Pricing American Options Under Variance Gamma*

Ali Hirsa' Dilip B. Madan?
August 16, 2001

Abstract

We derive a form of the partial integro-differential equation (PIDE) for pricing
American options under variance gamma (VG) process. We then develop a numerical
algorithm to solve for values of American options under variance gamma model. In
this study, we compare the exercise boundary and early exercise premia between geo-
metric VG law and geometric Brownian motion (GBM). We find that GBM premia are
understated and hence we conclude that further work is necessary in developing fast
efficient algorithms for solving PIDE’s with a view to calibrating stochastic processes
to a surface of American option prices.

1 Introduction

A number of authors have recently proposed the use of infinite activity pure jump Lévy
processes as the dynamics for the asset price (Eberlein, Keller and Prause [7], Barndorff-
Nielsen [2] and Madan, Carr and Chang [11]). Further it is argued in Geman, Madan and
Yor [8] that such processes are the norm when it is recognized that time changes with
martingale components are involved in describing the price evolution. At an empirical level,
Carr, Geman, Madan and Yor [5] recognize that the infinite activity of such Lévy processes
effectively synthesizes the role of a diffusion component and reject the introduction of an
additional diffusion component in the presence of a Lévy process that has a Lévy density
integrating to infinity. Much of this research has focused attention on the time series or the
prices of European options.

This paper develops efficient procedures for pricing American options when the under-
lying asset price has dynamics given by a pure jump infinity activity Lévy process. The
methods are illustrated using the example of the variance gamma process introduced in
Madan, Carr and Chang [11]. They are easily adapted to other processes in this class or
jump diffusion models as proposed for example by Bates [3] or Duffie, Pan and Singleton
[6].

We first derive a form of the partial integro-differential equation (PIDE) in the value func-
tion of the American claim particularly suited to our proposed numerical implementation.
This result is followed by developing a numerical scheme which computes an approximate
solution to the PIDE. At this stage we do not perform any error analysis of our scheme.
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However, we claim that the scheme is consistent, stable, and converging. This claim is based
on the observation that the numerical values for European options converge to the closed
form solutions presented in Madan, Carr and Chang [11].

For the financial relevance of the derived American option prices we identify the risk
neutral variance gamma process by calibration of S&P 500 market prices for European
options. As a benchmark we employ a geometric Brownian motion taken at the implied
volatility for the option. Results are presented on comparing the variance gamma and
Black-Merton-Scholes early exercise premiums and optimal exercise boundaries.

An outline of the paper is as follows. The variance gamma (VG) process and VG
European option pricing is summarized in §2. In §3, we derive the particular form of the
partial integro-differential equation (PIDE) (suitable for our numerical implementation) in
the value of an American option when the underlying asset price follows VG dynamics risk
neutrally. This PIDE is discretized in §4. Numerical experiments and results are presented
in §5. §6 concludes with a summary and comments on further research.

2 The Variance Gamma Model

The VG stock price process has no continuous martingale component. It is an example of a
pure jump process having an infinite number of jumps in any interval of time. Most of the
jumps are arbitrarily small in size with only finitely many jumps of any prespecified size.
Other examples include the process of independent stable increments studied by McCulloch
[12] as well as the references cited earlier. The process may be presented in a variety of
ways and we describe it first as time changed Brownian motion with drift.

Let b(t; 0,0) = 0t+0cW (t), be a Brownian motion with constant drift rate 6 and volatility
o, where W (t) is standard Brownian motion. Now define the gamma process «(t;v) with
independent gamma increments over intervals of length h with mean A and variance rate
vh.

The three parameter VG process X (t;0,0,v) is defined by

X(t;0,0,v) = b(y(t; 1,v),0,0).

We see that the process X (¢) is a Brownian motion with drift evaluated at a gamma time
change.

The characteristic function for the time ¢ level of the VG process is!

t
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This characteristic function is infinitely divisible with a zero continuous martingale com-
ponent and a Lévy measure identified in the unique decomposition of the characteristic
function in accordance with the Lévy Khintchine theorem by
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F(dt,dx) = dt S exp (—( [v+97/o) |a:|> dz. (2.2)
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IThe VG process may be expressed as the difference of two independent increasing gamma processes and
therefore the characteristic function of it is obtained as the product of characteristic function of the two
gamma processes which is well known.




We note that for # = 0 the Lévy density is symmetric and the process has zero skewness.
Negative values for 6 result in negative skewness while the parameter v builds kurtosis. For
0 = 0 the kurtosis is 3(1 + v). The infinite activity of the process is observed on noting that
the Lévy density has the behavior of (1/|z|) in a neighborhood of zero and in particular
that hence, the integral of the Lévy density is infinite.

2.1 The VG European Option Pricing Formulas

The VG dynamics of the stock price mirrors that of geometric Brownian motion for a
stock paying a continuous divdend yield of ¢ in an economy with a constant continuously
compounded interest rate of . The risk neutral drift rate for the stock price is r — g and
the forward stock price is modeled as the exponential of a VG process normalized by its
expectation. Specifically, let S(t) be the stock price at time ¢. The VG risk neutral process
for the stock price is given by

S(t) = S(0)elr—DHX(OFwt, (2.3)

where the normalization factor e“! ensuring that E[S(t)] = S(0)e("~ 9, requires that
1 2
w=—-In(l-0"v/2—0v).
v

By definition of risk neutrality, the price of a European call option with strike K and
maturity 7' is
c(S(0); K, t) = e "E((S(t) — K)T).

Theorem 2.1 The European call option price on a stock, when the risk neutral dynamics
of the stock price is given by the VG process (2.3) for risk neutral parameters o, v, 6 is

c(S(0;K,T) = SO U(dy/(1~c1)/v,(a+0)y/v/(1=c1), T/v)

—Ke "TW(d\/(1 — ¢2) /v, an/v/(1 — ¢2),T/v),

where
—v(a+s)?
d:% 1n(S(0)/K)+(T_Q)T+§<%;/)2/2)],
0
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VI 02(/2)
c1 = v(a+8)?, co = va?/2, and the function ¥ is defined in terms of the modified Bessel
function of second kind and the degenerate hyper-geometric function of two variables.

Proof. See [11] Q.E.D
By put-call parity the VG European put option price is seen to be

p(SO; K, T) = Ke "W(-dy/(1-c2)/v,a\/v/(1 ~c2),T/v))
—5(0)e T W (—d\/(1 — 1) /v, an/v/(1 — 1), T/v)).




3 VG American option pricing

We shall consider the price of an American put option of strike K and maturity 7" when
the risk neutral dynamics for the stock price are given by equation (2.3). By the Markov
property for the underlying dynamics this price is given by a function V(S(t),¢ ; K,T'). This
price is defined as
V(S(t),t; K,T)= sup e ""E((K-S(1)"),
t<r<T

where the sup is taken over all stopping times 7 defined on the probability space with respect
to the filtration generated by the stock price. It may be shown (include reference) that for
each ¢ there exists a critical stock price S*(¢) such that if S(¢) < S*(¢) the value of the
American put option is the value of immediate exercise or K — S(t) while for S(t) > S*(t)
the value exceeds this immediate exercise value. The curve S*(¢) viewed as a function of
time is referred to as the critical exercise boundary while the region

C={(S.t)ls > (1)}

is called the continuation region. The complement £ of the continuation region is the exercise
region.

The value of the American put in the exercise region is known and it only remains to
determine the value in the continuation region. It may further be shown that the discounted
price of the option is a martingale in the continuation region and hence the infinitessimal
generator £, of the underlying Markov process applied to this discounted price,

L(e "V (S(t),t) = 0. (3.4)

We develop the specific form of the PIDE that we solve numerically as an application of
these results.

3.1 Derivation of the PIDE

The underlying Markov process to which the stock price is adapted, we supoose to be given
by Y (t) = log(S(¢)). It follows from equation (2.3) that

Y(t)=Y(0)+ (r—q+w)t+ X(t;0,v,0).

Noting that X (¢;0,v,0) is a pure jump process that may be written as the sum of all its
jumps we may write the explicit semimartingale decomposition for Y (¢) as follows. Let
i denote the integer valued random measure associated with the jumps of the process
X(t;o,v,0) and let v be its predictable compensator. For the specific case of the VG
process we have that

v(de,dt) = Fk(x)dzdt
e—)\px e—/\n\x\
k(l‘) = v Liso+ I/|{E| 1.<0
2 2\* ¢
Av = <F+E> T2
6? 2 \?2 0
A = <F+E> T



The semimartingale decomposition for Y (¢) is given by
Yt)=Y0)+(r—q+w)it+azxv+aox(p—v)

where the operation * signifies a double integration with respect to x,¢ in the domain
R x [0,¢], and R denotes the real line.

The infinitessimal generator for the Markov process Y (t) applies to functions f(Y,¢) and
is given by

oo

Lf = L?t (r—q+w+/ xk(m)dm)a%}f—i— (3.5)

/O:O {f(Y—l-a:,t)—f(;t)_xa% }k(x)dx

Regarding the value function in the continuation region as a function of the Markov process
Y (t) and applying the operator (3.5) to the discounted value function as stated in equation
(3.4) yields the PIDE
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By making the change of variables x =1n.S and 7 = T — ¢ we obtain, noting
w(z,7) = V(51),
ow oV
ow oV
Dar) = ~5o(80),
w(x+y,7) = V(Se,t),

the following PIDE in the function w(zx, 1),

ow ow
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This equation may be equivalently written as 2

ow ow
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2By a straightforward algebraic calculations, we can show

+oo
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Alternatively, by definition from Lévy we have

k(dy) = lim 2@t € Wlv0 =0)
v t—0 t

and
]E(eX‘) = e wt



+oo
[ ety - w0y = 0 (37)
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We extend the PIDE to the entire region as in the exercise region we know the value
function w(x,t) = (K — e*)™ and applying the infinitessimal generator to this known value
function in the exercise region yields the equation Lw = d(x) where in particular we write
that

O )4 = ) 2, 7) — r(,7)
+oo
n / [w(@ +y.7) — wa, 7)) kg(y)dy
= 4(z).

The function §(z) is a often called the dividend process. This is best seen using the fact that
w(z,7) = K — e for x < z(7) and hence in this region we get

oo
§(x) = —rK + qe® +/ [w(z +y,7) — (K — ") ko(y)dy (3.8)
z(T)—z
and consistent with the demonstration by Carr, Jarrow and Myneni [4], one must extract
from the American option holder the interest on the strike less the dividend yield for the
time the stock spends in the exercise region to get the value back to that of a European
option. For a jump process like the variance gamma this amount is further reduced by the
expected shortfall the stop loss start gain strategy may experience on account of jumping
back into the continuation region as explained further in Gukhal [9].
Substituting the dividend definition of equation (3.8) back into the PIDE we obtain the
PIDE in w(z,t) over the entire region as
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—Loca(n) {rK —qe’ — /( : [w(m +y,7)— (K — ex+y)} k@(y)dy} =0. (3.9)
This PIDE must be solved subject to initial condition
w(z,0) = (K —e*)T, (3.10)
and boundary conditions
0w ow
W(_OO’T) — %(—OO,T) = 0 VT, (311)
0? 0
Ei§§Q+oo,T)-E£§(+co,7) = 0 vr (3.12)

Thus, we can write
1 [too —wt _ ]
;/ (e¥ —1) P(y: € dylyo = 0)dy =
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by taking the limit as ¢t approaches zero we get
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4 Discretization

In our finite difference discretization, we use a mix approach. On the evaluation of the
jump integral, we have an explicit approach and on the PDE fully implicit approach. The
rationale behind this scheme is that it would be computationally less expensive. For an
American put with maturity 7', we consider M equally sub-intervals in 7-direction. For
a-direction we assume N equal sub-intervals on [Z,.., Tumay]. Thus, we have the following
mesh on [Zin, Tmax) X [0, 7

D= {({Ei,Tj) eRt XR+|$i:iA$,2i:0,1,...,N,
T =JAT,:j=0,1,..., M, Az = (Tpin — Tonax)/N,: AT =T /M }

Let w; ; be the discrete values of w(z;,7;) on D. Using first order finite difference approx-
ow ow

imation for 32 and central difference for % we obtain the following discrete equation at
point (25, Tj+1)

1 1
Ay Wigt = wig) = (= ¢+ w) g (Wit 1,j01 = Wimrj41) + rWig
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= 0.
Equivalently,
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+A7— 19c,¢<:c(7'j) {TK - qexi - /( ) [w(xz + yaTj) - (K - exier)} k(y)dy}
T(Tj)—%4

where w; o = (K —e”)", x(19) = K and

x(7y) = min{z; : w(z;, 75) — (K — ™)™ >0} for j=1,..., M.

4.1 Evaluation of the Jump Integral

There are various approaches on evaluating the jump integral. In [10], not-a-knot cubic
spline [1] interpolation was applied at the known discrete values w; ; and then the interpolant
and the Lévy density were used to evaluate the integral by means of adaptive recursive
Newton-Cotes 8 panel rule. Tavella and Randall [13] use Romberg integration for evaluating
the integral.

In the process of evaluation the jump integral, we divide it to six sub-intervals. The
Lévy measure k(y) is singular at y = 0 but that would not cause any problem in the process



of approximation of the integral as we would see later.

+o0 To—Tq
/ (w(z; +y,75) —wiy) k(y)dy = / (w(z; +y,75) —wij) k(y)dy

—0 —00

—Azx
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+Azx
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For y € [-Az, 0] and assuming that Az is small enough, one can write

Wi 1 i — Wy i
w(z; +y,75) — wi; = #y +0(y?).
Similarly, for y € [0, Az] we have
Wis1 i — Wi
w(x; +y,7j) —wij = %y +O(y?).

Therefore
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For y € (xo — x;, —Ax), we do the following

Az i~1  (k+1)Az ey
/ (w(zi +y,75) — wi ;) k(y)dy = Z/ (w(zi =y, 75) — wi;) dy
To—T; k=1 kAz

Using linear interpolation on interval y € [kAx, (k + 1)Az], we can write w(z; — y,7;) as

follows
Wi—k—1,7 — Wi—k,j

w(z; —y,7j) F Wik, + s (y — kAz),
and therefore we obtain the following®
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Similarly, for y € [kAz, (k + 1)Axz], a linear approximation yields

Witk+1,j — Witk,j (y — kA)

w(z; +y,7j) = Wigp,j +

Az
and we get for y € (Az,zn — ;)
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For y € (—o0,x9 — ;)
o] e*)\ny
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—00 iAx
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We assume that w(z; —y,7;) = K — e®~¥* in that interval. Hence
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iAx vy
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For y € [(N —i)Az, 00), we assume that w(z; +y,7;) = 0.5 Thus

400 o0 e vy
/ (wz: +y,75) — wi ;) ko(y)dy / (s +y,75) —wi ;) S dy
IN—T; (N—i)Az vy

1
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v

4We choose zg small enough in such that w(zo,7;) = K — e%0 for all j. Thus it would be true for
w(z; —y,75) = K —e®i~Y as long as z; — y < xo. In the case of European, we assume that w(z; —y, ;) =
Ke ™ "Ti —e%i=¥Ye 975,

5As explained before zy is selected such that w(zy,7;) = 0. Therefore the assumption w(z; +y,7;) =0
is valid as long as z; +y > zN.



4.2 Heaviside Term
The integral inside Heaviside term would be treated in the same manner

[ ety - 0 ey

()~

N—i—1

(k+1)Az W; Wi s
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= E / (wi+k,j + = jAm 5Ly — kAx))
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N—i—1
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k=l—1i

1
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ApV Az (e € )
1
1
- {Kexpint((I —i)Az),) — e expint((I —i)Az(Ap — 1))}

4.3 Difference Equation

After substitution, we obtain the following difference equation® at point (z;, 7;41)

AT
Awi-1j41 + Bwiji1 — Cwitt g1 = Wig + —Rij + Arlg co(r) Hi g (4.13)
where
A = a-B,
B 1+ rA7+ By, + By + expint(iAz,) + expint((N —i)AzA,)
C = a+5
1—1
Ri; = (Wizk,j — wij — k(wi—g—1,; — wi—k,;)) {expint(kAz\,) — expint((k + 1)AzA,)}
k=1
i1 w
i—k—1,j — Wi—k,j ( “AnkAz —A,,(k+1)Agc)
+ A Az € €
k=1
N—i—1 1
+ = Wiy = wij = k(Witki1,j — Witny)) {expint(kAzd,) — expint((k + 1)Az, )}
k=1
Noicl w
ith+1,j — Witk,j ( “ApkAz 7)\p(k+1)Ax)
* ]; \vAz ¢ ¢

+ Kexpint(iAzA,) — e*expint(iAz(A, + 1))

6In the case of i = 1 or 4 = N we impose boundary conditions.
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L T [ S [ r [« o | v | 6 |
0.13972 | 136941 | 0.0533 | 0.011 | 0.17875 | 0.13317 | -0.30649
0.21643 | 1369.41 | 0.0536 | 0.012 | 0.18500 | 0.22460 | -0.28837
0.46575 | 1369.41 | 0.0549 | 0.011 | 0.19071 | 0.49083 | -0.28113
0.56164 | 1369.41 | 0.0541 | 0.012 | 0.20722 | 0.50215 | -0.22898

Table 1: Calibrated VG parameters for S&P 500 June 30, 1999

H;; = rK—gqge"

N—i—1 1

- > = (Witkj = wij = k(Witkt1,5 = Witn,)) (expint(kAzA,) — expint((k + 1)AzA,))
k=l—i
N—i—1

_ Z Witk+1,5 — Witk,j (e—)\pk’Ax -~ e—/\p(k-i-l)Agc)

ApVAz

k=l—1i
1

and
AT
a = (r—q-— w)m
_ AT —AnAx
Bn = vAzin <1 —e )
AT
B _ 1— —ApAx
P vAxAp ( € )

Assuming that at time 7; value of w; ; are known, we solve a linear system to find w; j+1
for all i. Notice that in this scheme, we store the following four vectors (pre-calculated):

e expint(kAzA,) for k=1,..., N,
o expint(kAzA,) for k=1,..., N,
o e MEAT for b =1,... N,

o e MWFAT for b =1,...,N.

5 Numerical experiments

We separately calibrated VG parameters for each maturity. Using out-of-the-money call
and put European option prices for S&P 500 June 30, 1999, we obtained the following
parameters

As we see in Table 1 as maturity gets larger the annualized kurtosis parameter v increases
and annualized skewness 6 decreases. The increase in v is slower than the increase in
maturity and this is consistent with an approach to normality, though at a rate slower than
would be the case if v were constant or falling. The decrease in @ is also broadly consistent
with the apporach to normality. Table 2 contains the Black-Scholes implied volatility for

11



| Strike | T=10.13972 | T = 0.21643 | T = 0.46575 | T = 0.56164 |

1200 0.2675 0.2737 0.2801 0.2868
1220 0.2592 0.2662 0.2743 0.2818
1240 0.2508 0.2587 0.2686 0.2768
1260 0.2422 0.2509 0.2629 0.2718
1280 0.2334 0.2431 0.2571 0.2667
1300 0.2244 0.2351 0.2513 0.2616
1320 0.2152 0.227 0.2455 0.2565
1340 0.2057 0.2187 0.2396 0.2514
1360 0.1961 0.2102 0.2337 0.2462
1380 0.1863 0.2016 0.2277 0.2409
1400 0.1767 0.193 0.2217 0.2357

Table 2: Implied volatility for S&P 500 options on June 30, 1999

these option prices. We observe a significant skewness in these implied volatilities with
a drop of 10 volatility points over the specified strike range. Table 3 contains the early
exercise premiums from pricing American options under the variance gamma and geometric
Brownian motion dynamics respectively. The American pricing under geometric Brownian
motion is conducted at the implied volatility for the option reported in Table 2. We observe
that across all strikes and maturities, the VG early exercise premiums dominate those from
geometric Brownian motion. This suggests that the traditional practice of adding geometric
Brownian motion based American option premia consistent with the implied volatility of a
European price quote to infer an American option price is biased downward with respect
to the American option price consistent with the underlying VG dynamics for the stock
price. The differences can be substantial and for example for the 1320 strike with maturity
.2164 it is about a 1/3 of the American option value under geometric Brownian motion. We
are led to conclude that though the pricing of American options under the right underlying
dynamics may be difficult, it is important from the perspective of correctly accounting for
the values of these instruments. We also compare the exercise boundary for VG and GBM
for strike K = 1300 and maturity "= 0.56164 in Figure 1. This example exhibits a smaller
continuation region we may be associated with an earlier exercise. The exact timing is
difficult to comment on as the differences in the underlying dynamics enter into the issues
of passage times to these boundaries.

6 Conclusion and Future Work

We derived a PIDE for the VG American option and priced its values numerically. As a
consistency check, we checked the European prices using the algorithm and solutions and
compared these with results from closed form formulas for European options.

The pricing of American options for Lévy processes generally will involve the numerical
solution of partial integro-differential equations that are similar to the one illustrated here
for the case of the variance gamma process. The methods developed here would therefore
be applicable to a wide class of problems. In particular our combination of analytical and
numerical approaches to the singularity at zero for infinite activity Lévy processes should
prove useful in many contexts.
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Maturity || 7y = 0.13972 || To = 0.21643 || T3 = 0.46575 || Ty = 0.56164
Striike |[GBM | VG [[GBM | VG |[GBM | VG | GBM [ VG
1200 || 0.052 [ 0.025 || 0.036 | 0.063 || 0443 | 0.539 || 0.828 | 1.041
1220 || 0.026 | 0.070 || 0.123 | 0.124 || 0.647 | 0.677 || 0.710 | 1.250
1240 || 0.010 | 0.117 || 0.165 | 0.191 || 0.569 | 0.835 || 1.131 | 1.489
1260 || 0.065 | 0.159 || 0.081 | 0.253 || 0.918 | 0.997 || 1.192 | 1.742
1280 || 0.113 | 0.196 || 0.251 | 0.322 || 0.856 | 1.185 | 1.483 | 2.023
1300 || 0.164 | 0.239 || 0.359 | 0.392 || 1.298 | 1.388 || 1.756 | 2.339
1320 || 0.231 | 0.428 || 0.415 | 0.602 || 1.318 | 1.681 || 1.966 | 2.741
1340 || 0.328 | 0.608 || 0.465 | 0.791 || 1.856 | 2.008 || 2.462 | 3.178
1360 || 0.462 | 0.869 || 0.745 | 1.078 || 1.999 | 2.392 || 2.686 | 3.687
1380 || 0.630 | 1.103 || 1.069 | 1.374 || 2.664 | 2.795 || 3.400 | 4.241
1400 || 1.066 | 1.483 || 1.475 | 1.678 || 3.112 | 3.291 || 3.771 | 4.861

Table 3: Early exercise premiums for variance gamma (VG) and geometric Brownian motion

(GBM)

Time to Maturity

Figure 1: Comparsion of exercise boundaries between variance gamma (VG) and geometric

Exercise Boundary VG vs. GBM
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Brownian motion (GBM) for strike K = 1300 and maturity 7" = 0.56164.
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A comparison of early exercise premia for the variance gamma process with geometric
Brownian motion, with the latter computed at the European implied volatility of the option
revealed that the premia from early exercise is higher for the Lévy process. This calls
into question the practice of deriving American option prices by adding Black-Scholes early
exercise premia to European prices and suggests that we need to make progress on the
efficient solution of partial integro-differential equations for a wide context of cases. These
remarks apply as well to other exotic options like the array of barrier options. We welcome
developments on these numerical issues.
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