LECTURE NOTES AND EXERCISES FOR THE 2023-2024 COURSE "THE COUNT OF INSTANTONS" AT COLUMBIA UNIVERSITY DEPARTMENT OF MATHEMATICS

NIKITA NEKRASOV

Abstract. The notation \square text \square denotes the exercises.
The notation text \diamond denotes the definitions.

1. REVIEW OF CLASSICAL MECHANICS

The arena of most (but not all) of Classical mechanics is the world of

- symplectic manifolds (\mathcal{P}, ω), where $\omega \in Z^{2}(\mathcal{P})$ is a closed, non-degenerate: $\omega^{\wedge m} \neq 0$, two-form on a smooth manifold \mathcal{P} of dimension

$$
\begin{equation*}
\operatorname{dim} \mathcal{P}=2 m \tag{1.1}
\end{equation*}
$$

supplemented by a choice of the Hamiltonian $H \in C^{\infty}(\mathcal{P}) \diamond$.

$$
\begin{equation*}
(\mathcal{P}, \omega, H), \text { with } \tag{1.2}
\end{equation*}
$$

The symplectic form makes the ring $A=C^{\infty}(\mathcal{P})$ of smooth functions a Lie algebra, with the Poisson bracket given by

$$
\begin{equation*}
\{f, g\}=\iota_{\pi}(d f \wedge d g) \tag{1.3}
\end{equation*}
$$

with the Poisson bi-vector $\pi=\omega^{-1}$. \diamondThe closedness $d \omega=0$ implies the Jacobi identity for $\{\cdot, \cdot\}$:

$$
\begin{equation*}
\{\{f, g\}, h\}+\{\{g, h\}, f\}+\{\{h, f\}, g\}=0 \tag{1.4}
\end{equation*}
$$

Examples:
(1) $\mathcal{P}=T^{*} X$ where X is any manifold,

$$
\begin{equation*}
\omega=d \theta \tag{1.5}
\end{equation*}
$$

with $\theta \in \Omega^{1}\left(T^{*} X\right)$-canonical 1-form

$$
\begin{equation*}
\theta_{(p, q)}(\xi)=p\left(\pi_{*} \xi\right) \tag{1.6}
\end{equation*}
$$

where $q \in X, p \in T_{q}^{*} X, \xi \in T_{(p, q)} T^{*} X, \pi: T^{*} X \rightarrow X$ is the projection, and $\pi_{*} \xi \in T_{q} X$ is the projection of the vector tangent to $T^{*} X$ to the base tangent vector.

[^0](2) Let $\left(M, \omega_{M}\right)$ be a symplectic manifold. Then $\left(\mathcal{P}=T^{*} M, \omega_{\mathcal{P}}=d \theta+\right.$ $\left.k \pi^{*} \omega_{M}\right)$ defines a family of symplectic manifolds. The corresponding evolution is sometimes called a motion in magnetic field.
(3) Let G be a simple Lie group, $\mathfrak{g}=\operatorname{Lie} G$ its Lie algebra, and \mathfrak{g}^{*} the dual space. Let $\xi \in \mathfrak{g}$. Define $\mathcal{P}=\mathcal{O}_{\xi}:=\left\{A d_{g}^{*} \xi \mid g \in G\right\}$ be the coadjoint orbit (of ξ). It carries the canonical Kirillov-Kostant symplectic form. Let us define it through the Poisson brackets of functions on \mathcal{P} :
\[

$$
\begin{equation*}
\left\{f_{1}, f_{2}\right\}(x)=x\left(\left[d f_{1}, d f_{2}\right]\right) \tag{1.7}
\end{equation*}
$$

\]

Here the functions $f_{1,2}: \mathfrak{g}^{*} \rightarrow \mathbb{R}$ have differentials $d f_{1,2}$ which, at the point $x \in \mathcal{P} \subset \mathfrak{g}^{*}$ are the linear functions on $T_{x} \mathfrak{g}^{*} \approx \mathfrak{g}^{*}$, i.e. (for finite dimensional vector spaces $V \approx V^{* *}$) elements $v_{1,2} \in \mathfrak{g}$. We then evaluate x, as a linear function on \mathfrak{g}, on the commutator $\left[v_{1}, v_{2}\right]$. \square Show (1.7) is invertible i.e. corresponds to a symplectic form
(4) Specifically, let $G=S U(N)$. We can view G as a subgroup of the group $U(N)$ of automorphisms of the N-dimensional vector space $\mathbf{N} \approx \mathbb{C}^{N}$ endowed with a hermitian form, i.e. sesquilinear nondegenerate pairing $\langle\cdot, \cdot\rangle: \mathbf{N} \times \mathbf{N} \rightarrow \mathbb{C}$, obeying

$$
\left\langle x v_{1}, y v_{2}\right\rangle=\bar{x} y\left\langle v_{1}, v_{2}\right\rangle,\left\langle v_{1}, v_{2}\right\rangle=\overline{\left\langle v_{2}, v_{1}\right\rangle}
$$

for any $x, y \in \mathbb{C}, v_{1}, v_{2} \in V$. So, $g \in G L(\mathbf{N})$ belongs to $U(N)$ if for any $v_{1}, v_{2} \in V$

$$
\left\langle g v_{1}, g v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle
$$

The subgroup G is singled out by the condition $\operatorname{det}(g)=1$. In other words, special unitary transformations preserve a volume form $\Omega \in \Lambda^{N} \mathbf{N}^{*}$, in addition to the hermitian form. Now recall that the operator $A \in \operatorname{End}(V)$ is called hermitian, if for any $v_{1}, v_{2} \in V$

$$
\left\langle v_{1}, A v_{2}\right\rangle=\left\langle A v_{1}, v_{2}\right\rangle
$$

Let us choose a basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{N}$, orthonormal with respect to the hermitian form:

$$
\left\langle\mathbf{e}_{i}, \mathbf{e}_{j}\right\rangle=\delta_{i, j}
$$

In this basis the operators g, A have the associated matrices $\left\|g_{i \bar{j}}\right\|,\left\|A_{i \bar{j}}\right\|$,

$$
g_{i \bar{j}}=\left\langle\mathbf{e}_{i}, g \mathbf{e}_{j}\right\rangle, \quad A_{i \bar{j}}=\left\langle\mathbf{e}_{i}, A \mathbf{e}_{j}\right\rangle
$$

(the bar on \bar{j} signifies the different role \mathbf{e}_{i} and \mathbf{e}_{j} play in the right hand side of the equation).Show the unitarity of g and hermiticity of A is equivalent to the set of equations

$$
\begin{align*}
& g g^{\dagger}=\mathbf{1}_{\mathbf{N}} \Leftrightarrow \sum_{j=1}^{N} g_{i \bar{j}} g_{j \bar{k}}=\delta_{i \bar{k}}, \quad i, \bar{k}=1, \ldots, N \tag{1.13}\\
& A=A^{\dagger} \Leftrightarrow A_{i \bar{j}}=\overline{A_{j \bar{i}}}
\end{align*}
$$

The Lie algebra $\mathfrak{g}=\operatorname{LieU}(N)$ is the vector space of all anti-hermitian operators in \mathbf{N} :

$$
B \in \mathfrak{g} \Leftrightarrow\left\langle v_{1}, B v_{2}\right\rangle+\left\langle B v_{1}, v_{2}\right\rangle=0
$$

Of course, if B is antihermitian, then $A=\mathrm{i} B$ is hermitian and vice versa. The Lie algebra of $S U(N)$ is a subspace of all traceless antihermitian matrices. Consider the set of all hermitian operators with fixed eigenvalues $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{R}$:

$$
\mathcal{O}_{\lambda_{1}, \ldots, \lambda_{N}}=\left\{A \mid \operatorname{Det}(\lambda-A)=\prod_{i=1}^{N}\left(\lambda-\lambda_{i}\right)\right\}
$$

Using the pairing

$$
\langle A, B\rangle:=\operatorname{itr}_{\mathbb{N}} A B
$$

we identify \mathfrak{g}^{*} with the space of Hermitian operators in \mathbf{N}. Thus, $\mathcal{O}_{\lambda_{1}, \ldots, \lambda_{N}} \subset \mathfrak{g}^{*}$ is a coadjoint orbit of $U(N)$. To make it into the coadjoint orbit of $S U(N)$ we need to descend to the quotient of the space of all Hermitian matrices by the action of \mathbb{R} of shifts by a scalar operator:

$$
B \sim B+b \cdot \mathbf{1}_{\mathbf{N}}, \quad b \in \mathbb{R}
$$

We can fix the representative by demanding that the B operators are also tracefree, $\operatorname{tr} B=0$. Thus, let

$$
\lambda_{1}+\ldots+\lambda_{N}=0
$$

Then, $\mathcal{O}_{\lambda_{1}, \ldots, \lambda_{N}} \subset \mathfrak{s u}(N)^{*}$ is a coadjoint orbit of $S U(N)$. Flag varieties, Grassmanians, projective spaces.
(5) As is customary in theoretical physics we shall take the above definitions and try our best in extending them to the infinite-dimensional settings. The loop space $L X=\operatorname{Maps}\left(S^{1}, X\right)$ of smooth maps of a circle to a Riemannian manifold $\left(X, g_{X}\right)$ carries a closed twoform $\Omega_{L X}$. At some loop $\gamma \in L X$ its value on a pair of vectors $\xi_{1}, \xi_{2} \in \Gamma\left(S^{1}, \gamma^{*} T X\right)$ is given by:

$$
\begin{equation*}
\Omega_{L X}\left(\xi_{1}, \xi_{2}\right)=\int_{S^{1}} \gamma^{*} g_{X}\left(\xi_{1}, \nabla \xi_{2}\right) \tag{1.19}
\end{equation*}
$$

where ∇ is the pull-back by γ of the Levi-Civita connection on $T X$ defined by the metric g_{X}.Is $\Omega_{L X}$ a symplectic form?
(6) This example can be generalized to the case of $\mathcal{P}=\operatorname{Maps}(M, X)$, where M is a compact manifold of dimension n, endowed with a closed $n-1$-form ν_{M}. We define

$$
\begin{equation*}
\Omega_{X^{M}}\left(\xi_{1}, \xi_{2}\right)=\int_{M} \nu_{M} \wedge \gamma^{*} g_{X}\left(\xi_{1}, \nabla \xi_{2}\right) \tag{1.20}
\end{equation*}
$$

(7) Let $\left(M, \mu_{M}\right)$ be a compact manifold endowed with a volume form $\mu_{M} \in \Omega^{\operatorname{dim}(M)}(M), \mu_{M} \neq 0$, and let $\left(X, \omega_{X}\right)$ be a symplectic manifold. Define $\mathcal{P}=\operatorname{Maps}(M, X)$, and endow it with the symplectic form, s.t. at $\gamma: M \rightarrow X$ and $\xi_{1}, \xi_{2} \in \Gamma\left(M, \gamma^{*} T X\right)$

$$
\begin{equation*}
\Omega_{X^{M}}\left(\xi_{1}, \xi_{2}\right)=\int_{M} \mu_{M} \gamma^{*} \omega_{X}\left(\xi_{1}, \xi_{2}\right) \tag{1.21}
\end{equation*}
$$

1.1. Hamilton equations. Now let us put the function $H \in A$ to a good use. The differential $d H$ is a 1 -form on \mathcal{P}. Define the Hamiltonian vector field V_{H} by:

$$
\begin{equation*}
\iota_{V_{H}} \omega=d H \Leftrightarrow V_{H}=\iota_{\omega^{-1}} d H \tag{1.22}
\end{equation*}
$$

Examples:
(1) Let X be any manifold and $v \in \operatorname{Vect}(X)$ a vector field. Let $\mathcal{P}=$ $T^{*} X$ with $\omega=d \theta$, and $H(p, q)=p(v(q)), q \in X, p \in T_{q}^{*} X$. The corresponding vector field V_{H} covers the vector field v on X. Compute V_{H}.
(2) Let (X, g) be a Riemannian manifold. We view the metric g as a smooth map $T X \rightarrow T^{*} X$. Then $\left(\mathcal{P}=T^{*} X, \omega=d \theta, H\right)$ with

$$
\begin{equation*}
H=\frac{1}{2}\left(p, g^{-1} p\right) \tag{1.23}
\end{equation*}
$$

defines the Hamiltonian system, covering the geodesic flow on X^{1}
(3) Again, let (X, g) be a Riemannian manifold and $U \in C^{\infty}(X)$. Then

$$
\begin{equation*}
H(p, q)=\frac{1}{2}\left(p, g(q)^{-1} p\right)+U(q) \tag{1.26}
\end{equation*}
$$

describes a particle on X moving in the field of the potential U.
${ }^{1}$ A geodesic curve on a Riemannian manifold (X, g) is the extremum of the functional

$$
\begin{equation*}
L=\int_{U} \sqrt{g(\dot{\ell}, \dot{\ell})} d t \tag{1.24}
\end{equation*}
$$

on the space $\operatorname{Maps}(U, X) / D i f f_{+}(U)$ of oriented curves in X. Here $U \subset \mathbb{R}_{t}$ is a connected domain, and $\ell: U \rightarrow X$ a smooth map. One can impose Dirichlet boundary conditions: $\ell(\partial U)=\left\{x_{\mathbf{s}}, x_{\mathbf{t}}\right\}$ with two points $x_{\mathbf{s}}, x_{\mathbf{t}} \in X$. Analogously, a minimal surface in X is the extremum of the functional

$$
\begin{equation*}
A=\int_{U} \sqrt{g(\dot{\ell}, \dot{\ell}) g\left(\ell^{\prime}, \ell^{\prime}\right)-g\left(\dot{\ell}, \ell^{\prime}\right)^{2}} d t d s \tag{1.25}
\end{equation*}
$$

on the space $\operatorname{Maps}(U, X) / \operatorname{Dif} f_{+}(U)$ of oriented surfaces in X. Here $U \subset \mathbb{R}_{t, s}^{2}$ is a connected domain, and $\ell: U \rightarrow X$ a smooth map. One can impose Dirichlet boundary conditions: $\ell(\partial U)=\gamma, \gamma \subset X$, or Neumann boundary conditions: $\left.\nabla_{n} \ell\right|_{\partial U}=0 . \diamond$
(4) An important special case of the system above is the generalized harmonic oscillator (or a system of m oscillators): $X=T^{*} Q, Q=$ $\mathbb{R}^{m}, \omega=\sum_{i=1}^{m} d p_{i} \wedge d q^{i}$,

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i, j=1}^{m} g^{i j} p_{i} p_{j}+\sum_{i, j=1}^{m} K_{i}^{j} p_{j} q^{i}+\frac{1}{2} \sum_{i, j=1}^{m} U_{i j} q^{i} q^{j} \tag{1.27}
\end{equation*}
$$

where we assume the non-degenerate positive definite metric $g_{i j}$ on Q, whose inverse $g^{i j}$ appears as the kinetic term in (1.27). We also assume the second metric $U_{i j}$ on the same Q, defining the potential term. The cross-term $(p, K q)$ depends on a choice of linear operator $K: V \rightarrow V$. The operator K can be decomposed as a sum of g-symmetric and g-antisymmetric parts:

$$
K=K^{s}+K^{a}, g K^{s}=\left(K^{s}\right)^{t} g, g K^{a}=-\left(K^{a}\right)^{t} g
$$

where we viewed the metric g as the symmetric map $g: V \rightarrow V^{*}$, ${ }^{2} g^{t}=g$. The symmetric part K^{s} can be eliminated from H by a canonical transformation:

$$
\begin{gather*}
p \mapsto p-g\left(K^{s} q\right) \tag{1.29}\\
\sum d\left(g_{i l} K_{m}^{l} q^{m}\right) \wedge d q^{i}=0 \tag{1.30}
\end{gather*}
$$

What is the meaning of K^{a} ? Define $\Omega=g K^{a}, \Omega^{t}=-\Omega$. Then we can re-write the Hamiltonian as ${ }^{3}$:

$$
\begin{equation*}
H=\frac{1}{2} g^{i j}\left(p_{i}+\Omega_{i k} q^{k}\right)\left(p_{j}+\Omega_{j l} q^{l}\right)+\frac{1}{2} V_{i j} q^{i} q^{j} \tag{1.31}
\end{equation*}
$$

where V is related to U in an obvious way. Finally, we can reinterpret (1.32) as the Hamiltonian evolution of a system of oscillators with standard kinetic and potential terms

$$
\begin{equation*}
\tilde{H}=\frac{1}{2} g^{i j} p_{i} p_{j}+\frac{1}{2} V_{i j} q^{i} q^{j} \tag{1.32}
\end{equation*}
$$

but with a modified symplectic form:

$$
\begin{equation*}
\omega_{\mathrm{mr}}=d p_{i} \wedge d q^{i}+\frac{1}{2} \Omega_{i j} d q^{i} d q^{j} \tag{1.33}
\end{equation*}
$$

This modification is sometimes called magnetic field-rotating frame. \square Why?
(5) Now let us assume X is endowed with a closed two-form F. Let $\mathcal{P}=T^{*} X$ with $\omega=d \theta+\pi^{*} F$.Compute V_{H} for H given by the Eq. (1.26).

[^1]1.2. Darboux coordinates, action-angle variables. The local model of \mathcal{P} is a domain in $T^{*} \mathbb{R}^{m} \approx \mathbb{R}^{2 m}$, with $\omega=d \theta, \theta=\sum_{i=1}^{m} p_{i} d q^{i}$ with $\left(q^{i}\right)$ coordinates on \mathbb{R}^{m}. We can change the coordinates by symplectic (canonical) diffeomorphisms. Let $g: \mathbb{R}^{2 m} \rightarrow \mathbb{R}^{2 m}$ preserves ω, then
\[

$$
\begin{equation*}
g^{*} \theta-\theta=d S \tag{1.34}
\end{equation*}
$$

\]

for some function S. In coordinates:

$$
\begin{equation*}
\sum_{i=1}^{m} P_{i} d Q^{i}-p_{i} d q^{i}=d S \tag{1.35}
\end{equation*}
$$

thus a function of $m+m$ variables old and new q 's $S=S(Q, q)$ is all is needed to generate the symplectomorphism g (a beautifully non-invariant yet useful formalism):

$$
\begin{equation*}
P_{i}=\frac{\partial S}{\partial Q^{i}}, \quad p_{i}=-\frac{\partial S}{\partial q^{i}} \tag{1.36}
\end{equation*}
$$

Examples:
(1) Linear symplectomorpisms are generated by the quadratic functions

$$
\begin{equation*}
S=\sum_{i, j=1}^{m} \frac{1}{2} A_{i j} Q^{i} Q^{j}+B_{i \mid j} Q^{i} q^{j}+\frac{1}{2} C_{i j} q^{i} q^{j} \tag{1.37}
\end{equation*}
$$

(2) In particular, time evolution of a system of harmonic oscillators is described by:
(3) Change of cartesian to polar coordinates on \mathbb{R}^{2} :

$$
\begin{equation*}
(p, q) \mapsto(A, \varphi) \quad A=\frac{p^{2}+q^{2}}{2}, q=\sqrt{2 A} \cos (\varphi), p=\sqrt{2 A} \sin (\varphi) \tag{1.38}
\end{equation*}
$$

What is its generating function $S(\varphi, q)$?
1.3. Symplectic quotients. Suppose (\mathcal{P}, ω, H) is invariant under the action of a Lie group G. Moreover, we'll require the action of G to be Hamiltonian (this is automatic for simply-connected $\mathcal{P} \square$ why? \square).

A diffeomorphism $g: \mathcal{P} \rightarrow \mathcal{P}$ is a symplectomorphism if it preserves ω :

$$
\begin{equation*}
g^{*} \omega=\omega \tag{1.39}
\end{equation*}
$$

Infinitesimal symplectomorphism is a vector field $V \in \operatorname{Vect}(\mathcal{P})$, such that

$$
\begin{equation*}
\operatorname{Lie}_{V} \omega=0 \leftrightarrow d\left(\iota_{V} \omega\right)=0 \tag{1.40}
\end{equation*}
$$

A Hamiltonian G-action on \mathcal{P} associates to every $\xi \in \mathfrak{g}$, a Hamiltonian vector field V_{ξ},

$$
\begin{equation*}
\iota_{V_{\xi}} \omega=d h_{\xi} \tag{1.41}
\end{equation*}
$$

with some Hamiltonian function $h_{\xi}: \mathcal{P} \rightarrow \mathbb{R}$. Of course (1.41) defines h_{ξ} up to a constant. We can partly restrict the choice of a constant by requiring the map $\xi \mapsto h_{\xi}$ be linear. We have the homomorphism condition

$$
\begin{equation*}
\left[V_{\xi_{1}}, V_{\xi_{2}}\right]=V_{\left[\xi_{1}, \xi_{2}\right]} \tag{1.42}
\end{equation*}
$$

for any $\xi_{1}, \xi_{2} \in \mathfrak{g}$. We may want to require that

$$
\begin{equation*}
h_{\left[\xi_{1}, \xi_{2}\right]}=\left\{h_{\xi_{1}}, h_{\xi_{2}}\right\}:=\omega\left(V_{\xi_{1}}, V_{\xi_{2}}\right)=\iota_{\omega^{-1}} d h_{\xi_{1}} \wedge d h_{\xi_{2}} \tag{1.43}
\end{equation*}
$$

This is not always possible. For example, the abelian group \mathbb{R}^{2} of translations acts on \mathbb{R}^{2} preserving the constant volume 2 -form $d p \wedge d x$. The Hamiltonians h_{1}, h_{2} are equal to p, x, respectively. The corresponding vector fields commute, however $p, x=1 \neq 0$.

Algebraically, the problem of finding the constants c_{ξ} adjusting h_{ξ} so as to obey (1.43) is the question of whether the Lie algebra \mathfrak{g} has non-trivial second cohomology. Define

$$
\begin{equation*}
c\left(\xi_{1}, \xi_{2}\right)=\left\{h_{\xi_{1}}, h_{\xi_{2}}\right\}-h_{\left[\xi_{1}, \xi_{2}\right]} \tag{1.44}
\end{equation*}
$$

As it stands $c\left(\xi_{1}, \xi_{2}\right)$ is a function on \mathcal{P}. However,

$$
\begin{equation*}
d c\left(\xi_{1}, \xi_{2}\right)=\iota_{\left[V_{\xi_{1}}, V_{\xi_{2}}\right]} \omega-\iota V_{\left[\xi_{1}, \xi_{2}\right]} \omega=0 \tag{1.45}
\end{equation*}
$$

by Eq. (1.42). Thus, $c: \Lambda^{2} \mathfrak{g} \rightarrow \mathbb{R}$ defines a linear map. It obeys:

$$
\begin{equation*}
c\left(\left[\xi_{1}, \xi_{2}\right], \xi_{3}\right)+c\left(\left[\xi_{2}, \xi_{3}\right], \xi_{1}\right)+c\left(\left[\xi_{3}, \xi_{1}\right], \xi_{2}\right)=\left\{h_{\left[\xi_{1}, \xi_{2}\right]}, h_{\xi_{3}}\right\}+c y c l i c=0 \tag{1.46}
\end{equation*}
$$

where we used the linearity of $\xi \mapsto h_{\xi}$ map and $\left\{h_{\left[\xi_{1}, \xi_{2}\right]}, \cdot\right\}=\left\{\left\{h_{\xi_{1}}, h_{\xi_{2}}\right\}, \cdot\right\}$.
1.3.1. Cohomology of groups and algebras. Let us pause to define an interesting cohomology theory. Let \mathfrak{g} be a Lie algebra, and M a \mathfrak{g}-module, i.e. a vector space with the homomorphism $\rho: \mathfrak{g} \rightarrow \operatorname{End}(M)$. For $\xi \in \mathfrak{g}, m \in M$ we denote $\rho(\xi) m$ simply by $\xi \cdot m$. Define $C^{i}(\mathfrak{g}, M)$ to be the space of all skew-symmetric polylinear functions $c_{(i)}: \Lambda^{i} \mathfrak{g} \longrightarrow M$. Define the differential $\delta: C^{i}(\mathfrak{g}, M) \rightarrow C^{i+1}(\mathfrak{g}, M)$ by

$$
\begin{array}{r}
\delta c_{(i)}\left(\xi_{1} \wedge \ldots \wedge \xi_{i+1}\right)=\sum_{j=1}^{i+1}(-1)^{j-1} \xi_{j} \cdot c_{(i)}\left(\xi_{1} \wedge \ldots \wedge \widehat{\xi}_{j} \wedge \ldots \wedge \xi_{i+1}\right)+ \tag{1.47}\\
\sum_{1 \leq a<b \leq i+1}(-1)^{a+b} c_{(i)}\left(\left[\xi_{a}, \xi_{b}\right] \wedge \xi_{1} \wedge \ldots \widehat{\xi}_{a} \ldots \widehat{\xi}_{b} \ldots \wedge \xi_{i+1}\right)
\end{array}
$$

Check, that \square it is a differential, $\delta^{2}=0$.
One defines the cohomology groups

$$
\begin{equation*}
H^{i}(\mathfrak{g}, M)=\left(\operatorname{ker} \delta \cap C^{i}\right) /\left(\operatorname{im} \delta \cap C^{i}\right) \diamond . \tag{1.48}
\end{equation*}
$$

Let us now take, as example, $M=\mathbb{R}$ with a trivial action of \mathfrak{g}. The $H^{2}(\mathfrak{g}, \mathbb{R})$ group is the space of all skew-symmetric bilinear forms $c(\xi \wedge \eta)$ on \mathfrak{g} which are closed under the differential

$$
\begin{equation*}
\delta c\left(\xi_{1} \wedge \xi_{2} \wedge \xi_{3}\right)=c\left(\left[\xi_{1}, \xi_{2}\right] \wedge \xi_{3}\right)+c\left(\left[\xi_{2}, \xi_{3}\right] \wedge \xi_{1}\right)+c\left(\left[\xi_{3}, \xi_{1}\right] \wedge \xi_{2}\right) \tag{1.49}
\end{equation*}
$$

modulo δ-exact forms $c \sim c+\delta b$, where $\delta b(\xi \wedge \eta)=b([\xi, \eta])$. For simple Lie algebras H^{2} vanishes. For abelian Lie algebra \mathfrak{a} the space of \mathbb{R}-valued
i-cocycles is the space of all skew-symmetric i-linear functions on \mathfrak{a}, since the commutators vanish implying the vanishing δ. In other words,

$$
\begin{equation*}
H^{i}(\mathfrak{a}, \mathbb{R})=\Lambda^{i} \mathfrak{a}^{*} \tag{1.50}
\end{equation*}
$$

Any 2-cocycle $c \in Z^{2}(\mathfrak{g}, \mathbb{R})$ defines a central extension of \mathfrak{g}, i.e. a new Lie algebra $\tilde{\mathfrak{g}}$, which is equal to $\mathfrak{g} \oplus \mathbb{R}$ as a vector space, with the commutator defined by:

$$
\begin{equation*}
\left[\left(\xi_{1}, c_{1}\right),\left(\xi_{2}, c_{2}\right)\right]=\left(\left[\xi_{1}, \xi_{2}\right], c\left(\xi_{1} \wedge \xi_{2}\right)\right) \tag{1.51}
\end{equation*}
$$

However, not all such extensions are non-trivial. Indeed, $\xi \mapsto(\xi, b(\xi))$ embeds \mathfrak{g} into $\widetilde{\mathfrak{g}}$ for linear function $b \in \mathfrak{g}^{*}$. Thus, only cocycles modulo coboundaries produce non-trivial, new, Lie algebras.

The most basic such extension is, in fact, an avatar of quantization. Given a symplectic vector space (V, ω) we define $\boldsymbol{\omega}$ the Heisenberg algebra H_{V} to be the central extension of V viewed as abelian Lie algebra, corresponding to ω viewed as the Lie algebra-cohomology class $\omega \in H^{2}(V, \mathbb{R}) \diamond$.
1.3.2. Moment map. Given a symplectic manifold (\mathcal{P}, ω) and a Lie group G acting on \mathcal{P} by Hamiltonian vector fields, define

$$
\begin{equation*}
\mathcal{P}^{\mathrm{red}}=\mathcal{P} / / G=\mu^{-1}(\zeta) / G \tag{1.52}
\end{equation*}
$$

where, assuming the vanishing of the obstruction class in $H^{2}(\mathfrak{g}, \mathbb{R})$, the moment map

$$
\begin{equation*}
\mu: M \rightarrow \mathfrak{g}^{*} \tag{1.53}
\end{equation*}
$$

is defined via:

$$
\begin{equation*}
\boldsymbol{\oplus}\langle\mu(x), \xi\rangle=h_{\xi}(x), \xi \in \mathfrak{g}, x \in M \diamond \tag{1.54}
\end{equation*}
$$

As discussed above, the possibility of adding a constant to h_{ξ} translates to a variety of possibilities for $\zeta \in\left(\mathfrak{g}^{*}\right)^{G}$ in (1.52). For simple Lie group G only $\zeta=0$ is possible, while for G with center there are many options for the level of the moment map. For example, take $M=\mathbb{R}^{2 m}, \omega=\sum_{i=1}^{m} d p_{i} \wedge d x^{i}$, $G=U(1)$ acting via:

$$
\begin{equation*}
e^{\mathrm{i} t}:(\mathbf{p}, \mathbf{x}) \mapsto(\mathbf{p} \cos (t)-\mathbf{x} \sin (t), \mathbf{x} \cos (t)+\mathbf{p} \sin (t)) \tag{1.55}
\end{equation*}
$$

The moment map

$$
\begin{equation*}
\mu=\frac{1}{2} \sum_{i=1}^{m}\left(p_{i}^{2}+\left(x^{i}\right)^{2}\right) \tag{1.56}
\end{equation*}
$$

The reduced phase space is empty for $\zeta<0$, a point for $\zeta=0$, and the remarkably important compact symplectic manifold of dimension $2(m-1)$ for $\zeta>0$, the complex projective space $\mathbb{C P}^{m-1}$. As a bonus, it carries a complex structure, and so it can be described in complex terms only:

$$
\begin{equation*}
\mathbb{C P}^{m-1}=\left\{\left(z_{1}, \ldots, z_{m}\right) \mid \mathbf{z} \neq 0, \mathbf{z} \sim u \mathbf{z}, u \in \mathbb{C}^{\times}\right\}=\left(\mathbb{C}^{m} \backslash 0\right) / \mathbb{C}^{\times} \tag{1.57}
\end{equation*}
$$

In other words, we encountered the relation $M / / G=M^{s} / G_{\mathbb{C}}$ which will be discussed in greater generality later.

2. REVIEW OF CLASSICAL ELECTROMAGNETISM

Maxwell theory, or classical electromagnetism, is the infinite-dimensional version of classical mechanics, where the phase space \mathcal{P} is the field space. We shall discuss it in somewhat artificial setting of compact spaces, which is easier to handle mathematically, and has applications to topology.

Let M^{d} be a compact d-dimensional manifold, endowed with Riemannian metric g. The metric defines the Hodge star operator \star mapping p-forms to $d-p$-forms via the point-wise relation

$$
\begin{equation*}
\omega \star \omega=\operatorname{vol}_{g} \sum_{i_{1}<i_{2}<\ldots<i_{p}} \omega\left(e_{i_{1}}, \ldots, e_{i_{p}}\right) \omega\left(f^{i_{1}}, \ldots, f^{i_{p}}\right) \tag{2.1}
\end{equation*}
$$

where $e_{i}, i=1, \ldots, m$ is any basis in $T_{x} M$, and f^{i} the associated orthogonal basis, such that

$$
\begin{equation*}
g\left(e_{i}, f^{j}\right)=\delta_{i}^{j} \tag{2.2}
\end{equation*}
$$

for all $i, j=1, \ldots, m$. The Eq. (2.1) endows Ω^{p} with the metric

$$
\begin{equation*}
(\omega, \eta)=\int_{M} \omega \wedge \star \eta=(\eta, \omega) \tag{2.3}
\end{equation*}
$$

We shall glide over the finer details such as L^{2} completions, Sobolev embeddings etc. which are needed to be able to operate with

$$
\begin{equation*}
d^{*}=\star d \star \tag{2.4}
\end{equation*}
$$

the operator $\Omega^{i}(M) \rightarrow \Omega^{i-1}(M)$, conjugate to d in the sense of the Hodge metric (2.3) on the space of differential forms.
2.1. \mathbb{R}-gauge p-form theory. Our first approximation is to take

$$
\begin{equation*}
\mathcal{P}=T^{*} \mathcal{A}_{\mathbb{R}} / / \mathcal{G}_{\mathbb{R}} \tag{2.5}
\end{equation*}
$$

where $\mathcal{A}_{\mathbb{R}}=\Omega^{p}(M), \mathcal{G}_{\mathbb{R}}=\left(\Omega^{p-1}(M) / Z^{p-1}(M)\right)$ is the vector space of $p-1$ forms considered modulo closed ones, acting on $A_{\mathbb{R}}$ by

$$
\begin{equation*}
A \mapsto A+d \xi \tag{2.6}
\end{equation*}
$$

for $A \in \mathcal{A}_{\mathbb{R}}, \xi \in \mathcal{G}_{\mathbb{R}}$. The symplectic form on $T^{*} \mathcal{A}_{\mathbb{R}}$ is traditionally written as

$$
\begin{equation*}
\Omega_{T^{*} \mathcal{A}_{\mathbb{R}}}=\int_{M} \delta E \wedge \delta A \tag{2.7}
\end{equation*}
$$

where δ denotes the de Rham differential in the space of fields while d is reserved for de Rham differential along M. In (2.7) E denotes the momentum conjugate to A, the $d-p$-form. The (2.6) corresponds to the Hamiltonian vector field on $T^{*} \mathcal{A}_{\mathbb{R}}$, which, being a lift of a vector field on the configuration space $\mathcal{A}_{\mathbb{R}}$, is generated by the moment map, linear in E :

$$
\begin{equation*}
\mu=d E \tag{2.8}
\end{equation*}
$$

which is traditionally called Gauss law in the context of gauge theory. Setting $\mu=0$ and dividing by (2.6) defines the phase space of abelian pure
gauge p-form theory. Hodge theory allows one to describe the quotient as $T^{*} \mathcal{V}$ where \mathcal{V} is the vector space

$$
\begin{equation*}
\mathcal{V}=H^{p}(M, \mathbb{R}) \oplus\left(\operatorname{im} d^{*} \cap \Omega^{p}(M)\right) \tag{2.9}
\end{equation*}
$$

while its dual \mathcal{V}^{*} is identified with

$$
\begin{equation*}
\mathcal{V}^{*}=H^{d-p}(M, \mathbb{R}) \oplus\left(\operatorname{im} d \cap \Omega^{d-p}(M)\right) \tag{2.10}
\end{equation*}
$$

Now that we have identified the phase space, let us look at the time evolution(s). The standard Hamiltonian of Maxwell theory is

$$
\begin{equation*}
\mathcal{H}=\int_{M} \frac{g^{2}}{2} E \wedge \star E+\frac{1}{2 g^{2}} F \wedge \star F \tag{2.11}
\end{equation*}
$$

with curvature $F=d A$, and some parameter g, called the gauge coupling.
If we use the spectral theory of the Laplacian

$$
\begin{equation*}
\Delta^{(p)}=d^{*} d+\left.d d^{*}\right|_{\Omega^{p}(M)} \tag{2.12}
\end{equation*}
$$

we can recognize in (2.11) an infinite-dimensional version of the system of harmonic oscillators, coupled to a geodesic flow on $H^{p}(M)$. The actual value of the coupling g is irrelevant, as we can change it by performing the canonical transformation, generated by

$$
\begin{equation*}
D=\int_{M} E \wedge A \tag{2.13}
\end{equation*}
$$

Why is D well-defined on \mathcal{P} ?
2.1.1. First glimpses of the ϑ-angle. When $d=2 p+1$ the symplectic form (2.7) can be generalized to the family of forms:

$$
\begin{equation*}
\Omega_{\vartheta}=\int_{M} \delta E \wedge \delta A+\vartheta \int_{M} d \delta A \wedge \delta A \tag{2.14}
\end{equation*}
$$

For odd p and $d=2 p$ the symplectic form (2.7) can be generalized to the family of forms:

$$
\begin{equation*}
\Omega_{k}=\int_{M} \delta E \wedge \delta A+k \int_{M} \delta A \wedge \delta A \tag{2.15}
\end{equation*}
$$

Both generalizations correspond to the magnetic field-rotating frame generalization (1.33).
2.1.2. Observables. What are the natural observables in such a theory? The electric field E is gauge invariant, albeit constrained by the Gauss law. A closed $d-p$ form is characterized by its integrals over $d-p$-chains, measuring electric fluxes

$$
\begin{equation*}
\text { electric flux through } \Sigma_{d-p}=\int_{\Sigma_{d-p}} E \tag{2.16}
\end{equation*}
$$

which does not change under the variations of the $d-p$-chain preserving its boundary:

$$
\begin{equation*}
\text { electric flux through } \Sigma_{d-p}=\text { electric flux through } \Sigma_{d-p}^{\prime} \tag{2.17}
\end{equation*}
$$

if

$$
\begin{equation*}
\Sigma_{d-p}-\Sigma_{d-p}^{\prime}=\partial B_{d-p+1} \tag{2.18}
\end{equation*}
$$

for some $d-p+1$-chain B_{d-p+1}. The observables can also be constructed out of A :

$$
\begin{equation*}
\text { generalized Bohm - Aharonov phase along } C_{p}=\int_{C_{p}} A \tag{2.19}
\end{equation*}
$$

which is only gauge invariant for closed p-chains, $\partial C_{p}=0$. The infinitesimal version of (2.19) is any functional of the curvature $F=d A$.
2.1.3. Noncompact duality. Suppose $d=2 p+1$. Remark that in this case the curvature $F=d A$ and the electric field are both $p+1$-forms. Also, both A and $\star E$ are p-forms.
2.2. Compact p-forms. An important generalization of the construction above cures the problem of continuous spectrum (infinite motion in the classical parlance) of the zero mode sector evolution above.

Let $\mathbf{t} \approx \mathbb{R}^{r}$ be a vector space, $\Gamma \subset \mathbf{t}$ a lattice $\approx \mathbb{Z}^{r}$ and $\mathbf{T}=\mathbf{t} / \Gamma$ the corresponding compact torus. The compact p-form electrodynamics is defined on

$$
\begin{equation*}
\mathcal{P}=T^{*} \mathcal{A}_{\mathbf{T}} / / \mathcal{G}_{\mathbf{T}} \tag{2.20}
\end{equation*}
$$

where the space $\mathcal{A}_{\mathbf{T}}$ is the space of connections on the $p-1$-gerbe, defined as follows. Pick a nice ${ }^{\vee} C$ ech covering $M=\cup_{\alpha \in A} U_{\alpha}$

$$
\begin{equation*}
\mathcal{A}_{\mathbf{T}}=\left\{\left(A_{\alpha}\right) \mid A_{\alpha} \in \Omega^{p}\left(U_{\alpha}\right) \otimes \mathbf{t}, \quad A_{\alpha}-A_{\beta} \in \Omega_{\Gamma}^{p}\left(U_{\alpha} \cap U_{\beta}\right)\right\} \tag{2.21}
\end{equation*}
$$

where $\Omega_{\Gamma}^{p}(S) \subset \Omega^{p}(S) \otimes \mathbf{t}$ consists of all \mathbf{t}-valued p-forms \mathfrak{o}, curvatures of $p-2$-gerbes defined on $U_{\alpha} \cap U_{\beta}$, such that

$$
\begin{equation*}
\int_{\Sigma} \mathfrak{o} \in \Gamma \tag{2.22}
\end{equation*}
$$

for any integral closed chain $\Sigma \in Z_{p}(S ; \mathbb{Z})$. Note that the differential $F:=$ $d A$ is a globally defined \mathbf{t}-valued $p+1$-form, with Γ-valued periods:

$$
\begin{equation*}
\int_{\Xi} F \in \Gamma \tag{2.23}
\end{equation*}
$$

for any integral closed chain $\Xi \in Z_{p+1}(S ; \mathbb{Z})$. Indeed, the overlap condition implies $d A_{\alpha}=d A_{\beta}$ on any $U_{\alpha} \cap U_{\beta}$, thus F is globally well-defined. On the other hand

$$
\begin{align*}
& \int_{\Xi} F=\sum_{\alpha} \int_{\Xi \cap U_{\alpha}} F-\sum_{\alpha, \beta} \int_{\Xi \cap U_{\alpha} \cap U_{\beta}} F+\ldots= \tag{2.24}\\
& \sum_{\alpha} \int_{\partial\left(\Xi \cap U_{\alpha}\right)} A_{\alpha}-\sum_{\alpha, \beta} \int_{\partial\left(\Xi \cap U_{\alpha} \cap U_{\beta}\right)} A_{\alpha o r ~} \beta+\ldots
\end{align*}
$$

which may be nontrivial yet valued in $\Gamma \square$ Finish the argument

The symplectic form is

$$
\begin{equation*}
\Omega_{T^{*} \mathcal{A}_{\mathbf{T}}}=\int_{M}\langle\delta E, \wedge \delta A\rangle \tag{2.25}
\end{equation*}
$$

where $E \in \Omega^{d-p}(M) \otimes \mathbf{t}^{*}$ and we denote by $\langle\cdot, \cdot\rangle$ the pairing $\mathbf{t}^{*} \otimes \mathbf{t} \rightarrow \mathbb{R}$.
The gauge group $\mathcal{G}_{\mathbf{T}}=\Omega_{\Gamma}^{p}(M)$ acts by

$$
\begin{equation*}
\left(A_{\alpha}\right) \sim\left(A_{\alpha}+\left.\varpi\right|_{U_{\alpha}}\right), \varpi \in \Omega_{\Gamma}^{p}(M) \tag{2.26}
\end{equation*}
$$

Any element $\varpi \in \Omega_{\Gamma}^{p}(M)$ defines a cohomology class, a p-winding number

$$
\begin{equation*}
[\varpi] \in H^{p}(M, \Gamma) \tag{2.27}
\end{equation*}
$$

Any two $\varpi^{\prime}, \varpi^{\prime \prime}$ with the same p-winding number differ by an exact p-form

$$
\begin{equation*}
\varpi^{\prime}-\varpi^{\prime \prime}=d \xi, \xi \in \Omega^{p-1}(M) \tag{2.28}
\end{equation*}
$$

The group $\mathcal{G}_{\mathbf{T}}$, therefore, is a direct product of a lattice $H^{p}(M, \Gamma)$ and a vector space $\Omega^{p-1}(M) / Z^{p-1}(M)$. The action of $\mathcal{G}_{\mathbf{T}}$ is the combination of the Hamiltonian vector fields generated by

$$
\begin{equation*}
\mu=d E \in \Omega^{d+1-p}(M) \otimes \mathbf{t}^{*}=\left(\operatorname{LieG}_{\mathbf{T}}\right)^{*} \tag{2.29}
\end{equation*}
$$

and the action of the lattice $H^{p}(M, \Gamma)$ by shifts in $H^{p}(M, \mathbf{t})$. The latter is the orthogonal summand in the Hodge decomposition

$$
\begin{equation*}
\mathcal{A}_{\mathbf{T}}=\amalg_{H^{p+1}(M, \Gamma)} H^{p}(M, \mathbf{t}) \oplus\left(\operatorname{im} d^{*} \cap \Omega^{p}(M) \otimes \mathbf{t}\right) \tag{2.30}
\end{equation*}
$$

2.2.1. Observables in compact theory. We can still define the electric fluxes, except that now they take values in \mathbf{t}^{*}, not in numbers, so we pair it with an element $\mu \in \mathbf{t}$ to land back in \mathbb{R} :

$$
\begin{equation*}
F_{\mu}\left(\Sigma_{(d-p)}\right)=\int_{\Sigma_{(d-p)}}\langle E, \mu\rangle \tag{2.31}
\end{equation*}
$$

for a class of $d-p$-chains, defined up to a boundary $\Sigma_{(d-p)} \sim \Sigma_{(d-p)}+$ $\partial B_{(d-p+1)}$. The generalized Bohm-Aharonov phase now becomes the generalized holonomy:

$$
\begin{equation*}
W_{\lambda}\left(C_{(p)}\right)=\exp 2 \pi \mathrm{i} \int_{C_{(p)}}\langle\lambda, A\rangle \tag{2.32}
\end{equation*}
$$

for a closed p-chain $C_{(p)}, \partial C_{(p)}=0$.
Simons Center for Geometry and Physics, Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook NY 11794-3636, USA

[^0]: Date: September 22, 2023.

[^1]: ${ }^{2}$ For a linear map $A: V_{1} \rightarrow V_{2}$ we denote by A^{t} the canonical dual map $V_{2}^{*} \rightarrow V_{1}^{*}$, defined by $A^{t} \xi(v)=\xi(A v)$, for any $v \in V_{1}, \xi \in V_{2}^{*} \diamond$
 ${ }^{3} \boldsymbol{\sim}$ Throughout the notes we adopt Einstein's convention except where it leads to confusion: $A_{\cdots}^{i \ldots} B_{i \ldots}^{\cdots}:=\sum_{i} A_{\cdots}^{i \ldots} B_{i \ldots}^{\ldots} \diamond$

