Calculus 1–Section 2–Spring 2019–HW2

Donghan Kim

February 4, 2019

Functions

Exercise 1

Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is strictly monotone increasing but not injective.

Exercise 2

Let $f: A \to B$ is a function with |A| = 3. Show that the following holds:

- 1. If f is injective, then $|B| \geq 3$.
- 2. If f is surjective, then $|B| \leq 3$.
- 3. If f is bijective, then |B| = 3.

Exercise 3

Find $f \circ g$, and $g \circ f$ and their appropriate domains and co-domains for the following formulae:

1.
$$f(x) = \sqrt{x+1}$$
, $g(x) = \sin x$

2.
$$f(x) = e^x$$
, $g(x) = -x^2 + 4x$

Express each function in the form $f \circ g$.

$$4. \sin^2(\frac{1}{x})$$

$$5. \sqrt{2|x|}$$

6. $5\sin(x) + 6$

Exercise 4

Sketch the graph and describe the image of each function $\mathbb{R} \to \mathbb{R}$:

- 1. $f(x) = -(x-3)^2 + 4$
- 2. $f(x) = 4\sin(x \frac{\pi}{2})$
- 3. $f(x) = e^{-x} + 5$

Draw the set of all points $(x,y) \in \mathbb{R}^2$ satisfying the following equations:

- 4. |x| + |y| = 1
- 5. xy = 0
- 6. $x^2 = y^2$

Limits

Exercise 5

Determine whether the sequence converges or diverges. If it converges, find the limit.

- 1. $\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \cdots\right\}$
- 2. $\{4, -1, \frac{1}{4}, -\frac{1}{16}, \frac{1}{64}, \cdots\}$
- 3. $\{\sin(0), \sin(\frac{\pi}{2}), \sin(\pi), \sin(\frac{3\pi}{2}), \sin(2\pi), \dots\}$
- 4. $\left\{\frac{1}{2}, \frac{4}{3}, \frac{9}{4}, \frac{16}{5}, \frac{25}{6}, \cdots\right\}$

Exercise 6

Find the limit of the following functions. If the limit does not exist, explain why. If the limit diverges, then determine whether it is ∞ or $-\infty$:

ii

- 1. $\lim_{x \to 0} \frac{x^2 1}{x 1}$
- $2. \lim_{x \to \infty} \frac{x^2 1}{x 1}$
- 3. $\lim_{x\to 0} 2^{2^x}$
- 4. $\lim_{x \to \infty} \frac{\sin(5x)}{x}$
- 5. $\lim_{x \to 0} \cos(3x) \cdot \sin(\frac{1}{x})$