ANALYSIS 2
RECITATION SESSION OF WEEK 5

JACOB SHAPIRO

1. EXERCISE SHEET NUMBER 5

1.1. Convex Sets and Convex Functions. Let X be a vector space.
1.1. Definition. A convex set is a set U C X such that if (x7, x2) € UZ then [tx; + (1 —t)x,] € U forall t € [0, 1].
The picture you should have in mind is that the straight line between each two points in U is entirely inside of U.
1.2. Example. R™ is convex.
1.3. Example. A set in R? which looks like a horse hoove is not convex.

1.4. Definition. Let U be a convex subset of a vector space. Then a map f : U — R is convex iff f (tx+ (1 —t)y) < tf(x) +
(1—t)f(y) forallt e [0, 1] and (x, y) € U2.

1.5. Example. Let ||-|| : R™ — R be a norm on R™. Then |.|| is convex.
Proof. Lett € [0, 1] be given, and let (x, y) € [R™? be given. Then
[tx+(=tyll < [ltx]+ [0 =)yl
= X+ 1T =yl
= tlx[[+ (=1 [yl
]
1.6. Example. Let f : R? — R be given by x + x1x2. Then f is not convex.
Proof. Lett € [0, 1] be given, and let (x, y) € []RZ]2 be given. Then
_ _ tX] + (1 —t)y]
ftx+(1—-ty) = f([t)q—&—ﬂ )y,
= (txg+ (T =ty (txa+(1-t)y2)
= t2x2 + (1 =82 yry2 +t(1—t) (x1y2 +y1%x2)
= P+ (1-02fly) +t(1—1) (xay2 +yix2)
Pick x = {ﬂ andy = B} then we have
fitx+(1—t)y)=t(1—t)Vt
whereas
tf(x)+ (1 —1t) f(y) =0Vt
and so any t € [0, 1] violates the convexivity condition. O

1.2. Critical Points, Saddle Points Local Minima and Maxima. Let X and Y be Banach spaces, E € Open (X), and let
feC3(EY).
1.7. Definition. A critical point of f is a point xo € E such that either 3, (xg) = 0 Vv € X or #,f (xo) for some v € X.

(Think of x — |x| when at 0 this map is not differentiable).
Now assume X and Y are finite dimensional. Recall that we may approximate f near an extremum point via

Flxo +x) = fxo) + 5 (x, Hxo) )

1.8. Claim. If the Hessian matrix (9;0;f) of f is positive definite at an extremum point xo then x is a local minimum. If the
matrix is negative definite then x, is a local maximum. Otherwise it is a saddle point.

Observe that a matrix M is positive definite iff (v, Mv) > 0 for all vectors v. That means iff viMv > 0. If we write
M = PDP~! where D is diagonal, then, this is equivalent to requiring that v! Dv > 0 for all vectors v, which means

n

> w)*(D)y

i=1
so that if all the entries of D are positive, then we get a positive result no matter which v we pick. If there are mixed signs
then that is no longer the case.
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1.9. Exercise. Let f : R? — RR be given by x +— (x; ) —8(x1)? + (x2)* — 18 (x2)?. Find the extrema of f.
Proof. We first compute the Jacobian and matrix:
Nfx) = 43 —16x1 =4xg (x% —4)
d2f (x) = 4x3 — 36x2 = 4x> (x§ — 9)
4x1 (x3—4) =0

clearly these partial derivatives always exist, and so we need to find points where they are all zero: {4 (3 —9) 0
X2 Xz — =

0] [£3 0 +3
Now compute the second partial derivatives to be able to compute the Hessian matrix:

and so the we have { [O} , { 0 } , {12} , {12} }, all together nine points.

f(x) = 12x2—16=4 (3x% —4)
0,0:f(x) = 0
2f(x) = 12x3-36=12 (x% ,3)
12x3 —16 0 .
and so we have H (x) = 5 and at the extremum points we have:
0 12x3 — 36
[0 0 —l6 0 L. . .. 0] . .
1 :H = which is negative definite and so is a local maximum.
0 0 0 =36 0
(2) 0], H O\ _[te © which is indefinite and so 0 are saddle points
3 \#3)) T o 72 +3 POMS:
[+2] [£2] 320 e - +2 .
3) o) H < 0 ) =lo -3 6] which is indefinite and so [ 0 } are saddle points.
[+2] [+2] 32 0 Lo - - +2 ..
4) 13’ H ( 3] ) = 0 72] which is positive definite and so { i?l are local minima.

1.3. Multi-Index Notation. Letn € N\{0}. Let (e, B) € [[NU{0 }}“]2 and x € R™. Define

[l := i o
(5)-T1(3)

ledly o _lledlt
o ) [Ty ot

x* = 0™
i=1
n

0% = JJoi
i=1

This makes certain notations much easier. For example, for Taylor approximations:

f(x+h) = > %(a“f(x))h“
aeNU{O ™ ™



	1. Exercise Sheet Number 5
	1.1. Convex Sets and Convex Functions
	1.2. Critical Points, Saddle Points Local Minima and Maxima
	1.3. Multi-Index Notation


