f) compact, and so for example, 2 :=[-1, 12D B (0). Thus we

have
J f = J f(x)dx
R2 —1,1)%

11
= J ]J  XB1(0) (x1, x2) dxq7dx2

2

1 1—x5
= dX] dXz
J—] J—,/]—x%
24/1 —x%dxz

e Foralli e N, assume that ¢; € C° (R, R) such that supp (¢;) C (271, 2-(-1 )> and [ @i =1.
o Then supp (@1) C (3, 1), supp (92) C (1, 1), supp (93) C (3, ) and so on.

o Define f: R? = Rby f(x, y) ==Y ien (01 () — @141 ()] @1 (y)

i

—1
= T

—_
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2.11. Claim. supp (f) is compact in IR?, f is continuous except at (0,0), and [dy [ f(x, y) dx =0 yet [dx [f(x, y) dy =
1. Note that f is unbounded in every neighborhoud of (0, 0).

Proof. We first try

[fxwac = |5 0= ou oy ax
ielN
= > -1y
ielN

= 0

Observe that this integration is valid because for each fixed y, } ;cn (@1 (x) — @it1 (X)] @1 (y) is a finite sum:
@i (y) =0if 27t >y orif i > —log, (y) (where y > 0). On the other side,

[rivway = |3 000 —wi bl os ey
ielN
= D loi(x)— @i ()]
ielN
= @1(x)

amd again the sum is finite for fixed x for the same reason. Because [ @i (x) dx =1 for each i € IN yet the length
of supp (i) is 271 so that ¢; must get bigger and bigger to maintain the integral condition. As a result, f cannot
be bounded near the origin. O

2.2. Fubini’s Theorem. According to Fubini’s theorem,

waf(x'y)d(x'y) N Jx (Jvf(X'y)dy) &
B JY <fo(X/y)dX) Y

if fly is Riemann integrable as a function of x alone and fl, as a function of y alone, and f is Riemann integrable.
Using this theorem we may reduce many double and triple integrals to eventually ordinary one dimensional integrals.

2.12. Exercise. Define C = { x € R3 ‘ (x1)? + (x2)? < 1 Ax3 €0, 1] } We are interested in the volume of C, which we claim
is given by m.

Proof. We start by computing

vol(C) = J 1dxdydz
C
1 01 V1—x2
= J J J 1dydxdz
0J-1J—y1-—x2
Now we may use Fubini’s theorem to write
1 V1—x2
vol(C) = J J J 1dydxdz
0

I (J I ‘j;mydx) "
1 Xi 1dydx) €

.

= L (2v1-x2) ax

and now we have an ordinary one dimensional integral (equal to 7). a

2.13. Exercise. Evaluate [3 fgs x?ydydx.
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Proof. We proceed by

2.14. Exercise. Evaluate I[o, 3 €Xp (x+y +z) dxdydz.
Proof. We start by

7T 7T [TT
J J exp (x +y+z) dxdydz

J exp (x+y+z)dxdydz =
o, ) 0 Jo

o

A

Il
%
A

3°

J exp (y+z)(e™—1)dydz
0

= exp (z) (e™—1)%dz
0

e —1)3

—

2.3. Changing the Limits of Integration.
2.15. Example. Change the order of f;:o ffzy:] (x, y)dxdy to [;_, fy log(x) T (% y) dydx.

#Tw

@11 y=1  (e1)

l_

r=1

0 (1, 0)
0

Proof.

As the max value of y is 1, we have to integrate x from 1to eV = ¢!

= e. But now y goes from log (x) to 1.

2.16. Example. Reverse the order of integration from LST%Z I sin(x) T (% y) dydx to [ ;rciismz;z)“ (x, y) dxdy.
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y=1

1 -
8] ‘ ;

0 1 2 3 \\ 4 5 g/ 7 g

/
Yy = Hill(;i:]\\ /-/
\"*-. i
-1 =
Proof.

Now we must be careful about the lower line, because writing simply x = arcsin (y) will not work as arcsin (y) has

range [—7%, 5| and is always increasing. Thus we must separate the lower curve y = sin (x) into the two curves x =

7 — arcsin (y) (on the left) and x = arcsin (y) + 27 O

3. HOMEWORK NUMBER 8

3.1. Question 1.

e Let U € Open (R™)
e Let f: U — R™ be a continuously differentiable vector field on U.
e Let I(x) C R be the maximal interval at x € R™ for which a solution for the differential equation equation

VO =) e o
Yx (0) =x

exists uniquely.
e DefineQ:={(t,x) e RxU|teI(xo)}
e Define ¢ : Q — R™ as the flow of the vector field, that means,
et x) = yx(t)
where v is the solution to (3), for all (t, x) € I(x) x U. That is, we know that

Qe (t, x)  =Tf(d(t, %))
¢ (0, x) =x
e Assume ¢ is continuously differentiable.

o Let £{o € R™ and xp € R™ be given.
e Define & :1(xo) — R™ by

vx € R™, vt € R

E(M): = ((0xd) (1, x0)) (Eo0) 4)

= D (((3xd) (t, x0)) (£0)); & ®)
i€]n

= Y (k) x0)) (E0); & ©)
i€Jnj€ln

= ) ((axjd)i) (t, Xo)) (o) €1 @)
(i,j)ejR

3.1. Claim. & fulfills the differential equation equation {il((()s) = 1;' (¢ (t, x0)) '
= &0

Proof. Plug in 0 into (4) to obtain
£(0) = ((0x®) (0, x0)) (&0)
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but observe that

((0x®) (0, x0)) =

e Thus, indeed & (0) = &.
e Next,

g (t)

i€)n

so that
(35,0t0) (£, %)

uous.

Bl
i€)n
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> ((x.d5) (0, x0)) Ej

(ij)eJi

(0, te : (0,
Z £ hm xo +téi) — ;5 (0, xo)
t—0 t

J)eln

(1,

(xo +téy); — (x0);
Z Eﬂhm 0 ko 0’}
t

JETA

> iy

(ij)eJi

Z Ei

ie
1

1
(

Jn

where E;-i is the unit vector of the matrix with 1 on the jth row and ith column, and zero otherwise.

D e l(deks) (1))

1) (t %0)) (aon)]

j€Jn

3105, (1, on) (£0);

= .Z i (95,011 (1, x0) ) (£0);

Y ((0xfi) o 0) (axjdn)) (t, x0) (£0);

i (0, f1) 0 d) (t, x0) (axjd)l) (t, x0) (£0);

(f"(p(t,x0)))ir &(t)

where in * we have used theorem 9.40 in [1] which states that if 0+ ¢, Ox; d and Ox; 0t exist on all point of Q and

Ox; 0t is continuous at some (to, xo0) € Q. Then there exists (at Ox; d)) (to, xo) which is equal to:

(3:35,®) (to, x0) = (95,244 [to, xo)
e Now, As ¢ is assumed to be continuously differentiable, 3¢ ¢ and dx; ¢ exist. By definition, (0¢+¢) (t, x) = f (P (t, x))

0, (@ (¢, X))
> (0 (@t %) (941 (t, X))

l€)n

because ¢ is continuously differentiable, f is continuously differentiable, then (axj 0t d)) (t, x) exists and is contin-

O

3.2. Question 3.

e Observe it is not necessary to write down what the solution for x would be. Don’t make life harder than what it has

to be.

o Need to prove [exp (A)]" =exp (AT), and [A, AT] = 0. Both are easy.

3.3. Question 5.
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1
1

exp (At) = eXP(E _1]]t) L
R [ AN

IR (DI
i

exp (1+1)1) 0 i1
0 exp ((1—1)t) 1

e Observe thatif A = { _]1} then the eigenvalues are 1+ 1 and the eigenvectors are [” and {_1] so that

1

1t' i exptt 0 i —1
—1 exp (—it)| |i

_ —let [ 1] {wxp (it) —exp 1t
(i

2| 1] liexp( exp (—
1y '—exp it) —exp (—it) —iexp (lt + iexp (—it)
- 72¢ liexp (it) —iexp (—it) —exp (it) —exp (—it)

t [Cos (t) —sin (t)}

sin(t) cos(t)
This is a rotation by t radians counter-clockwise and a dilation by e'.
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