ANALYSIS 2
RECITATION SESSION OF WEEK 3

JACOB SHAPIRO

1. DIFFERENTIATION IN BANACH SPACES—THE FRECHET AND GATEAUX DERIVATIVES

Following [1] (which deals only with the Banach spaces R™, whereas we generalize the definitions), we define the concept
of differentiability in Banach spaces. In what follows, X and Y denote two Banach spaces and E € Open (X). Furthermore,
fcYFandx € E.

1.1. Definition. (Fréchet derivative) f is called differentiable at x iff 3 a linear map A € YX such that

lim M+ —fO) =AMy _

0 1
h—0x Ihx @

in which case we write f’ (x) = A.

1.2. Example. Let f : R? — R be given by {?] — (x1)% + (x2)%. Then f is differentiable for every x € R? and f' (x) : R —» R
2

is given by [T] = [2x1 2x2] [r] or simply f/ (x) = [2x;  2x,]. To see this, calculate the limit:
2 2

(X1 +h1)2 + (2 +h2)? = (x1)2 = (x2)* = [2x1 2x2] {Ej

If(x+h)=f(x) —AM)|g

. . R
Wi Thilge = A8, e
0l
hrtge e
= 0

1.3. Remark. Observe that if equation (1) holds for both A and B then A = B ([1] Theorem 9.12).

1.4. Remark. Observe that f’ defines a map from E — £ (X, Y), x — (h— A (h)Vh € X). As E and £ (X, Y) are both Banach
spaces, we may ask what is the derivative of this map. It turns out that the derivative is just A again:

o JAGHR) —A ) =AMy

0
h—0x Ml x

by linearity of A.
1.5. Claim. (Remark 9.13 (c) in [1]) If f is differentiable at x then f is continuous at x.

1.6. Definition. (Gateaux derivative) If for some h € X and t € R the limit
f(x+th)—f(x)

lim
t—0 t
exists then we define (01, f) (x) := limy_,¢ w and call it the partial (or Gateaux) derivative of f at x in the direction

defined by h. Note that [(31,f) (x)] € Y. We also say that f is Gateaux differentiable in the direction of h at x.

1.7. Claim. If f : X — Y is differentiable at x € X then it is Gateaux differentiable in any direction h € X and we have
(f’ (x)) (h) = (O 1) (x). (Theorem 9.17 in [1]).

To be concrete, if f: R™ — R™ then

(aé] (f»éﬂ)(x) (aén (f~é1)) (x)
() =h s h
(aé1 (f-ém)) (x) ... ... (aén (f- ém)) (x)
and in our example above 1.2, we can compute
700 = (06100 (3,1 ()]
= [2)(1 ZXZ]

so that we see we can think of 3¢, f can be thought of as the ordinary derivative of f (from Analysis 1) as if it only depended
on x; and all other variables of it are constant. This also gives you a “recipe” to compute f’ (x) using the partial derivatives,
which you know how to compute, from methods of Analysis 1.
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1.8. Example. (Problem 9.6 in [1]) Define f : R? — R by *2 g .
X1X2 X]
(x1)%+(x2)? LJ 7 [0:|

1.9. Claim. fis not continuous at [8} ,and so, by 1.5 f is not differentiable.

Proof. For f to be continuous at {g] we need to have that Ve > 0 3 some 6 > 0 such that if ||x||gz < b then ||f (x) —f (0)||g1 <

e. Explicitly, if 4/ (x1 )2 + (x2)? < & then (x)leﬁ < ¢. This can be easily seen to be impossible because
1 2
X1X2 X1 X2
(x1)% + (x2)? ()% + (x2)? (1)* + (x2)?

= [%illX2

ifwepick e = % because [%1][X2| = |cos (0) sin (0)| where 6 is the angle between x and the €1, and, in general, |cos (6) sin (8)| €
[0, 3]. 0

1.10. Claim. 9;f and 9,f exist for every point x € R.

Proof. At any point x # 0 we have

d N S L
( ]f) (X) 1()(1 )2+(X2)2

% [0 4 (62)?] = il 2]

[0 + (20%)°
)2

(x2)* — (x1

T e e

2 2
L(lez- At x = 0 we have

and by symmetry (0,f) (x) =x;
(x1)2+(x2)?]
(3;£)(0) = lim fl0+tér)—f(0)

t—0 t
t
(1)
= lim ——%
t—0 t
t0
_ lim t2+02
t—0 t
= 0
and similarly by symmetry (9,f) (0) = 0. O

1.11. Corollary. As a result we see that even though for this f the partial derivatives exist everywhere, f is not differentiable, and so it
is clear that existence of partial derivatives do not necessarily imply that f is differentiable. Using Theorem 9.21 in [1] we see that we
would need the partial derivatives to also be continuous for f to be differentiable, which, in this case, they are not (as you should verify).

2. HINTS FOR SOLVING HOMEWORK NUMBER 3

2.1. Question 1.

e There is nothing to this question other than computing many partial derivatives. You will need to use Theorem 9.21
in [1] to conclude from the partial derivatives that your maps are indeed differentiable.

2.2. Question 2.

e Problem 9.14 in [1]. Be careful of the derivative of f at 0. Try a lucky guess and then verify that it is indeed the
derivative at 0.

2.3. Question 4.

e Problem 9.10 in [1]. Thus, try a condition on U, such as convexivity. Try to find a weaker condition on U.

2.4. Question 3.

e The “catch” here is that there is a product of two Banach spaces, and this defines a new Banach space with its
corresponding norm, as defined on the page.
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e Use the definition, together with the “guess” that 3/ (B]}) = [B(— y2) B (y1, —)]sothat P]} = B (T, y2) +
2

Y2
B (y1, §2). Then show that this adheres to 1.1.
e Use the chain rule ([1] Theorem 9.15):

2.1. Claim. Let E € Open (X), Z be a Banach space, and g : U — Z where U € Open (Y) such that U D f(E). If fis
differentiable at x and g is differentiable at f (x) then the mapping gof : E — Z defined by (gof) (x) = g (f(x)) is
differentiable at x and (go f)’ (x) = [g’ (f (x))] o [f’ (x)].

Using this, g = B o fand so g’ (x) = [B’ (f (x))] o [’ (x)], where T : X7 x X3 = Y7 x Y2 (x1, x2) LN (f1 (x1), f2 (x2)).
Then f/ ((x1, x2)) = [f] (x1) f} (x2)]. Now use (a).

3. REVIEW OF HOMEWORK NUMBER 1

e We will (hopefully) review question: 2 (partly), 5 (second part), and 3 and 4 (b) if there is time. You may find the
full discussion in the solutions.

REFERENCES
[1] Walter Rudin. Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill Science/Engineering/Math, 1976.
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" B'( ‘
» Usc the definition, together with the “guess” that B’ (ELJ) = [B (= y2) By, —)] so that B;] ._y>z B (91, ya2)+

(Y1, yz2). Then show that this adheres to 1.1.
e Use the chain rule ([1] Theorem 9.15):

2.1. Claim. Let E € Open (X), Z be a Banach space, and g : U —+ Z where U € Open (Y) such that U 2 f(E). If fis
differentiable at x and g is differentiable at f(x) then the mapping gof : E — Z defined by (gof) (x) = g(f(x)) is
differentiable at x and (gof)’ (x) = [g’ (f (x))] o [f’ (x)].

Using this, g = Bofand so g’ (x) = [B’ (f(x))] ¢ [f’ (x)], where f : X; x X2 = Y; x Y3 (x1, x2) R (f1(x1), f2(x2)).
Then £ {(x1, xa)) = [f] (1) ] (x2)]. Now use (a).

3. REVIEW OF HOMEWORK NUMBER 1

e We will (hopefully) review question: 2 (partly), 5 (second part), and 3 and 4 (b) if there is time. You may find the
full discussiorn in the solutions.

REFERENCES
[1] Waiter Rucu. Principles of Mathematical Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill Science/ Engineering/Math, 1976.
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