
ANALYSIS 2
RECITATION SESSION OF WEEK 3

JACOB SHAPIRO

1. DIFFERENTIATION IN BANACH SPACES–THE FRÉCHET AND GÂTEAUX DERIVATIVES

Following [1] (which deals only with the Banach spaces Rn, whereas we generalize the definitions), we define the concept
of differentiability in Banach spaces. In what follows, X and Y denote two Banach spaces and E 2 Open (X). Furthermore,
f 2 YE and x 2 E.

1.1. Definition. (Fréchet derivative) f is called differentiable at x iff 9 a linear map A 2 YX such that

lim
h!0

X

kf (x+ h)- f (x)-A (h)k
Y

khk
X

= 0 (1)

in which case we write f 0 (x) = A.
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1.3. Remark. Observe that if equation (1) holds for both A and B then A = B ([1] Theorem 9.12).

1.4. Remark. Observe that f 0 defines a map from E ! L (X, Y), x 7! (h 7! A (h) 8h 2 X). As E and L (X, Y) are both Banach
spaces, we may ask what is the derivative of this map. It turns out that the derivative is just A again:

lim
h!0

X

kA (x+ h)-A (x)-A (h)k
Y

khk
X

= 0

by linearity of A.

1.5. Claim. (Remark 9.13 (c) in [1]) If f is differentiable at x then f is continuous at x.

1.6. Definition. (Gâteaux derivative) If for some h 2 X and t 2 R the limit

lim
t!0

f (x+ th)- f (x)

t

exists then we define (@
h

f) (x) := lim
t!0

f(x+th)-f(x)
t

and call it the partial (or Gâteaux) derivative of f at x in the direction
defined by h. Note that [(@

h

f) (x)] 2 Y. We also say that f is Gâteaux differentiable in the direction of h at x.

1.7. Claim. If f : X ! Y is differentiable at x 2 X then it is Gâteaux differentiable in any direction h 2 X and we have
(f 0 (x)) (h) = (@

h

f) (x). (Theorem 9.17 in [1]).

To be concrete, if f : Rn ! Rm then

f 0 (x) = h 7!
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and in our example above 1.2, we can compute

f 0 (x) =
⇥�
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so that we see we can think of @
ê

j

f can be thought of as the ordinary derivative of f (from Analysis 1) as if it only depended
on x

j

and all other variables of it are constant. This also gives you a “recipe” to compute f 0 (x) using the partial derivatives,
which you know how to compute, from methods of Analysis 1.
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1.8. Example. (Problem 9.6 in [1]) Define f : R2 ! R by
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1.9. Claim. f is not continuous at

0

0
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, and so, by 1.5 f is not differentiable.

Proof. For f to be continuous at
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1.10. Claim. @
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Proof. At any point x 6= 0 we have
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and similarly by symmetry (@
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f) (0) = 0. ⇤

1.11. Corollary. As a result we see that even though for this f the partial derivatives exist everywhere, f is not differentiable, and so it

is clear that existence of partial derivatives do not necessarily imply that f is differentiable. Using Theorem 9.21 in [1] we see that we

would need the partial derivatives to also be continuous for f to be differentiable, which, in this case, they are not (as you should verify).

2. HINTS FOR SOLVING HOMEWORK NUMBER 3

2.1. Question 1.
• There is nothing to this question other than computing many partial derivatives. You will need to use Theorem 9.21

in [1] to conclude from the partial derivatives that your maps are indeed differentiable.

2.2. Question 2.
• Problem 9.14 in [1]. Be careful of the derivative of f at 0. Try a lucky guess and then verify that it is indeed the

derivative at 0.

2.3. Question 4.
• Problem 9.10 in [1]. Thus, try a condition on U, such as convexivity. Try to find a weaker condition on U.

2.4. Question 3.
• The “catch” here is that there is a product of two Banach spaces, and this defines a new Banach space with its

corresponding norm, as defined on the page.
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• Use the definition, together with the “guess” that � 0
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). Then show that this adheres to 1.1.
• Use the chain rule ([1] Theorem 9.15):

2.1. Claim. Let E 2 Open (X), Z be a Banach space, and g : U ! Z where U 2 Open (Y) such that U ◆ f (E). If f is
differentiable at x and g is differentiable at f (x) then the mapping g � f : E ! Z defined by (g � f) (x) ⌘ g (f (x)) is
differentiable at x and (g � f) 0 (x) = [g 0 (f (x))] � [f 0 (x)].

Using this, g = � � f and so g 0 (x) = [� 0 (f (x))] � [f 0 (x)], where f : X
1
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2
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2
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. Now use (a).

3. REVIEW OF HOMEWORK NUMBER 1

• We will (hopefully) review question: 2 (partly), 5 (second part), and 3 and 4 (b) if there is time. You may find the
full discussion in the solutions.
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