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Abstract. The notation �text� denotes the exercises.
The notation ♠text♦ denotes the definitions.

1. Review of classical mechanics

The arena of most (but not all) of Classical mechanics is the world of
♠ symplectic manifolds (P, ω), where ω ∈ Z2(P) is a closed, non-degenerate:

ω∧m 6= 0, two-form on a smooth manifold P of dimension

(1.1) dimP = 2m

supplemented by a choice of the Hamiltonian H ∈ C∞(P) ♦.

(1.2) (P, ω,H) ,with ,

The symplectic form makes the ring A = C∞(P) of smooth functions a Lie
algebra, with the ♠ Poisson bracket given by

(1.3) {f, g} = ιπ (df ∧ dg) ,

with the Poisson bi-vector π = ω−1. ♦
� The closedness dω = 0 implies the Jacobi identity for {·, ·}:

(1.4) {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 �

Examples:

(1) P = T ∗X where X is any manifold,

(1.5) ω = dθ

with θ ∈ Ω1(T ∗X)-canonical 1-form

(1.6) θ(p,q)(ξ) = p(π∗ξ)

where q ∈ X, p ∈ T ∗qX, ξ ∈ T(p,q)T
∗X, π : T ∗X → X is the

projection, and π∗ξ ∈ TqX is the projection of the vector tangent to
T ∗X to the base tangent vector.
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2 NIKITA NEKRASOV

(2) Let (M,ωM ) be a symplectic manifold. Then (P = T ∗M,ωP = dθ+
kπ∗ωM ) defines a family of symplectic manifolds. The corresponding
evolution is sometimes called a motion in magnetic field.

(3) Let G be a simple Lie group, g = LieG its Lie algebra, and g∗

the dual space. Let ξ ∈ g. Define P = Oξ := {Ad∗gξ | g ∈ G} be
the coadjoint orbit (of ξ). It carries the canonical Kirillov-Kostant
symplectic form. Let us define it through the Poisson brackets of
functions on P:

(1.7) {f1, f2}(x) = x ([df1, df2])

Here the functions f1,2 : g∗ → R have differentials df1,2 which, at
the point x ∈ P ⊂ g∗ are the linear functions on Txg

∗ ≈ g∗, i.e.
(for finite dimensional vector spaces V ≈ V ∗∗) elements v1,2 ∈ g.
We then evaluate x, as a linear function on g, on the commutator
[v1, v2]. � Show (1.7) is invertible i.e. corresponds to a symplectic
form �.

(4) Specifically, let G = SU(N). We can view G as a subgroup of the
group U(N) of automorphisms of the N -dimensional vector space
N ≈ CN endowed with a hermitian form, i.e. sesquilinear non-
degenerate pairing 〈·, ·〉 : N×N→ C, obeying

(1.8) 〈xv1, yv2〉 = x̄y〈v1, v2〉 , 〈v1, v2〉 = 〈v2, v1〉

for any x, y ∈ C, v1, v2 ∈ V . So, g ∈ GL(N) belongs to U(N) if for
any v1, v2 ∈ V

(1.9) 〈gv1, gv2〉 = 〈v1, v2〉

The subgroup G is singled out by the condition det(g) = 1. In
other words, special unitary transformations preserve a volume form
Ω ∈ ΛNN∗, in addition to the hermitian form. Now recall that the
operator A ∈ End(V ) is called hermitian, if for any v1, v2 ∈ V

(1.10) 〈v1, Av2〉 = 〈Av1, v2〉

Let us choose a basis e1, . . . , eN , orthonormal with respect to the
hermitian form:

(1.11) 〈ei, ej〉 = δi,j

In this basis the operators g,A have the associated matrices ‖gij̄‖, ‖Aij̄‖,

(1.12) gij̄ = 〈ei, gej〉 , Aij̄ = 〈ei, Aej〉

(the bar on j̄ signifies the different role ei and ej play in the right
hand side of the equation).
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� Show the unitarity of g and hermiticity of A is equivalent to
the set of equations

(1.13)
gg† = 1N ⇔

N∑
j=1

gij̄gjk̄ = δik̄ , i, k̄ = 1, . . . , N

A = A† ⇔ Aij̄ = Ajī �

The Lie algebra g = LieU(N) is the vector space of all anti-hermitian
operators in N:

(1.14) B ∈ g⇔ 〈v1, Bv2〉+ 〈Bv1, v2〉 = 0

Of course, if B is antihermitian, then A = iB is hermitian and
vice versa. The Lie algebra of SU(N) is a subspace of all traceless
antihermitian matrices. Consider the set of all hermitian operators
with fixed eigenvalues λ1, . . . , λN ∈ R:

(1.15) Oλ1,...,λN =

{
A |Det(λ−A) =

N∏
i=1

(λ− λi)

}
Using the pairing

(1.16) 〈A,B〉 := itrNAB

we identify g∗ with the space of Hermitian operators in N. Thus,
Oλ1,...,λN ⊂ g∗ is a coadjoint orbit of U(N). To make it into the
coadjoint orbit of SU(N) we need to descend to the quotient of the
space of all Hermitian matrices by the action of R of shifts by a
scalar operator:

(1.17) B ∼ B + b · 1N , b ∈ R

We can fix the representative by demanding that the B operators
are also tracefree, trB = 0. Thus, let

(1.18) λ1 + . . .+ λN = 0

Then, Oλ1,...,λN ⊂ su(N)∗ is a coadjoint orbit of SU(N). Flag vari-
eties, Grassmanians, projective spaces.

(5) As is customary in theoretical physics we shall take the above defini-
tions and try our best in extending them to the infinite-dimensional
settings. The loop space LX = Maps

(
S1, X

)
of smooth maps of

a circle to a Riemannian manifold (X, gX) carries a closed two-
form ΩLX . At some loop γ ∈ LX its value on a pair of vectors
ξ1, ξ2 ∈ Γ(S1, γ∗TX) is given by:

(1.19) ΩLX(ξ1, ξ2) =

ˆ
S1

γ∗gX(ξ1,∇ξ2)

where ∇ is the pull-back by γ of the Levi-Civita connection on TX
defined by the metric gX . � Is ΩLX a symplectic form? �.
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(6) This example can be generalized to the case of P = Maps(M,X),
where M is a compact manifold of dimension n, endowed with a
closed n− 1-form νM . We define

(1.20) ΩXM (ξ1, ξ2) =

ˆ
M
νM ∧ γ∗gX(ξ1,∇ξ2)

(7) Let (M,µM ) be a compact manifold endowed with a volume form

µM ∈ Ωdim(M)(M), µM 6= 0, and let (X,ωX) be a symplectic man-
ifold. Define P = Maps(M,X), and endow it with the symplectic
form, s.t. at γ : M → X and ξ1, ξ2 ∈ Γ(M,γ∗TX)

(1.21) ΩXM (ξ1, ξ2) =

ˆ
M
µM γ∗ωX(ξ1, ξ2)

1.1. Hamilton equations. Now let us put the function H ∈ A to a good
use. The differential dH is a 1-form on P. Define the Hamiltonian vector
field VH by:

(1.22) ιVHω = dH ⇔ VH = ιω−1dH

Examples:

(1) Let X be any manifold and v ∈ V ect(X) a vector field. Let P =
T ∗X with ω = dθ, and H(p, q) = p(v(q)), q ∈ X, p ∈ T ∗qX. The
corresponding vector field VH covers the vector field v on X. �
Compute VH . �

(2) Let (X, g) be a Riemannian manifold. We view the metric g as a
smooth map TX → T ∗X. Then (P = T ∗X,ω = dθ,H) with

(1.23) H =
1

2
(p, g−1p)

defines the Hamiltonian system, covering the geodesic flow on X 1

(3) Again, let (X, g) be a Riemannian manifold and U ∈ C∞(X). Then

(1.26) H(p, q) =
1

2
(p, g(q)−1p) + U(q)

describes a particle on X moving in the field of the potential U .

1♠ A geodesic curve on a Riemannian manifold (X, g) is the extremum of the functional

(1.24) L =

ˆ
U

√
g( ˙̀, ˙̀) dt

on the space Maps(U,X)/Diff+(U) of oriented curves in X. Here U ⊂ Rt is a connected
domain, and ` : U → X a smooth map. One can impose Dirichlet boundary conditions:
`(∂U) = {xs, xt} with two points xs, xt ∈ X. Analogously, a minimal surface in X is the
extremum of the functional

(1.25) A =

ˆ
U

√
g( ˙̀, ˙̀)g(`′, `′)− g( ˙̀, `′)2 dtds

on the space Maps(U,X)/Diff+(U) of oriented surfaces in X. Here U ⊂ R2
t,s is a

connected domain, and ` : U → X a smooth map. One can impose Dirichlet boundary
conditions: `(∂U) = γ, γ ⊂ X, or Neumann boundary conditions: ∇n`|∂U = 0. ♦
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(4) An important special case of the system above is ♠ the generalized
harmonic oscillator (or a system of m oscillators): X = T ∗Q, Q =
Rm, ω =

∑m
i=1 dpi ∧ dqi,

(1.27) H =
1

2

m∑
i,j=1

gijpipj +

m∑
i,j=1

Kj
i pjq

i +
1

2

m∑
i,j=1

Uijq
iqj

where we assume the non-degenerate positive definite metric gij on
Q, whose inverse gij appears as the kinetic term in (1.27). We also
assume the second metric Uij on the same Q, defining the potential
term. The cross-term (p,Kq) depends on a choice of linear operator
K : V → V . The operator K can be decomposed as a sum of
g-symmetric and g-antisymmetric parts:

(1.28) K = Ks +Ka , gKs = (Ks)tg , gKa = −(Ka)tg

where we viewed the metric g as the symmetric map g : V → V ∗,
2 gt = g. The symmetric part Ks can be eliminated from H by a
canonical transformation:

(1.29) p 7→ p− g(Ksq)

(1.30)
∑

d
(
gilK

l
mq

m
)
∧ dqi = 0

What is the meaning of Ka? Define Ω = gKa, Ωt = −Ω. Then we
can re-write the Hamiltonian as 3:

(1.31) H =
1

2
gij
(
pi + Ωikq

k
)(

pj + Ωjlq
l
)

+
1

2
Vijq

iqj

where V is related to U in an obvious way. Finally, we can reinterpret
(1.32) as the Hamiltonian evolution of a system of oscillators with
standard kinetic and potential terms

(1.32) H̃ =
1

2
gijpipj +

1

2
Vijq

iqj

but with a modified symplectic form:

(1.33) ωmr = dpi ∧ dqi +
1

2
Ωijdq

idqj

This modification is sometimes called magnetic field-rotating frame.
� Why? �.

(5) Now let us assume X is endowed with a closed two-form F . Let
P = T ∗X with ω = dθ + π∗F . � Compute VH for H given by the
Eq. (1.26). �

2♠ For a linear map A : V1 → V2 we denote by At the canonical dual map V ∗2 → V ∗1 ,
defined by Atξ(v) = ξ(Av), for any v ∈ V1, ξ ∈ V ∗2 ♦

3♠ Throughout the notes we adopt Einstein’s convention except where it leads to
confusion: Ai...... B

...
i... :=

∑
iA

i...
... B

...
i... ♦
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1.2. Darboux coordinates, action-angle variables. The local model of
P is a domain in T ∗Rm ≈ R2m, with ω = dθ, θ =

∑m
i=1 pidq

i with (qi) co-
ordinates on Rm. We can change the coordinates by symplectic (canonical)
diffeomorphisms. Let g : R2m → R2m preserves ω, then

(1.34) g∗θ − θ = dS

for some function S. In coordinates:

(1.35)

m∑
i=1

PidQ
i − pidqi = dS

thus a function of m + m variables old and new q’s S = S(Q, q) is all is
needed to generate the symplectomorphism g (a beautifully non-invariant
yet useful formalism):

(1.36) Pi =
∂S

∂Qi
, pi = − ∂S

∂qi

Examples:

(1) Linear symplectomorpisms are generated by the quadratic functions

(1.37) S =

m∑
i,j=1

1

2
AijQ

iQj +Bi|jQ
iqj +

1

2
Cijq

iqj

(2) In particular, time evolution of a system of harmonic oscillators is
described by:

(3) Change of cartesian to polar coordinates on R2:

(1.38) (p, q) 7→ (A,ϕ) A =
p2 + q2

2
, q =

√
2A cos(ϕ) , p =

√
2A sin(ϕ)

� What is its generating function S(ϕ, q)? �

1.3. Symplectic quotients. Suppose (P, ω,H) is invariant under the ac-
tion of a Lie group G. Moreover, we’ll require the action of G to be Hamil-
tonian (this is automatic for simply-connected P � why? �).

A diffeomorphism g : P→ P is a symplectomorphism if it preserves ω:

(1.39) g∗ω = ω

Infinitesimal symplectomorphism is a vector field V ∈ V ect(P), such that

(1.40) LieV ω = 0↔ d(ιV ω) = 0

A Hamiltonian G-action on P associates to every ξ ∈ g, a Hamiltonian vector
field Vξ,

(1.41) ιVξω = dhξ

with some Hamiltonian function hξ : P→ R. Of course (1.41) defines hξ up
to a constant. We can partly restrict the choice of a constant by requiring
the map ξ 7→ hξ be linear. We have the homomorphism condition

(1.42) [Vξ1 , Vξ2 ] = V[ξ1,ξ2]
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for any ξ1, ξ2 ∈ g. We may want to require that

(1.43) h[ξ1,ξ2] = {hξ1 , hξ2} := ω(Vξ1 , Vξ2) = ιω−1dhξ1 ∧ dhξ2
This is not always possible. For example, the abelian group R2 of trans-
lations acts on R2 preserving the constant volume 2-form dp ∧ dx. The
Hamiltonians h1, h2 are equal to p, x, respectively. The corresponding vec-
tor fields commute, however p, x = 1 6= 0.

Algebraically, the problem of finding the constants cξ adjusting hξ so as
to obey (1.43) is the question of whether the Lie algebra g has non-trivial
second cohomology. Define

(1.44) c(ξ1, ξ2) = {hξ1 , hξ2} − h[ξ1,ξ2]

As it stands c(ξ1, ξ2) is a function on P. However,

(1.45) dc(ξ1, ξ2) = ι[Vξ1 ,Vξ2 ]ω − ιV[ξ1,ξ2]ω = 0

by Eq. (1.42). Thus, c : Λ2g→ R defines a linear map. It obeys:

(1.46) c([ξ1, ξ2], ξ3)+c([ξ2, ξ3], ξ1)+c([ξ3, ξ1], ξ2) = {h[ξ1,ξ2], hξ3}+cyclic = 0

where we used the linearity of ξ 7→ hξ map and {h[ξ1,ξ2], ·} = {{hξ1 , hξ2}, ·}.

1.3.1. Cohomology of groups and algebras. Let us pause to define an inter-
esting cohomology theory. Let g be a Lie algebra, and M a g-module, i.e. a
vector space with the homomorphism ρ : g → End(M). For ξ ∈ g, m ∈ M
we denote ρ(ξ)m simply by ξ · m. Define Ci(g,M) to be the space of all
skew-symmetric polylinear functions c(i) : Λig −→M . Define the differential

δ : Ci(g,M)→ Ci+1(g,M) by

(1.47)

δc(i) (ξ1 ∧ . . . ∧ ξi+1) =

i+1∑
j=1

(−1)j−1ξj · c(i)

(
ξ1 ∧ . . . ∧ ξ̂j ∧ . . . ∧ ξi+1

)
+

∑
1≤a<b≤i+1

(−1)a+bc(i)

(
[ξa, ξb] ∧ ξ1 ∧ . . . ξ̂a . . . ξ̂b . . . ∧ ξi+1

)
� Check, that � it is a differential , δ2 = 0.

One defines ♠ the cohomology groups

(1.48) H i(g,M) =
(
kerδ ∩ Ci

)
/
(
imδ ∩ Ci

)
♦.

Let us now take, as example, M = R with a trivial action of g. The
H2(g,R) group is the space of all skew-symmetric bilinear forms c(ξ ∧ η) on
g which are closed under the differential

(1.49) δc(ξ1 ∧ ξ2 ∧ ξ3) = c([ξ1, ξ2] ∧ ξ3) + c([ξ2, ξ3] ∧ ξ1) + c([ξ3, ξ1] ∧ ξ2)

modulo δ-exact forms c ∼ c + δb, where δb(ξ ∧ η) = b([ξ, η]). For simple
Lie algebras H2 vanishes. For abelian Lie algebra a the space of R-valued
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i-cocycles is the space of all skew-symmetric i-linear functions on a, since
the commutators vanish implying the vanishing δ. In other words,

(1.50) H i(a,R) = Λia∗

Any 2-cocycle c ∈ Z2(g,R) defines a central extension of g, i.e. a new Lie
algebra g̃, which is equal to g ⊕ R as a vector space, with the commutator
defined by:

(1.51) [(ξ1, c1) , (ξ2, c2)] = ([ξ1, ξ2], c(ξ1 ∧ ξ2))

However, not all such extensions are non-trivial. Indeed, ξ 7→ (ξ, b(ξ))
embeds g into g̃ for linear function b ∈ g∗. Thus, only cocycles modulo
coboundaries produce non-trivial, new, Lie algebras.

The most basic such extension is, in fact, an avatar of quantization. Given
a symplectic vector space (V, ω) we define ♠ the Heisenberg algebra HV to
be the central extension of V viewed as abelian Lie algebra, corresponding
to ω viewed as the Lie algebra-cohomology class ω ∈ H2(V,R) ♦.

1.3.2. Moment map. Given a symplectic manifold (P, ω) and a Lie group G
acting on P by Hamiltonian vector fields, define

(1.52) Pred = P//G = µ−1(ζ)/G

where, assuming the vanishing of the obstruction class in H2(g,R), the mo-
ment map

(1.53) µ : M → g∗

is defined via:

(1.54) ♠ 〈µ(x), ξ〉 = hξ(x) , ξ ∈ g , x ∈M ♦
As discussed above, the possibility of adding a constant to hξ translates to

a variety of possibilities for ζ ∈ (g∗)Gin (1.52). For simple Lie group G only
ζ = 0 is possible, while for G with center there are many options for the
level of the moment map. For example, take M = R2m, ω =

∑m
i=1 dpi ∧dxi,

G = U(1) acting via:

(1.55) eit : (p,x) 7→ (pcos(t)− xsin(t) , xcos(t) + psin(t))

The moment map

(1.56) µ =
1

2

m∑
i=1

(
p2
i + (xi)2

)
The reduced phase space is empty for ζ < 0, a point for ζ = 0, and the
remarkably important compact symplectic manifold of dimension 2(m− 1)
for ζ > 0, the complex projective space CPm−1. As a bonus, it carries a
complex structure, and so it can be described in complex terms only:

(1.57) CPm−1 = {(z1, . . . , zm) | z 6= 0 , z ∼ uz , u ∈ C×} = (Cm\0) /C×

In other words, we encountered the relation M//G = M s/GC which will be
discussed in greater generality later.
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2. Review of classical electromagnetism

Maxwell theory, or classical electromagnetism, is the infinite-dimensional
version of classical mechanics, where the phase space P is the field space.
We shall discuss it in somewhat artificial setting of compact spaces, which
is easier to handle mathematically, and has applications to topology.

Let Md be a compact d-dimensional manifold, endowed with Riemannian
metric g. The metric defines the Hodge star operator ? mapping p-forms to
d− p-forms via the point-wise relation

(2.1) ω ? ω = volg
∑

i1<i2<...<ip

ω(ei1 , . . . , eip)ω(f i1 , . . . , f ip)

where ei, i = 1, . . . ,m is any basis in TxM , and f i the associated orthogonal
basis, such that

(2.2) g(ei, f
j) = δji

for all i, j = 1, . . . ,m. The Eq. (2.1) endows Ωp with the metric

(2.3) (ω, η) =

ˆ
M
ω ∧ ?η = (η, ω)

We shall glide over the finer details such as L2 completions, Sobolev embed-
dings etc. which are needed to be able to operate with

(2.4) d∗ = ?d? ,

the operator Ωi(M) → Ωi−1(M), conjugate to d in the sense of the Hodge
metric (2.3) on the space of differential forms.

2.1. R-gauge p-form theory. Our first approximation is to take

(2.5) P = T ∗AR//GR

where AR = Ωp(M), GR = (Ωp−1(M)/Zp−1(M)) is the vector space of p−1-
forms considered modulo closed ones, acting on AR by

(2.6) A 7→ A+ dξ

for A ∈ AR, ξ ∈ GR. The symplectic form on T ∗AR is traditionally written
as

(2.7) ΩT ∗AR =

ˆ
M
δE ∧ δA

where δ denotes the de Rham differential in the space of fields while d is re-
served for de Rham differential along M . In (2.7) E denotes the momentum
conjugate to A, the d − p-form. The (2.6) corresponds to the Hamiltonian
vector field on T ∗AR, which, being a lift of a vector field on the configuration
space AR, is generated by the moment map, linear in E:

(2.8) µ = dE

which is traditionally called Gauss law in the context of gauge theory. Set-
ting µ = 0 and dividing by (2.6) defines the phase space of abelian pure
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gauge p-form theory. Hodge theory allows one to describe the quotient as
T ∗V where V is the vector space

(2.9) V = Hp(M,R)⊕ (imd∗ ∩ Ωp(M))

while its dual V∗ is identified with

(2.10) V∗ = Hd−p(M,R)⊕
(

imd ∩ Ωd−p(M)
)

Now that we have identified the phase space, let us look at the time evolu-
tion(s). The standard Hamiltonian of Maxwell theory is

(2.11) H =

ˆ
M

g2

2
E ∧ ?E +

1

2g2
F ∧ ?F

with curvature F = dA, and some parameter g, called the gauge coupling.
If we use the spectral theory of the Laplacian

(2.12) ∆(p) = d∗d+ dd∗|Ωp(M)

we can recognize in (2.11) an infinite-dimensional version of the system of
harmonic oscillators, coupled to a geodesic flow on Hp(M). The actual
value of the coupling g is irrelevant, as we can change it by performing the
canonical transformation, generated by

(2.13) D =

ˆ
M
E ∧A

� Why is D well-defined on P ? �

2.1.1. First glimpses of the ϑ-angle. When d = 2p + 1 the symplectic form
(2.7) can be generalized to the family of forms:

(2.14) Ωϑ =

ˆ
M
δE ∧ δA+ ϑ

ˆ
M
dδA ∧ δA

For odd p and d = 2p the symplectic form (2.7) can be generalized to the
family of forms:

(2.15) Ωk =

ˆ
M
δE ∧ δA+ k

ˆ
M
δA ∧ δA

Both generalizations correspond to the magnetic field-rotating frame gener-
alization (1.33).

2.1.2. Observables. What are the natural observables in such a theory? The
electric field E is gauge invariant, albeit constrained by the Gauss law. A
closed d−p form is characterized by its integrals over d−p-chains, measuring
electric fluxes

(2.16) electric flux through Σd−p =

ˆ
Σd−p

E

which does not change under the variations of the d− p-chain preserving its
boundary:

(2.17) electric flux through Σd−p = electric flux through Σ′d−p
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if

(2.18) Σd−p − Σ′d−p = ∂Bd−p+1

for some d − p + 1-chain Bd−p+1. The observables can also be constructed
out of A:

(2.19) generalized Bohm−Aharonov phase along Cp =

ˆ
Cp

A

which is only gauge invariant for closed p-chains, ∂Cp = 0. The infinitesimal
version of (2.19) is any functional of the curvature F = dA.

2.1.3. Noncompact duality. Suppose d = 2p + 1. Remark that in this case
the curvature F = dA and the electric field are both p+1-forms. Also, both
A and ?E are p-forms.

2.2. Compact p-forms. An important generalization of the construction
above cures the problem of continuous spectrum (infinite motion in the
classical parlance) of the zero mode sector evolution above.

Let t ≈ Rr be a vector space, Γ ⊂ t a lattice ≈ Zr and T = t/Γ the cor-
responding compact torus. The compact p-form electrodynamics is defined
on

(2.20) P = T ∗AT//GT

where the space AT is the space of connections on the p − 1-gerbe, defined
as follows. Pick a nice ∨Cech covering M = ∪α∈AUα
(2.21) AT = { (Aα) |Aα ∈ Ωp(Uα)⊗ t , Aα −Aβ ∈ Ωp

Γ(Uα ∩ Uβ) }

where Ωp
Γ(S) ⊂ Ωp(S) ⊗ t consists of all t-valued p-forms o, curvatures of

p− 2-gerbes defined on Uα ∩ Uβ, such that

(2.22)

ˆ
Σ
o ∈ Γ

for any integral closed chain Σ ∈ Zp(S;Z). Note that the differential F :=
dA is a globally defined t-valued p+ 1-form, with Γ-valued periods:

(2.23)

ˆ
Ξ
F ∈ Γ

for any integral closed chain Ξ ∈ Zp+1(S;Z). Indeed, the overlap condition
implies dAα = dAβ on any Uα ∩Uβ, thus F is globally well-defined. On the
other hand

(2.24)

ˆ
Ξ
F =

∑
α

ˆ
Ξ∩Uα

F −
∑
α,β

ˆ
Ξ∩Uα∩Uβ

F + . . . =

∑
α

ˆ
∂(Ξ∩Uα)

Aα −
∑
α,β

ˆ
∂(Ξ∩Uα∩Uβ)

Aαor β + . . .

which may be nontrivial yet valued in Γ � Finish the argument �.
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The symplectic form is

(2.25) ΩT ∗AT
=

ˆ
M
〈δE,∧δA〉

where E ∈ Ωd−p(M)⊗ t∗ and we denote by 〈·, ·〉 the pairing t∗ ⊗ t→ R.
The gauge group GT = Ωp

Γ(M) acts by

(2.26) (Aα) ∼ (Aα +$|Uα) , $ ∈ Ωp
Γ(M)

Any element $ ∈ Ωp
Γ(M) defines a cohomology class, a p-winding number

(2.27) [$] ∈ Hp(M,Γ)

Any two $′, $′′ with the same p-winding number differ by an exact p-form

(2.28) $′ −$′′ = dξ , ξ ∈ Ωp−1(M)

The group GT, therefore, is a direct product of a lattice Hp(M,Γ) and a
vector space Ωp−1(M)/Zp−1(M). The action of GT is the combination of
the Hamiltonian vector fields generated by

(2.29) µ = dE ∈ Ωd+1−p(M)⊗ t∗ = (LieGT)∗

and the action of the lattice Hp(M,Γ) by shifts in Hp(M, t). The latter is
the orthogonal summand in the Hodge decomposition

(2.30) AT = qHp+1(M,Γ) H
p(M, t)⊕ (imd∗ ∩ Ωp(M)⊗ t)

2.2.1. Observables in compact theory. We can still define the electric fluxes,
except that now they take values in t∗, not in numbers, so we pair it with
an element µ ∈ t to land back in R:

(2.31) Fµ(Σ(d−p)) =

ˆ
Σ(d−p)

〈E,µ〉

for a class of d − p-chains, defined up to a boundary Σ(d−p) ∼ Σ(d−p) +
∂B(d−p+1). The generalized Bohm-Aharonov phase now becomes the gener-
alized holonomy:

(2.32) Wλ(C(p)) = exp 2πi

ˆ
C(p)

〈λ,A〉

for a closed p-chain C(p), ∂C(p) = 0.
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