The Zeta Function

\[\forall \operatorname{sec} C \text{ s.t. } \operatorname{Re} z > 1, \text{ define} \]

\[\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s} \]

\[\text{Undefined} \quad \text{Defined} \]

\[\Re[z] \]

Observe that \(\{ \operatorname{sec} C \mid \operatorname{Re} z > 1 \} \in \operatorname{Open}(C) \)

We are interested in an analytic continuation of \(\zeta(s) \), that is, a map \(\zeta(s) : C \to C \) s.t. \(\zeta(s) = \zeta(s) \forall \operatorname{sec} C \text{ s.t. } \operatorname{Re} z > 1 \).

By the identity theorem of holomorphic functions and the connectedness of \(C \), such a continuation is unique.

"Riemann's 2nd Proof" shows that such a \(\zeta \) exists over the whole of \(C \) except at \(1 \), where it has a simple pole with residue 1.

Moreover, it obeys the functional equation:

\[\pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s) = \pi^{-\left(s-\frac{1}{2}\right)} \Gamma\left(1-\frac{s}{2}\right) \zeta(1-s) \forall \operatorname{sec} C \setminus \{1\}. \]

Thus, we find, for example,

\[\zeta(-1) = \frac{-\pi^{-1/2} \Gamma(1) \zeta(2)}{\pi^{1/2} \Gamma(-1/2)} \]

But \(\zeta(2) = \zeta(2) \) because \(\operatorname{Re} z > 1 \) and so in that area the analytic continuation must match the def. of \(\zeta \).

If you use methods of analysis I you can prove \(\zeta(2) = \frac{1}{\pi^2} \frac{d}{dx} = \frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{4}{n^2} \).

\[\Gamma(1) = 1 \]

Furthermore, you may also find that \(\Gamma(-1/2) = -2\sqrt{\pi} \).

Thus we find \(\zeta(-1) = \frac{\pi^{-2} \pi^{3/2}}{2\sqrt{\pi}} = -\frac{1}{12} \).

So this is how we get the mysterious result:
1 + 2 + 3 + 4 + 5 + ... = -1/2

Which actually means nothing, and is only meaningful as a link with the analytic continuation of the zeta function.
(Polchinski pp. 22)

A "silly" way to obtain the same results:

\[S_1 := 1 - 1 + 1 - 1 \ldots \]
\[S_2 := 1 - 2 + 3 - 4 \ldots \]
\[S' := 1 + 2 + 3 + 4 \ldots \]

\[S_1 \text{ actually diverges between 0 and 1 } \text{(depending on how many terms one counts—even or odd)} \text{ so assign its value as the avg, } \frac{1}{2}. \quad S_1 := \frac{1}{2} \]

\[2S_2 = 1 - 2 + 3 - 4 \ldots + 1 - 2 + 3 - 4 \ldots = 1 - 1 + 1 - 1 \ldots = S_1 = \frac{1}{2} \]

\[\Rightarrow S_2 = \frac{1}{4} \]

\[S - S_2 = 1 + 2 + 3 + 4 \ldots - \left[1 - 2 + 3 - 4 \ldots \right] = 4 + 8 + 12 + \ldots = 4(1 + 2 + 3 + \ldots) = 4 \cdot \frac{1}{2} = 4S' \]

\[\Rightarrow S - \frac{1}{4} = 4S' \Rightarrow S = -\frac{1}{12} \]

Physics concept of regularization:

\[1 + 2 + 3 + \ldots \]

comes up in a calculation. But this is a physics calculation, so it must be finite. \(\Rightarrow \) Assume we derived the calculation in the wrong approach and what we really should’ve come up with was \(\zeta(-1) \), which is indeed finite.

Why is this useful for string theory?

When calculating the energy spectrum of an open string in \(D \) dimensions, there is some constant in the energy function of the system (the Hamiltonian) given by \(A = \frac{D-2}{2} \sum_{n=1}^{\infty} n \).

It turns out that in order to preserve Lorentz invariance, the value of \(A \) must be \(A = -1 \). Thus using \(\zeta(-1) = -\frac{1}{12} \), we obtain the spacetime dimension of the universe, namely \(D = 26 \).