The Jacobian Identity

(Wald Ch. 2 Ex. 3)

Let A, B, C be vector fields on the manifold M. That means they are sections in the tangent bundle TM.

Let $f \in \mathcal{F}(M)$. For any point $p \in TM$, so $A(p) : \mathcal{F}(M) \to \mathbb{R}$. Hence $(A(p))(p) \in \mathbb{R}$. Thus $p \mapsto (A(p))(p)$ is again in $\mathcal{F}(M)$.

Thus, it makes sense to compose vector fields together, as $A \circ B = A(p \mapsto (B(p))(\cdot))$. [A acts on the map where]

However, note that $A \circ B$ is not a tangent field since it doesn't have the Leibnitz property:

$$(AB)(fg) = A(p \mapsto (B(p))(f(g)))$$

But Leibnitz -

$= A(p \mapsto (B(p))(f(g)) + f(p))(B(p))(g))$$

$= A(p \mapsto (B(p))(f(g)) + (f(p))(B(p))(g))$$

$= A(p \mapsto f(p))(B(p))(g)) + A(p \mapsto B(p))(g))$$

$= (A(\cdot))(p) f(g) + B(\cdot)(p) A(\cdot)(g) + (A(\cdot))(p) B(\cdot)(g)$$

However, the commutator $[A, B] = AB - BA$, does:

$[AB](fg) = (AB)(p) f(g) + B(p)(A(g)) + A(p)(B(g))$$

$= (BA)(p) g - A(p)(B(g)) - B(p)(A(g))$$

$= (LA, B)(p) g + p(LA, B)(g)$
\[\text{(i) } \mathcal{C}_{i}^{0} \quad [A, [B, C]] + (\text{cyclic permutations}) = 0 \]

\[\text{Pr.1.} \quad [A, [B, C]] = [A, BC - CB] = ABC - ACB - BCA + CBA \]

\[= ABC - ACB - BCA + CBA + BCA - BAC - CAB + ACB + CAB - CBA - ABC + BAC = 0 \]

\[\text{(ii)} \quad \text{Let } \{Y_{i}\}_{i=1}^{n} \subseteq \Gamma(M) \text{ be } n \text{-vector fields s.t. } V_{p}M. \]

\[\{Y_{i}(p)\}_{i=1}^{n} \text{ is a basis of } T_{p}M. \]

\[\text{Note } [Y_{i}, Y_{j}] \in \Gamma(M), \text{ so we may expand it at each point } p \in M \text{ using the basis } \{Y_{i}(p)\}_{i=1}^{n}: \]

\[[Y_{i}, Y_{j}] = C_{k}^{i} Y_{k} \quad \text{(this eqn defines the expansion coefficients } C_{k}^{i}). \]

\[\text{Cl.1.} \quad C_{k}^{i} = -C_{k}^{i} \]

\[\text{Pr.1.} \quad C_{k}^{i} = [Y_{i}, Y_{j}]_{k} = (-[Y_{j}, Y_{i}])_{k} = -[Y_{j}, Y_{i}]_{k} \]

\[= -C_{k}^{i} \]

\[\text{Note that since everything is a function of the point } p \in M, \]
\[C_{k}^{i} \text{ are also } p \text{-dependent and so they are maps } M \rightarrow \mathbb{R}. \]

\[\text{Cl.1.} \quad C_{k}^{i} C_{j}^{k} + C_{k}^{i} C_{i}^{j} = Y.C_{i} + Y.C_{j} + Y.C^{i} + Y.C^{j} \]

\[\text{Pr.2.} \quad \text{By the Jacobi identity we have for any } (i, j, k) \]
\[\text{in } \{1, \ldots, n\}^3: \]

\[[Y_{i}, [Y_{j}, Y_{k}]] + (\text{cyclic perm.}) = 0 \]
About the Lie Derivative \mathcal{L}

Let M be a smooth manifold of dimension $n \in \mathbb{N}_{\geq 1}$.

Let $X \in \mathfrak{X}(M)$ (a vector field; a section on TM).

That means that there is a flow $\phi^X((\cdot),t) : \text{Aut}(M) \to \text{Aut}(M)$ associated with X as follows:

$$\phi^X((\cdot),0) = \text{id}$$

$$\phi^X((\cdot),t) \circ \phi^X((\cdot),s) = \phi^X((\cdot),t+s), \quad \forall t,s \in \mathbb{R}$$

Note that the RHS of the first equation is a tangent vector at $((\phi^X((\cdot)),(t))(p))$ indeed. Also note that we
1 Notation

Let $\varphi : U_\varphi \to \mathbb{R}^n$ and $\psi : U_\psi \to \mathbb{R}^n$ be two charts near some $p \in \mathcal{M}$.

Then we define basis vectors of $T_p \mathcal{M}$ corresponding to these charts as $d_i^\varphi := \left[\partial_i (\cdot \circ \varphi^{-1}) \right] \circ \varphi$. Note that this is really a vector field defined in a neighborhood of p. In a point $q \in \mathcal{M}$ it is a tangent vector: d_i^φ at q is $\partial_i|_{\varphi(q)} (\cdot \circ \varphi^{-1})$. There are analogous definitions for ψ. We define the expansion coefficients of a vector field X in the basis corresponding to φ as X_i^φ:

$$X = X_i^\varphi d_i^\varphi$$

so that $X_i^\varphi \equiv X (\varphi_i)$ with $\varphi_i := \pi \circ \varphi$ and $\pi : \mathbb{R}^n \to \mathbb{R}$ is the natural projection. The transition rule (going from φ to ψ) for the expansion coefficients may be derived easily as

$$X_i^\psi \equiv X \left(d_i^\psi \right) = X_j^\varphi d_j^\varphi (\psi_i)$$

so that we define

$$M_{ij}^{\psi \varphi} := d_j^\varphi (\psi_i)$$

and get

$$X_i^\psi = M_{ij}^{\psi \varphi} X_j^\varphi$$

Similarly, we can move the basis vectors themselves:

$$d_i^\psi = d_i^\varphi (\varphi_j) d_j^\psi = M_{ij}^{\psi \varphi} d_j^\varphi$$

We also have a natural basis for $(T_p \mathcal{M})^*$, given by the dual of d_i^φ. Explicitly it is given by

$$e_i^\varphi := \cdot (\varphi_i)$$

That is, given any tangent vector X, $e_i^\varphi (X) \equiv X (\varphi_i) = X_i^\varphi$. The expansion coefficients of a 1-form ω are given by

$$\omega_i^\varphi = \omega (d_i^\varphi)$$

so that

$$\omega = \omega^\varphi e_i^\varphi$$

and the transformation rule for the expansion coefficients is

$$\omega_i^\psi = \omega_i^\varphi (\varphi_j) = N_{ij}^{\psi \varphi} \omega_j^\varphi$$

But $e_j^\psi \left(d_i^\psi \right) \equiv d_i^\psi (\varphi_j) = N_{ij}^{\psi \varphi}$ so that we get

$$\omega_i^\psi = N_{ij}^{\psi \varphi} \omega_j^\varphi$$

and of course the dual basis vectors transform again in the opposite way compared to the expansion coefficients:

$$e_i^\varphi = e_i^\psi (d_i^\varphi) e_j^\varphi = d_j^\varphi (\psi_i) e_j^\varphi = M_{ij}^{\varphi \psi} e_j^\varphi$$

We find that the expansion coefficients of a general (k, l) tensor T transform as

$$T_{i_1 \cdots i_k j_1 \cdots j_l} = M_{i_1 i_k}^{\varphi \psi} M_{j_1 j_l}^{\psi \varphi} N_{i_1}^{\psi \varphi} N_{j_1}^{\psi \varphi} T_{i_k j_l}^{\psi \varphi}$$
2 Properties of the Transition Matrices

1 Claim. We have $N_{ij}^{\psi \varphi} M_{ik}^{\psi \varphi} = \delta_{jk}$ and $N_{ij}^{\psi \varphi} M_{kj}^{\psi \varphi} = \delta_{ik}$.

Proof. We start by plugging in the definitions

$$N_{ij}^{\psi \varphi} M_{ik}^{\psi \varphi} \equiv \frac{\partial}{\partial \phi_j} (\varphi_j) \frac{\partial}{\partial \psi_i} (\psi_i)$$

we swap out φ_j and ψ_i for e_j^φ and e_i^ψ respectively, because it is more transparent then that these are dual vectors to the d^i’s. We get

$$N_{ij}^{\psi \varphi} M_{ik}^{\psi \varphi} = d_i^\psi (e_j^\varphi) d_k^\psi (e_i^\psi)$$

Now we use the fact that $d_i^\psi \otimes d_i^{\psi *} = \mathbf{1}$ because $\{d_i^\psi\}_{i=1}^n$ is an ONB of T_pM for each p in the domain of that basis. Thus

$$N_{ij}^{\psi \varphi} M_{ik}^{\psi \varphi} = \langle d_i^\psi, d_k^\psi \rangle$$

and again using the fact that $\{d_i^\psi\}_{i=1}^n$ is a basis one obtains the proper result. The other result is obtained by repeating the argument with $\varphi \leftrightarrow \psi$.

2 Corollary. We have $d_i^\psi \left(N_{ij}^{\psi \varphi} \right) M_{ik}^{\psi \varphi} = -N_{ij}^{\psi \varphi} d_i^\varphi \left(M_{ik}^{\psi \varphi} \right)$.

Proof. Apply d_i^ψ on the foregoing equation. Since δ_{ik} is a constant scalar function, we get zero on the left hand side (as a tangent vector working on any scalar function is zero). On the right hand side we use the Leibniz property of d_i^φ.

3 Claim. We have $d_k^\psi \left(M_{ij}^{\psi \varphi} \right) = d_i^\varphi \left(M_{ik}^{\psi \varphi} \right)$.

Proof. If we expand out the definitions we will find that this boils down to the fact that $[d_i^\varphi, d_j^\varphi] = 0$, which is always true for basis tangent vectors which correspond to charts, which is what d_i^φ is. Indeed,

$$M_{ii', k} - M_{ik, i'} \equiv d_k^\psi (M_{ii'}) - d_k^\psi (M_{ik})$$

$$= d_k^\psi (d_i^\varphi (\psi_i)) - d_k^\psi (d_i^\psi (\psi_i))$$

$$= [d_k^\psi, d_i^\varphi] (\psi_i)$$

and $[d_i^\varphi, d_j^\varphi] = 0$ because

$$\left([d_i^\varphi, d_j^\varphi] (f) \right) = d_i^\varphi d_j^\varphi f - (i \leftrightarrow j)$$

$$= [\partial_i (d_j^\varphi f \circ \varphi^{-1})] \circ \varphi - (i \leftrightarrow j)$$

$$= [\partial_i (d_j (f \circ \varphi^{-1})) \circ \varphi \circ \varphi^{-1})] \circ \varphi - (i \leftrightarrow j)$$

$$= [\partial_i (d_j (f \circ \varphi^{-1}))] \circ \varphi - (i \leftrightarrow j)$$

$$= 0$$

as $\partial_i \partial_j = \partial_j \partial_i$.

3 Some short hand notation to make the calculation lighter

From this point onwards, since the charts φ and ψ are fixed, we omit them from the notation. Thus φ is considered the “original” chart and ψ the “new” chart. Consequently, all expansion coefficients in the original chart φ will have φ simply dropped expansion coefficients in the new chart ψ will be denoted by a bar above. We also abbreviate $M_{ij}^{\psi \varphi}$ simply as M_{ij} and the same for N. Finally we also abbreviate $d_i^\varphi (O) \equiv O_i$ for any object O (typically O is an expansion coefficient in φ or ψ carrying itself some indices, but the application of d_i^φ always will be noted with a comma after all other indices).
Hence the transformation law for a vector’s expansion coefficients
\[\overline{X}_i = M_{ij} X_j \]

The transformation law for a dual vector’s expansion coefficients
\[\overline{\mu}_i = N_{ij} \mu_j \]

Transformation law for a \((1, 1)\) tensor’s expansion coefficients
\[\overline{T}_{ij} = M_{i\nu} N_{j\nu'} T_{\nu'j'} \]

Transformation law for a basis vector
\[\overline{d}_i = N_{ij} d_j \]

In the exercise, we “define” the Lie derivative along a vector field \(X\) of the \((1, 1)\) tensor \(T\) via its components as
\[(L_X T)_{ij} = T_{ij,k} X_k - T_{kj,i} X_{i,k} + T_{ik} X_{k,j} \]

To see how it transforms, we must see how its constituent parts transform:
\[\overline{X}_{i,j} = \overline{d}_j (\overline{X}_i) = N_{jj'} d_{j'} (M_{i\nu'} X_{\nu'}) = N_{jj'} d_{j'} (M_{i\nu'} X_{\nu'}) + N_{jj'} M_{i\nu'} d_{j'} (X_{\nu'}) \]

So that \(\overline{X}_{i,j}\) does not transform like a \((1, 1)\) tensor, due to the extra first term (the second term alone is how it should have transformed had it been a \((1, 1)\) tensor).

We have also
\[T_{ij,k} = \overline{d}_k (\overline{T}_{ij}) \]

\[= N_{kk'} d_{k'} (M_{i\nu'} N_{j\nu'} T_{\nu'j'}) = N_{kk'} M_{i\nu'} N_{j\nu'} T_{\nu'j' k'} + N_{kk'} M_{i\nu'} N_{j\nu'} T_{\nu'j' k'} (\text{for “rest”, the first two lines}) \]

So that \(T_{ij,k}\) does not transform like a \((1, 2)\) tensor, due to the extra first two terms (the third term alone is how a \((1, 2)\) tensor should have transformed).

We check however the transformation law of \((L_X T)_{ij}\):
\[(L_X T)_{ij} = T_{ij,k} X_k - T_{kj,i} X_{i,k} + T_{ik} X_{k,j} \]

We know the answer should be:
\[(L_X T)_{ij} \overset{?}{=} M_{i\nu'} N_{j\nu'} (L_X T)_{\nu'j'} \]

So we identify those terms in \((L_X T)_{ij}\) as \(C\) (for “correct”, the last two lines) and \(R\) (for “rest”, the first two lines):
\[C := M_{i\nu'} N_{j\nu'} M_{kk''} T_{\nu'j'} X_{k''} - M_{kk''} N_{j\nu'} M_{i\nu'} T_{k''j'} X_{\nu''} + M_{i\nu'} N_{kk''} M_{j\nu'} T_{\nu''j'} X_{k''} + M_{i\nu'} N_{kk''} M_{j\nu'} T_{\nu''j'} X_{k''} \]

and
\[R := M_{kk''} N_{j\nu'} M_{i\nu'} T_{k''j'} X_{\nu''} + M_{kk''} N_{j\nu'} M_{i\nu'} T_{k''j'} X_{\nu''} - M_{kk''} N_{j\nu'} M_{i\nu'} T_{k''j'} X_{\nu''} + M_{i\nu'} N_{kk''} M_{j\nu'} T_{\nu''j'} X_{k''} \]
We want to show that

\[C \overset{2}{=} M_{ii'}N_{jj'}T_{i'j',k}X_k - M_{ii'}N_{jj'}T_{kj'}X_{i',k} + M_{ii'}N_{jj'}T_{i'k}X_{k,j'} \]

(1)

and that \(R = 0 \).

We start with the first task. In order to do that we must we must “cancel out” factors of \(M \) and \(N \). Take for instance the first term in \(C \):

\[N_{kk'}M_{ii'}N_{jj'}M_{kk''}T_{i'j',k}X_{k''} = (M_{ii'}N_{jj'}T_{i'j',k'}) (N_{kk'}M_{kk''}X_{k''}) \]

Using 1 we find for that term

\[N_{kk'}M_{ii'}N_{jj'}M_{kk''}T_{i'j',k}X_{k''} = (M_{ii'}N_{jj'}T_{i'j',k'}) (N_{kk'}M_{kk''}X_{k''}) \]

\[= (M_{ii'}N_{jj'}T_{i'j',k'}) (\delta_{k''}X_{k''}) \]

\[= (M_{ii'}N_{jj'}T_{i'j',k'}) X_{k''} \]

so we get the first term on the RHS of (1) correctly. We proceed similarly using 1 twice more to find that (1) is correct.

We go on to prove that \(R = 0 \): We use 1 three more times to find:

\[R = N_{kk'}M_{ii',k'}N_{jj'}M_{kk''}T_{i'j',k}X_{k''} + N_{kk'}M_{ii'}N_{jj'}T_{i'j',k'}X_{k''} \]

\[- M_{kk'}N_{jj'}N_{kk''}M_{ii',k'}T_{i'j',k'}X_{i'} + M_{ii'}N_{kk'}N_{jj'}M_{kk''}T_{i'k'}X_{k''} \]

\[= M_{ii',k}N_{jj'}T_{i'j',k}X_k - N_{jj'}M_{ii',k}T_{i'j',k'}X_{i'} \]

\[+ M_{ii'}N_{jj'}T_{i'j',k}X_k + M_{ii'}N_{kk'}N_{jj'}M_{kk''}T_{i'k'}X_{k''} \]

for the first line, in the second term we relabel as \(i' \leftrightarrow k \) to get

\[M_{ii',k}N_{jj'}T_{i'j',k}X_k - N_{jj'}M_{ii',k}T_{i'j',k'}X_{i'} = M_{ii',k}N_{jj'}T_{i'j',k}X_k - N_{jj'}M_{ik',k}T_{i'j',k}X_{k} \]

But now use 3 so the first line of our most recent expression for \(R \) is zero.

We go on to the next line. We relabel in the second term \(j' \leftrightarrow k' \) and \(k \leftrightarrow k'' \) to get

\[M_{ii'}N_{jj',k}T_{i'j',k}X_k + M_{ii'}N_{kk'}N_{jj'}M_{kk''}T_{i'k'}X_{k''} = M_{ii'} (N_{jj',k} + N_{kk'}N_{jj'}M_{kk''}k',k) T_{i'j',k}X_k \]

Now we deal with the term \(N_{k''j'}N_{jk'}M_{kk''}k,k' \). In fact we can rewrite it as

\[N_{k''j'}N_{jk'}M_{kk''}k,k' = N_{k''j'}N_{jk'}M_{kk''}k,k \]

\[= -N_{k''j'}N_{jk'}M_{kk''}k,k \]

\[= -N_{k''j'}N_{jk'}\delta_{jk'} \]

\[= -N_{jj'}k \]

so that we really get zero. In the last expression, used again the fact that \(M_{ij,k} = M_{ik,j} \) (in 3) as proven above already, as well as 2. The proof is finally complete.